
EventStore
A Data Management System

Valentin Kuznetsov 
with

Chris Jones, Dan Riley, Gregory Sharp

Cornell University



CLEO-c
 The CLEO-c experiment started in 2003

 main physics topics are
● precise studies of the D and Ds meson decays
● Lattice QCD and search for glueballs
● precise CKM measurements

 Run plan
● Phase I: (3770), L =3 fb-1

 30 million DD events, 6 million tagged D decays
● Phase II: √s = 4140 MeV, L =3 fb-1

 1.5 million DsDs events, 0.3 million tagged Ds decays 

● Phase III: (3100), L =1 fb-1

 1 billion J/ events

 we expect to collect 200TB of data
● data management is an issue



Why EventStore?
 Many problems exist with the CLEO III data 

management system:
 it is based on Objectivity/DBTM

● proprietary software restricts our choice of OS/compiler
● abandoned by all other HEP experiments

 very slow and doesn't scale
● 2000 evt/s w/o data to memory on 500MHz Solaris
● add 10x machines slows all jobs by 1/10

 unnatural partitioning of our data
● cannot run through different datasets in the same job

 our implementation doesn't allow us to update data
● can't just redo Ks finding in reconstruction



Requirement patterns

Physics queries:
Support a variety of queries, e.g
 All data for runs taken at (3770)
 request data by run/detector conditions
 run range 200111 to 210111
 datasets 31, 34

Portability:
✓data must be portable to other sites
✓multi-platform support (Solaris,Linux)
✓should run with/without HSM and
or caching systems
✓should run on laptop without full
access to meta data

Data integrity:
 data versioning
 no corrupted data

Performance:
read 2000 evt/s
write 500 evt/s

Support multiple file formats: raw, PDS, root, etc.

Security issues

Maintainability:
upgrades should
be easy to install

Fault-tolerance:
handle heavy load,
hardware failures

Reliability: short recovery time,
high uptime.

Remote data distribution:
transport part of the data to another 
site and make it available for users



EventStore design
 We need

● indexing: for random data access
● versioning: for job reproducability and comparison

 Database evaluation: 
● different DB's for different use cases
● SQL-like: for easy access/upgrade/common API

 Data relationship and organization:
● grade: logically grouped data collections

 e.g. raw, physics (approved for analysis)
● view: event selection within a grade, e.g. qcd

 Necessary services:
● location server, MetaData DB (for complex physics 

queries), etc.
 Prototype in Python C++ for legacy application



EventStore “sizes”

● For individual physicists
● can be run on laptops

● Embedded DB (SQLite)
● Holds personal skims

Core system
C++/Python API

● Cornell Site
● Holds all our data
● Replication to improve performance
● Interacts with tapes
● RDMS

● candidates: DB2, Oracle, MySQL ...

● For large on/off site groups
● Holds a large subset of our data
● All data on disk
● MySQL DB for indexing

Personal
Group

Collaboration

MetaData

web service



EventStore: architecture

Collaboration Group Personal

HSM

Cache Manager

Data Delivery layer & file access

Management Layer (indexing/versioning)

Local diskDisks & tapes

RDMS MySQL Embedded
      DB

Physics applications
data reconstruction,
          analysis EventStoreModule(s)

Internet

Local disks



EventStore: file formats
 EventStore supports “native” file formats

 e.g. binary (raw data), pds (CLEO III file format)
● Support for new file formats requires writing additional 

plugin; we're planning to add root and other formats
 EventStore knows location of data files which 

resides on disk/tape
 Files can be moved around for load balancing

 EventStore creates auxiliary files for random 
data access (5% overhead to data file)

 Format-independent “index” files for event finding
 Format-dependent “location” files for random data 

access



EventStore: data lookup

Data file

File Header

Record
header

Record

Record

Index file

File Header

Location file

File Header
Run/Event/uid

Index list:
beginrun:idx1
event:idx2
endrun: idxN

Run/Event/uid

Index list:
record1:idx1
record2:idx2
recordN:idxN

File offset,
record,
dataFileIdx

File offset,
event,
dataFileIdx

Indexing DBEventStoreModule(s)

Physics application: request data for Run/Event
d

at
a

Record

Record



EventStore: data versioning
 Users access data specifying date-stamp

 EventStore finds the closest version before that date
 EventStore remembers version “evolution”

 users always get consistent set of data
 If data reprocessed, assign new date-stamp
 When new dataset or skim is added, czar can 

append it to any date-stamp

Run Number

T
im

e

20040622

Versions

20030701

data31

data31

data32

data33



EventStore: granularity
eventstore in 20040701 recon

raw recon physics

all qcd 2photon

time stamps

grades

views

123458,123459 ...125112 runs

Upon user request, the closest date stamp is chosen and
all available data for this date are available

20040607

set of runs

123459,123460,...
set of runs

20040627 20040703

123459,124111,



EventStore: performance

 Sequential data access is 
very compatible with a chain 
of files

 Using Linux w/ data in memo-
ry on Intel/1GHz/256Mb:

● 50K evt/sec on local IDE disk
 Random data access has 

tremendous improvements 
over chain of files

 factor of 6 to access every 
1000th event

 MySQL/SQLite show identical 
results



EventStore: current status
 EventStore 5+ times faster Objectivity/DB

● Objectivity w/o data to memory 2000 evt/s 
● EventStore w/ data to memory 11000 evt/s

 Data stored in native format
 Can manage data and MC
 Data versioning:

 can always get back data you used before
 Support simple physics queries: 

 dates, run ranges
 Run over multiple skims in same job
 Easy add/remove data to/from DB
 Random access to data

500 MHz Solaris



Summary
 EventStore has been released for users

 very fast and robust
 uses embedded SQLite DB (“personal size”)

● “Group” EventStore under construction
 Users are switching to EventStore:

● all CLEO-C data presented: 
 1800 runs, 120M events, 21K files

● no file management and bookkeeping 
● no long scripts to chain files
● simple interface
● can do many new things not present in current system

 random data access; run over multiple datasets; update data, etc.

 New data taken this fall will be in EventStore
 Objectivity DB will be used for calibration only


