
EVENTSTORE: MANAGING EVENT VERSIONING AND DATA
PARTITIONING USING LEGACY DATA FORMATS

C.D. Jones, V. Kuznetsov, D. Riley, G.J. Sharp,
Cornell University, Ithaca, NY 14853, USA

Abstract

HEP analysis is an iterative process. It is critical that in
each iteration the physicist’s analysis job accesses the same
information as previous iterations (unless explicitly told to
do otherwise). This becomes problematic after the data has
been reconstructed several times. In addition, when starting
a new analysis, physicists normally want to use the most
recent version of reconstruction. Such version control is
useful for data managed by a single physicist using a lap-
top or small groups of physicists at a remote institution in
addition to the collaboration-wide managed data.

In this paper we will discuss our implementation of the
CLEO-c EventStore, which uses a data location, indexing
and versioning service to manage legacy data formats (e.g.,
an experiment’s existing proprietary file format or Root
files). A plug-in architecture is used to support adding ad-
ditional file formats. The core of the system is used to im-
plement three different sizes of services: personal, group
and collaboration.

INTRODUCTION

Over the next five years, the CLEO-c experiment will
collect hundreds of Terabytes of data focusing on the de-
cays of the charmed quark. These data will be used for
precision measurements of CKM matrix elements, glue-
ball searches, and precision tests of QCD predictions cal-
culated via Lattice QCD and Heavy Quark Effective The-
ory techniques, among other topics. From experience, we
expect the reconstruction process will be performed several
times, as the reconstruction software evolves and improves.
One of the challenges for physicists analyzing such data is
maintaining a consistent set of data and Monte Carlo sim-
ulated data, despite the introduction of new versions of the
reconstructed data.

The CLEO III data storage system[1], while highly flex-
ible, did not provide good support for managing multiple
versions of the reconstructed data and Monte Carlo. The
CLEO-c[4] EventStore was designed as a general purpose
framework to manage the event data from the CLEO-c ex-
periment, simplifying many common tasks of data analysis
by relieving physicists of the burden of data versioning and
file management. Rather than invent a new data format,
EventStore was designed to manage data stored in a vari-
ety of formats, including the CLEO-c raw data and recon-
structed object formats, and ROOT[3]. Data stored in the
various formats are versioned as a group, so that physicists
conducting analyses are always presented with a consistent

set of data, and can recover the version of the data used pre-
viously. With EventStore, data in different formats, includ-
ing overlapping skims, can be accessed at the same time
with a common interface. It provides a physics-oriented in-
terface for selecting data based on “run conditions”, such as
the beam energy or status of various subdetectors. Adding
new data to EventStore is simple, as is superseding old data
while retaining the ability to recover the data superseded. It
was designed to add minimal overhead to sequential access
to the data, and to speed random access to data formats that
do not have a native index.

ARCHITECTURE

The CLEO-c EventStore holds the raw data produced
by the CLEO-c detector, reconstructed data, user-generated
skims, and Monte Carlo simulated data. Data can be stored
in native file formats, which can be relocated and replicated
for load balancing and staged in and out of HSM storage.
The EventStore consists of several components (see Fig. 1):

� An EventStoreModule, which is loaded into the
CLEO III/c analysis framework, SUEZ[2].

� A management layer, which provides versioning data
and the locations of the indexing data.

� A data delivery layer, which uses the indexing data for
rapid access to the data.

The management layer uses a relational database to hold
the run conditions and version data, and the locations of the
indexing data. Where each of these components is imple-
mented depends on the EventStore size, as discussed next.

EventStore Sizes

The CLEO-c EventStore comes in three sizes, tailored to
the scale of the application: personal, group and collabora-
tion. The only user interface differences between the three
sizes is the name of the module loaded, which is also the
first word of all EventStore commands. The difference in
names is required for SUEZ to load different EventStore
sizes simultaneously.

The “personal” EventStore is meant to manage user
skims on a personal system such as a laptop or desktop. It is
designed to provide the versioning and metadata query fa-
cilities of the EventStore with minimal overhead. The rela-
tional database is implemented using the embedded SQLite
database, making the personal EventStore completely self-
contained in the SUEZ EventStoreModule. No daemons

Suez

A
d

m
in

is
tr

at
iv

eT
o

o
lk

it

 Management layer
Versioning, Indexing

MySQL DB implementation

Data Delivery layer

 Data Base(s)
 e.g MySQL DB

Personal/Group/Collaboration implementation

EventStoreModule

Figure 1: The EventStore Architecture. The shaded boxes represent a particular implementation.

or other system administration tasks are required beyond
installation of the CLEO-c software packages.

The “group” EventStore is designed for managing sub-
stantial amounts of data residing on a pool of disks. A
relational database server (currently MySQL) is used for
better performance and scalability. More complex physics
queries are supported. The typical application for the group
EventStore would be a second tier analysis facility.

The “collaboration” EventStore adds more sophisticated
data management facilities to the group scale system, in-
cluding support for hierarchical storage, data replication
and relocation, and a distributed directory service. The
collaboration scale EventStore would typically be used at
a first tier facility holding copies of all the CLEO-c data.

The CLEO analysis framework can load more than one
size EventStore at the same time, synchronizing data access
between all the modules loaded. This allows a physicist to
begin an analysis on a collaboration or group scale facil-
ity, export a skim to a personal EventStore to continue the
analysis, and later reconnect to the larger facility and ac-
cess additional data for the events while retaining access to
the data in the personal EventStore. We believe this capa-
bility to easily resynchronize a personal store with a larger
scale store is essential to reducing the “I can’t check that, it
isn’t in my ntuple” phenomenon.

Data Organization

The data in the EventStore is presented to physicists or-
ganized into “grades”, representing phases in the data man-
agement lifecyle. Examples of grades are “raw”, “reco”,
and “physics”, representing raw data directly from the de-

tector, recently reconstructed data, and reconstructed data
approved for physics analysis, respectively. Skims are de-
fined to be subsets of the events in a grade. A skim is
implemented as an index, independent of the clustering of
the data on the storage system. Multiple skims can ref-
erence the same event data, and it is easy to create addi-
tional skims. Data of additional types can also be added
to a grade. This can be used to avoid common run-time
calculations, such as �

� identification or shower energy
corrections, by adding the results of the calculation to a
grade. In combination with the EventStore versioning sys-
tem (discussed below), storing the results (“materializing”,
in database language) of common run-time calculations
guarantees consistency when the data are reprocessed, by
decoupling the analysis from subsequent changes to the
code and calibrations that are inputs to the run-time cal-
culation.

Once the EventStoreModule is loaded into the frame-
work, the interface to specify the grade and date is sim-
ply “eventstore in 20040501 physics”. “physics” is the de-
fault grade, so it need not be specified, and there are ad-
ditional optional arguments to specify a specific skim or
range of runs. The physicist does not need to know any
paths or filenames to access the data, as that is all managed
by EventStore.

Metadata

Metadata about the data are stored in a relational
database supporting the standard SQL query language. All
but the lowest layers of the database interface code are in-
dependent of the database implementation, allowing us to

easily use different implementations for the different scale
systems as appropriate. The metadata stored include the
mapping from EventStore internal logical file IDs (64-bit
numbers) to the file path, the assignment of sets of data to
grades and skims, the run conditions data used for physicist
queries identifying data to analyzed, and the versioning and
provenance data discussed later. The metadata are accessed
as a web service, allowing the personal EventStore to take
advantage of the more sophisticated physics queries sup-
ported by the full metadata database by accessing it over
the Internet.

Examples of simple physics queries for run selection in-
clude:

� run range: “runs 202000 203000”
� dataset: “datasets 31-34”
� energy:

– energy 1.89
– energy psi(3770)
– energy psi(3770)-off

Queries on the energy return the runs with energies clus-
tered around the requested beam energy. Named energy
ranges include the energy range below the resonance used
for continuum background, with “-on” and “-off” names
specifying the individual ranges.

Indexing

To provide efficient data access, EventStore creates two
kinds of additional index files. The location independent
index file maps a run and event number (and an optional
Monte Carlo ID tag) to a record number in the format de-
pendent location files. A location file includes a header
indicating which data sources (e.g., which data files of
a particular format) are indexed by the location file, and
what objects within that source are indexed by that location
record. The subsequent fixed-length records in the location
file contain, for each event, “accessors” for rapid access to
each of the objects indexed by that location file. A typical
accessor is an offset within a flat file, but it could also be a
key within a relational database or an object ID in an object
database. There may be multiple sets of indexing data for
a given data set, corresponding to different skims. For typ-
ical CLEO-c data, the index and location files add roughly
5% disk space overhead.

Versioning

The tradition at CLEO has been to continue to use the
version of the data an analysis was started with throughout
the lifetime of that analysis, unless there is a compelling
reason to repeat the analysis with a newer version of the
reconstructed data. With multiple newer versions of the
reconstructed data appearing during the lifetimes of some
analyses, this can impose a substantial burden on the physi-
cist to track which versions of of the data were used over
the lifetime of the analysis, particularly as data collected
after the analysis began are added to the dataset used.

At the lowest level, the EventStore solution to this
problem attaches versioning information to every piece of
derived data, identifying how that data were produced.
As an example, the version identifier Recon-20040312-
Feb13 04 P2 indicates that the data were produced by the
Feb13 04 P2 release of the reconstruction software, and
that March 12, 2004 was the date of the most recent change
to the software or inputs (e.g., calibration data) to the re-
construction that might affect the results. Similar tags iden-
tify later processing steps, such as �� identification. The
full version identifier for a given piece of derived data is the
union of the identifiers of all the inputs to the computation.
While version identifiers conceptually apply to individual
objects, in our current implementation version identifiers
are associated with files, with the additional restriction that
all the objects in a file must be derived from the same com-
putational chain. We hope to relax this restriction in the
future, so that sparse skims may be properly versioned.

Version identifiers are organized into grades by associ-
ating a grade with a list of run ranges and a list of ver-
sion identifiers for each run range. Assignment of data to
grades, particularly to the “physics” grade, is an admin-
istrative procedure performed by the CLEO officers. The
evolution of a grade over time is recorded, so a consis-
tent set of data is fully identified by the name of a grade
and a time at which to “snapshot” that grade. For an
analysis project, a physicist will usually specify “physics”
grade data (the default) and use the date the analysis project
started (e.g., 20040501) as the timestamp, so that the same
consistent version will always be used. EventStore finds
the most recent snapshot as of the specified date, so the
date specified is not limited to a set of ‘magic” dates.

If some of the data are reprocessed, such as redoing the
�
� identification, that change will not appear in the snap-

shot used by the analysis unless the physicist changes to
a date after that change was made. However, data added
to the dataset for the first time, such as data recently taken
and reconstructed for the first time, or the addition of a new
object, will appear in the snapshot. This is done so that a
physicist can add data collected after the beginning of the
analysis without having to change to a later timestamp.

Our future plans for the versioning system include em-
bedding more of the versioning data in all output files, so
that files are “self-identifying”, and implementing a tool
which will automatically generate Monte Carlo simulated
data to match the data used in an analysis.

PERFORMANCE

Since EventStore does not define a new storage format
or require a particular storage format, performance ac-
cessing the data is determined primarily by the underly-
ing storage formats used, plus any overhead added by the
EventStore indexing. Two tests of the indexing overhead
have been performed, comparing the performance of data
in the CLEO-c native object storage format, PDS, to ac-
cessing the same data files via EventStore. PDS is an unin-

dexed sequential file format, so in both cases the direct ac-
cess to the PDS files is sequential. The only object stored
in these files is the event header, which takes 12 bytes per
record plus a small amount of overhead for the storage for-
mat.

Figure 2 shows the performance of strict sequential ac-
cess, with EventStore approximately 12% slower than di-
rect access to the file. The EventStore indexing is of no
benefit for sequential access, so this is a worst-case mea-
surement of the EventStore overhead.

Number of processed event (x1000)
0 20 40 60 80 100

T
im

e
(s

ec
)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

chain
SQLite
mySQL

Figure 2: Sequential access, with and without EventStore

Random access every Nth events
0 200 400 600 800 1000

T
im

e
(s

ec
)

0

5

10

15

20

25

30

chain
SQLite
mySQL

Figure 3: Random access via EventStore compared to file
format native sequential access

Figure 3 shows the performance when driven by an event
list skipping n-1 out of every n events, for n of 10, 100
and 1000. Since direct PDS access is sequential, the times
for direct access are simply n times the time for sequen-
tial access to the same number of events. The factor of 6
improvement of EventStore is due to the additional index-
ing information allowing random access. Because of the
small size of the records, both tests read the same amount
of data from the PDS file, so the difference in performance
is entirely due to the processor time required to decode the

n-1 intervening records in the sequential access case, minus
the overhead of processing the EventStore indexing infor-
mation. This is also a worst-case measurement, as the se-
quential access performance will degrade as the event size
is increased, while the EventStore performance will not.

CONCLUSION

The initial version of the personal and group event store
have been deployed, providing several benefits. The system

� is adaptable to a wide range of existing data formats,
including flat files and relational or object databases;

� provides random access to events, even with unin-
dexed file formats;

� allows incremental addition of data and data lifecycle
management;

� seperates event indexing from data clustering
� provides a powerful versioning system to maintain

consistent views of the data
� has a simple user interface supporting physics ori-

ented queries

Reception has been positive, largely due the simpler inter-
face it provides, as the system has not been deployed long
enough for the benefits of the versioning system to show.
Work is proceeding on expanding the scope of the metadata
available for physics queries, user-friendly administrative
interfaces, and implementation of the more sophisticated
data management features of the collaboration scale event
store.

ACKNOWLEDGEMENTS

This work was funded by the National Science Founda-
tion of the United States of America.

REFERENCES

[1] M. Lohner and C.D. Jones and D. Riley, CLEO III Datastor-
age, International Conference on Computing in High-Energy
Physics and Nuclear Physics (CHEP 2000), Padova, Italy,
February 2000

[2] M. Lohner and C.D. Jones and P. Avery, SUEZ: Job Control
and User Interface for CLEO III, International Conference
on Computing in High-Energy Physics and Nuclear Physics
(CHEP 1998), Chicago, Il, August 1998

[3] R. Brun and F. Rademakers, ROOT Reference Guide,
http://root.cern.ch/root/Reference.html

[4] R.A. Briere and others, CLEO-c and CESR-c: A new
frontier of weak and strong interactions, CLNS-01-1742,
http://www.lns.cornell.edu/public/CLEO/spoke/CLEOc

