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This AF phase is well understood.

The common paradigm
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AF order preferred since it allows virtual hopping, 
which lowers the energy.
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*

Holes rapidly destroy the AF order.
How can this state become superconducting?



• What is the attractive  “glue” that binds the 
electrons into Cooper pairs?   The Hubbard 
model is defined with attractive interactions.  
Lattice phonons do not play a role.   

• What is the pseudogap?    Is it a distinct 
phenomenon from superconductivity?

• What is the origin of the anisotropy of the 
gap?  Is it exactly d-wave?   Fermi arcs, etc.   

Fundamental,  unanswered questions,  we will address:



Where to begin?
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* on overdoped side,  perhaps dilute enough to treat as a 
gas.  
*  far away from competing orders.  
*  attempt to understand the attractive mechanism in a 
pure form,  then track it down to lower doping.  

AF is spatial,  whereas SC order is delocalized.
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Here......

* on overdoped side,  perhaps dilute enough to treat as a 
gas.  
*  far away from competing orders.  
*  attempt to understand the attractive mechanism in a 
pure form,  then track it down to lower doping.  

Not here

AF is spatial,  whereas SC order is delocalized.



Hubbard Model 
hamiltonian is

H = −t
∑

<i,j>,α=↑,↓

(
c†ri,αcrj ,α

)
− t′

∑

<i,j>′,α=↑,↓

(
c†ri,αcrj ,α

)
+ U

∑

r

nr↑nr↓ (2)

where ri,j, r are sites of the lattice, < i, j > denotes nearest neighbors, n = c†c

are densities, and c†, c satisfy canonical anti-commutation relations. We have also

included a next to nearest neighbor hopping term t′, since it is not difficult to incor-

porate into the formalism, and it is known to be non-zero for high Tc materials.

The free part of the hamiltonian, i.e. the hopping term, is easily diagonalized:

Hfree =

∫
d2k ωk

∑

α

c†k,αck,α (3)

with the free 1-particle energy

ωk = −2t (cos(kxa) + cos(kya)) − 4t′ cos(kxa) cos(kya) (4)

where t taken to be positive. In the sequel it is implicit that k is restricted to the

first Brillouin zone, −π/a ≤ kx,y ≤ π/a, where a is the lattice spacing.

Since the quartic interaction is local, we introduce the two continuum fields ψ↑,↓

and the action

S =

∫
d2r dt

(
∑

α=↑,↓

i ψ†
α∂tψα −H

)

(5)

where H = Hfree + Hint is the hamiltonian density. The field has the following

expansion characteristic of a non-relativistic theory since it only involves annihilation

operators,

ψα(r) =

∫
d2k

(2π)2
ck,α eik·r (6)

and satisfies at equal times {ψα(r), ψ†
α′(r′)} = δ(r−r′)δα,α′ . Since we have represented

sums over lattice sites r as
∫

d2r/a2, where a is the lattice spacing, cr = aψ(r). The

5

*  t, t’ = nearest and next nearest neighbor hopping on 2d 
square lattice.   t’ will be important!

* U>0,  large Coulomb repulsion 
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* Hopping term easily diagonalized:  



Introduce continuum  fields:
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interaction part of the hamiltonian is approximated as a continuum integral with

density

Hint =
u

2
ψ†
↑ψ↑ψ

†
↓ψ↓ (7)

where u = 2Ua2. Formally, the free part of the hamiltonian density is Hfree =
∑

α=↑,↓ ψ†
αW ("∇r)ψα, where W is the differential operator W = ω(k → −i"∇r), and is

thus non-local. However this non-locality does not obstruct the solution of the model

since the free term can be diagonalized exactly. The model can now be treated as

a quantum fermionic gas, where the only effect of the lattice is in the free particle

energies ωk.

The field ψ has dimensions of inverse length, and the coupling u units of energy ·

length2. In the sequel we will scale out the dependence on t and the lattice spacing

a, and physical quantities will then depend on the dimensionless coupling

g =
u

a2t
=

2U

t
(8)

Positive g corresponds to repulsive interactions. Henceforth, all energy scales, in

particular, the single particle energies ωk, the gap ∆, temperature, and chemical

potential, will be implicitly in units of t.

For both cuprates LSCO and BSCO, t ≈ 0.3ev ≈ 3000K, U/t ≈ 13, and t′/t

approximately equals −0.1 and −0.3 respectively. Therefore, for most of the detailed

analysis below, we set g = 26 and t′/t = −0.3 appropriate to BSCO.

III. THE COOPER PAIR POTENTIAL V .

The kernel V (k,k′) in the gap equation (1) represents the residual interaction of

Cooper pairs of momenta (k,−k) and (k′,−k′). It is related to the following matrix

element of the interaction hamiltonian:

V (k,k′) =

∫
d2r 〈k′ ↑,−k′ ↓ |Hint(r)|k ↑,−k ↓〉 (9)

6
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Scaling out lattice spacing a and t,   dimensionless coupling:

Henceforth,  all energy scales in units of t 

BSCO cuprate:  U/t = 13,  t’/t = -0.3,    t=3000K
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Gap equation for superconductivity

It is known that Cooper pairs of charge 2e exist.    We thus assume that the BCS 
construction of the ground state goes through,  leading to the well-known gap equation:

a condensation of Cooper pairs as in the BCS theory, and we will adopt this point

of view in the present work. The observation made in [7] now comes to bear on

the problem: multi-loop quantum corrections to the scattering of Cooper pairs can

actually lead to effectively attractive interactions, even though the bare model was

defined with repulsive interactions. In the work [7], the focus was on the thermo-

dynamics at finite temperature and chemical potential, and evidence was presented

for instabilities toward the formation of new phases as the temperature was lowered.

However our purely thermodynamic formalism was unable to probe the nature of

the ground states of these potentially new phases. The present work attempts to

complete the picture. Namely, we explore how the attractive interactions described

in [7] can lead to superconductivity, and what its basic properties are.

Our starting point will be the BCS theory, but specialized to the Hubbard model.

The original Cooper argument[8] is quite robust, and shows that any attractive

interactions near the Fermi surface lead to a pairing instability. We thus assume

that the BCS construction of the ground state goes through, leading to the well-

known gap equation[5]:

∆(k) = −

∫
d2k′

(2π)2
V (k,k′)

∆(k′)

2E(k′)
tanh(E(k′)/2T ), E(k) ≡

√
ξ(k)2 + ∆(k)2

(1)

Here, ∆ is the energy gap, E(k) is the energy of excitations above the ground state,

and T is the temperature. We will later make some favorable checks on the approx-

imations that lead to the above equation. In the above gap equation, V represents

the residual interaction of Cooper pairs, and we will refer to it as the (Cooper) pair

potential. The main new input is that we compute V from the Hubbard model, in-

cluding quantum corrections, and show that it has attractive regions in the Brillouin

zone. The other ingredient is ξ(k), which represents normal state quasi-particle ener-

gies near the Fermi surface, where ξ = 0 at the Fermi surface. This can be identified
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= quasiparticle energy of normal state,  
determines the Fermi surfaces,         = 0, 
we calculate approximately,  or fit to data. 
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Cooper pair potential
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analysis below, we set g = 26 and t′/t = −0.3 appropriate to BSCO.

III. THE COOPER PAIR POTENTIAL V .

The kernel V (k,k′) in the gap equation (1) represents the residual interaction of

Cooper pairs of momenta (k,−k) and (k′,−k′). It is related to the following matrix

element of the interaction hamiltonian:

V (k,k′) =

∫
d2r 〈k′ ↑,−k′ ↓ |Hint(r)|k ↑,−k ↓〉 (9)
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The pair potential is the  “form-factor”:

It is given exactly by the sum of Feynman diagrams:

To lowest order, V is momentum independent: V = g/2.

In quantum field theory, the above matrix element of operators, in this case Hint,

is generally referred to as a form-factor. Since there is no integration over time,

this form-factor does not conserve energy, i.e. there is no overall δ-function equating

ωk to ωk′. The form-factor can be calculated using Feynman diagrams as follows.

More generally consider the form-factor 〈k3 ↑,k4 ↓ |Hint(r)|k1 ↑,k2 ↓〉. Represent

the interaction vertex with two incoming arrows for the annihilation operator fields

ψ↑,↓ and two outgoing arrows for the creation fields ψ†
↑,↓. Furthermore, let such a

vertex with a “node” • represent the operator Hint. Then V is given by the sum over

diagrams shown in Figure 1, where p = (ω,k) represents energy-momentum.

k1

k2

k3

k4

pppp

p12 − p p12 − p p34 − pp34 − p

1 2... m m + 1.. N

FIG. 1: Multi-loop diagrams contributing to the Cooper pair potential V .

Momentum is conserved at each vertex, however energy is not conserved at the

vertex with a node. There is actually no fermionic minus sign associated with each

loop since the arrows do not form a closed loop. Diagrams with a closed loop, such

as in Figure 2, are zero because the integration over energy ω inside the loop has

poles in the integrand that are either both in the upper or lower half-plane, so that

the contour can be closed at infinity without picking up residues. In other words,

there is no “crossing-symmetry” as in relativistic theories. (For the contrary, see

the non-zero loop integral L below.) This fact, which is unique to non-relativistic

theories, allows us to calculate the kernel V exactly. At order gN+1, specializing to
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over p can be performed analytically[7]:

L(k) =
1

π

(
(ωk − 4t′)

(ωk + 4 + 4t′)(ωk(4 − ωk) + 16t′(t′ − 1)

)1/2

K

(
16(ωkt′ − 1)

(ωk + 4t′)2 − 16

)

(13)

with ωk → ωk + iε, where K is the complete elliptic integral of the first kind. Note

that the momentum dependence of the kernel only enters through the variables ωk,

i.e. V (k,k′) = V (ωk, ωk′).

= 0

FIG. 2: Diagrams with closed loops, i.e. arrows circulating in the same direction, vanish.

Non-zero solutions to the gap equation possibly signifying superconductivity can

only arise if the effective interactions are attractive, i.e. if the kernel V is negative.

For g small and positive, the effective coupling V remains repulsive. However, as

pointed out in [7], for g large enough, V can become negative in certain regions

of the Brillouin zone. Since we are interested in a small band of energies near the

Fermi surface, V (ω, ω′) with ω′ = ω is a suitable probe of these attractive regions.

In Figure 3 we plot this V for g = 10 and 26 at fixed t′ = −0.3. One sees that for the

smaller g, V is everywhere positive, however for larger g it flips sign. As explained in

more detail in [7], this feature is reminiscent of what occurs near the fixed point of

quantum gases in the unitary limit, where for the same analytic reasons, the effective

interactions can be either attractive or repulsive depending on which side of the fixed

point of the BEC/BCS crossover[10]. Using the formula (13), one can show that there

is a region of negative V for g > 13.2. This minimal value of g depends on t′ and this

dependence was studied in [7] based on the formula (13). Around g = 13 − 15, the
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since:



These multi-loop Feynman diagrams factorize,  with the result:

Cooper pairs k1 = −k2 = k and k3 = −k4 = k′, the diagram in Figure 1 factorizes

and contributes

(−ig/2)N+1 1

2N

m!(N − m)!

N !
L(k)mL(k′)N−m (10)

where L is a 1-loop integral

L(k) =

∫
dωd2p

(2π)3

(
i

ω − ωp + iε

) (
i

E12 − ω − ωk12−p + iε

)
(11)

where E12 and k12 are the total incoming energy and momentum, i.e. E12 = ωk1
+

ωk2
= 2ωk and k12 = k1 + k2 = 0. As usual, ε is infinitestimally small and positive.

The extra 1/2N is due to the over-counting by allowing each loop to be L(k) or L(k′).

Finally, summing over m, N gives

V (k,k′) =
g/2

1 + ig(L(k) + L(k′))/4
(12)

It is important to note that the above V is exact and has a smooth g → ∞ limit, i.e.

it allows an expansion in the inverse coupling t/U , so is in a sense non-perturbative.

One may be concerned that we formally summed a geometric series that potentially

does not converge. In answer to this, there are certainly regions where L is small

enough that the series converges. Also, this summation is known to give the correct,

exact, S-matrix for non-relativisitic quantum gases, and this S-matrix has all of the

right properties in the strongly coupled unitary limit[10], namely, it gives the correct

diverging scattering length at the renormalization group fixed point, and the bound

state. The only difference here is that the the kinetic energy k2/2m is replaced with

ωk for the Hubbard model, which does not affect these arguments.

The ω-integral can be performed by deforming the contour to infinity, giving

L(k) = i
∫

d2k/8π2(ωk−ωp + iε). Note L is imaginary as ε → 0, thus in the formula

(12), L is really the imaginary part of L as ε → 0 such that V is real. Then, integral
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Non-zero solutions to the gap equation possibly signifying superconductivity can

only arise if the effective interactions are attractive, i.e. if the kernel V is negative.

For g small and positive, the effective coupling V remains repulsive. However, as

pointed out in [7], for g large enough, V can become negative in certain regions

of the Brillouin zone. Since we are interested in a small band of energies near the

Fermi surface, V (ω, ω′) with ω′ = ω is a suitable probe of these attractive regions.

In Figure 3 we plot this V for g = 10 and 26 at fixed t′ = −0.3. One sees that for the

smaller g, V is everywhere positive, however for larger g it flips sign. As explained in

more detail in [7], this feature is reminiscent of what occurs near the fixed point of

quantum gases in the unitary limit, where for the same analytic reasons, the effective

interactions can be either attractive or repulsive depending on which side of the fixed

point of the BEC/BCS crossover[10]. Using the formula (13), one can show that there

is a region of negative V for g > 13.2. This minimal value of g depends on t′ and this

dependence was studied in [7] based on the formula (13). Around g = 13 − 15, the
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L is a 1-loop integral,  can be expressed in terms of elliptic functions K

Allows a 1/g expansion!  



“What is the glue?” 
The main point:   When g is large enough,  the pair potential can change 
sign,  i.e. become negative,  signifying attractive interactions.      Only 
when V is negative are there solutions to the gap equation.  

attractive region is a narrow band[7]. It will also be instructive to view a contour

plot of V in the first Brillouin zone, see Figure 4.

!4 !2 2 4

!30

!20

!10

10

20

ω

V

g = 10

g = 26

FIG. 3: Plot of the Cooper pair potential V (ω,ω) for g = 10, 26 and t′ = −0.3. (Colored

photos on-line).

The main effect of a non-zero t′ is the following. For g large enough, V (ω, ω)

becomes negative for ω > 4t′. Thus when t′ is negative and |t′| large, attractive

interactions exist deeper inside the half-filled Fermi surface. If superconductivity

indeed arises from these attractive interactions, then a non-zero t′ can play a signifi-

cant role, otherwise the attractive interactions only exist too close to the vicinity of

the half-filled Fermi surface where it has to compete with the known Mott-insulator

phase. There is actually some evidence that superconductivity does not exist for

t′ = 0[11].
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Here, the glue comes from quantum loop corrections



Thermodynamics:  the Fermi surfaces

Based on a new approach to the thermodynamics of gases based on the 
S-matrix.   (with Pye-Ton How)   The following represents a consistent 
resummation of 2-body scattering processes.    Higher N-body processes are 
neglected.    

Occupation numbers:

FIG. 4: Contour plot of the Cooper pair potential V (ωk,ωk) for g = 26 and t′ = −0.3 in the

first Brillouin zone, with axes kx, ky. (All subsequent contour plots in the Brillouin zone

follow the same conventions.) In the central light region, the interactions are repulsive,

whereas in the colored regions attractive. Values of V can be inferred from Figure 3. (Color

online).

IV. THE FERMI SURFACES AS A FUNCTION OF DOPING

We will utilize the approach to the thermodynamics of particles developed in [7, 9],

which is based on a self-consistent re-summation of the exact 2-body scattering. The

occupation numbers are parameterized by two pseudo-energies ε↑,↓(k), which satisfy

2 coupled integral equations with a kernel related to the scattering of spin up with

spin down. For equal chemical potentials, due to the SU(2) symmetry, ε↑ = ε↓, and

both occupation numbers are given by

f(k) =
1

eε(k)/T + 1
(14)
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where ε satisfies the single integral equation:

ε(k) = ωk − µ −

∫
d2k′

(2π)2
G(k,k′)

1

eε(k′)/T + 1
(15)

The kernel G is related to the logarithm of the 2-body S-matrix, and is built

from the same ingredients as the kernel V in the gap equation, since it also involves

a sum of Feynman diagrams of the kind shown in Figure 1. It is somewhat more

complicated than the pair potential V since the total incoming momentum is not

zero. Namely, consider the same loop integral as in the previous section but with

k1 + k2 "= 0:

L(k1,k2) = i

∫
d2p

(2π)2

1

ωk1
+ ωk2

− ωp − ωk1+k2−p + 2iε
≡ I + iγ (16)

where I and γ are defined to be real. Then the kernel takes the following form

G = −
i

2I
log

(
1/gR − iI/2

1/gR + iI/2

)
(17)

where the renormalized coupling is gR = g/(1 − gγ/2). (We are not displaying

the momentum dependence; it is implicit that G = G(k = k1,k′ = k2).) The

renormalized coupling is related to the gap equation kernel of the last section as

follows: gR(k,−k) = 2V (k,k). The quantity I represents the phase space available

for 2-body scattering. The argument of the log is the exact 2-body S-matrix.

We define the hole doping h as the number of holes per plaquette, which is related

to the density n as follows:

n = 2

∫
d2k

(2π)2

1

eε(k)/T + 1
=

1 − h

a2
(18)

where a is the lattice spacing.

The integral equation (15) was solved numerically using an iterative procedure, as

explained in [7]. The solution for the pseudo-energy yields the relation between the

chemical potential µ and the hole doping h. For a given h, µ(h) of course depends
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pseudo-energy satisfies the integral equation:

Free energy density:

integral equation effectively sums up an infinite number of diagrams. However it

was found for the present problem that this integral equation only has solutions in

a very limited range of temperature and chemical potential, indicating that the sum

of diagrams does not converge. In contrast, it turns out the choice of !0 made in

[12] does not suffer from this problem. The latter !0 also has an appealing physical

interpretation, as we now explain. Consider

!0 =

∫
d2k

(2π)2

(
(ωk − µ)f −

1

β
[(f − 1) log(1 − f) − f log f ]

)
(24)

where ωk is the 1-particle energy of the free theory. The above expression can be

interpreted as !0 = ε−Ts, where ε is the first (ω−µ)f term and represents the energy

density. The remaining term represents the entropy density s[21]. This choice of !0

also more closely parallels the derivation of the thermodynamic Bethe ansatz[14].

Let us parameterize the occupation numbers in terms of a pseudo-energy ε:

f(k) =
1

eβε(k) + 1
(25)

Then the variational equation δ!/δf = 0 can be expressed in the simpler form:

ε(k) = tωk − µ − t

∫
d2k′

(2π)2
G(k,k′)

1

eβε(k′) + 1
(26)

(We have restored the hopping coupling t here.) Using the above equation in !, the

free energy density F can be expressed as

F = −T

∫
d2k

(2π)2

[
log(1 + e−βε) +

β

2

1

eβε + 1
(ε − ω + µ)

]
(27)

Comparing with [13], one sees that in the limit of small G, the equations presented

there reduce to eqns. (26,27). To summarize, the two-body kernel is computed to

all orders in g, and thus non-perturbative; the main approximation we make is that

we drop higher N-body processes.
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The kernel G is related to log of the 2-body  S-matrix,  can calculate exactly.



Technical details on the kernel G:
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renormalized coupling is related to the gap equation kernel of the last section as

follows: gR(k,−k) = 2V (k,k). The quantity I represents the phase space available
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We define the hole doping h as the number of holes per plaquette, which is related

to the density n as follows:

n = 2
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1
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=
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The integral equation (15) was solved numerically using an iterative procedure, as

explained in [7]. The solution for the pseudo-energy yields the relation between the

chemical potential µ and the hole doping h. For a given h, µ(h) of course depends
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gR is a renormalized coupling,  I a phase space factor.

S-matrix



The kernel G also reflects the flip in sign of the effective interaction.   Positive G 
corresponds to attractive interactions.  

!5 !4 !3 !2 !1 1 2

!10

!5

5

10

E

G

g = 5

g = 13.5, 14.

g = 15

g = 20

FIG. 3: The kernel G as a function of total energy E for g = 5, 13.5, 14, 15, 20, and

t′/t = −0.3 (Color figures on-line.)

exist if t′ = 0. There is actually some experimental evidence for this, in that Tc as a

function of t′/t appears to extrapolate to zero[17] .

It is also intructive to plot G for pairs of opposite momentum as a function of

kx, ky in the first Brillouin zone. This is shown in Figure 5. Again this shows that

the interactions are attractive in a narrow region around half-filling. The positive

regions at the corners of the Brillouin zone are due to a divergence in the loop integral

which should be regularized; however since we will be studying hole doping of the

half-filled state, the densities will be low enough to be far from these regions, so

this regularization will be unnecessary. Finally, note that for low enough E, the

interactions are always repulsive, which should imply that at high enough doping

the theory should be well-approximated by a Fermi liquid.

If the attractive interactions exist near the Fermi surface, then Cooper’s original

argument should apply: the filled Fermi sea just serves to block states and the

particles can form a bound state, i.e. Cooper pairs[18]. Let us then make the
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FIG. 4: The kernel G as a function of total energy E for g = 15 and t′ = 0,−0.1,−0.3,−0.4.

hypothesis that the regions of attractive interactions described above lead to Cooper

pairing and superconductivity. Then the following scenario emerges. The Fermi

surface with interactions is calculated in section V based on the filling fractions f .

In Figure 6 we plot these Fermi surfaces for various hole doping, and also display the

attractive band. (See the next section for the precise definition of hole doping h; as

defined it corresponds to the number of holes per plaquette.) These computed Fermi

surfaces closely parallel experimental measurements, in that they flare out in the

anti-nodal directions i .e. (kx, ky) = (0, π) and 90◦ rotations thereof[19]. This figure

shows that the attractive regions in the anti-nodal directions play the most significant

role. At low densities (high hole-doping), there are no attractive interactions within

the Fermi surface, and the model should correspond to a Fermi-liquid. On the other

hand, as h is decreased, the Fermi surface intersects attractive regions in the anti-

nodal directions. This first occurs around a hole doping h = 0.3. If a gap forms in

these directions, then this could explain the d-wave nature of the gap, which is zero

in the nodal (π, π) directions. As the density is increased further, eventually the
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The role of t’

For g=13, no attractive region for t’=0.
prediction:  no superconductivity for t’=0.  
There is experimental evidence for this.
Simonelli et. al. 2005.  

Fixed g=13,  
various t’
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FIG. 5: Hole doping h as a function of chemical potential µ at the reference temperature

T0 = 0.1. (g = 26, t′ = −0.3.)

on temperature, but only weakly[7]. For the subsequent analysis we determine µ(h)

at the low reference temperature T0 = 0.1. The result is shown in Figure 5.

As described in [7], for low enough T , there are regions of µ, T where there are

no solutions to the integral equation at low enough T . Regions of the non-existence

of solutions are very similar to that shown in Figure 8 in[7], For hole dopings 0 <

h < 0.25, there are no solutions for temperatures Tc in the range 0.02 < Tc < 0.07.

(This is why we chose the reference temperature T0 = 0.1 to be above these potential

transition temperatures.) It was suggested in [7] that the non-existence of solutions

could represent an instability toward the formation of a new phase, however the

nature of these new phases cannot be determined based on what we have done

so far; one needs a complementary bottom up approach that is based on the zero

temperature ground state. This is the subject of the next section. As we will see,

the critical temperatures inferred from this thermodynamic analysis are consistent

with the critical tempertures computed from the gap equation in the next section.
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where ε satisfies the single integral equation:

ε(k) = ωk − µ −
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d2k′

(2π)2
G(k,k′)

1

eε(k′)/T + 1
(15)

The kernel G is related to the logarithm of the 2-body S-matrix, and is built

from the same ingredients as the kernel V in the gap equation, since it also involves

a sum of Feynman diagrams of the kind shown in Figure 1. It is somewhat more

complicated than the pair potential V since the total incoming momentum is not

zero. Namely, consider the same loop integral as in the previous section but with

k1 + k2 "= 0:

L(k1,k2) = i

∫
d2p

(2π)2
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− ωp − ωk1+k2−p + 2iε
≡ I + iγ (16)

where I and γ are defined to be real. Then the kernel takes the following form

G = −
i

2I
log

(
1/gR − iI/2

1/gR + iI/2

)
(17)

where the renormalized coupling is gR = g/(1 − gγ/2). (We are not displaying

the momentum dependence; it is implicit that G = G(k = k1,k′ = k2).) The

renormalized coupling is related to the gap equation kernel of the last section as

follows: gR(k,−k) = 2V (k,k). The quantity I represents the phase space available

for 2-body scattering. The argument of the log is the exact 2-body S-matrix.

We define the hole doping h as the number of holes per plaquette, which is related

to the density n as follows:

n = 2

∫
d2k

(2π)2

1

eε(k)/T + 1
=

1 − h

a2
(18)

where a is the lattice spacing.

The integral equation (15) was solved numerically using an iterative procedure, as

explained in [7]. The solution for the pseudo-energy yields the relation between the

chemical potential µ and the hole doping h. For a given h, µ(h) of course depends
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Hole doping h  and chemical potential

density: (h=holes per plaquette)



Calculated Fermi surfaces

FIG. 6: Calculated Fermi surfaces for hole doping 0 < h < 0.4 in steps of 0.1, with h = 0.4

the innermost curve. The grey (pink on-line) region corresponds to the attractive region

for g = 26, t′ = −0.3 based on the Cooper pair potential V .

that ∆ cannot be strictly d-wave as defined from the origin, for example, it cannot

be of the simple form ∆ ∝ | cos kx − cos ky|, where k is measured from the origin.

Thus, in the first quadrant of the Brillouin zone, it is more convenient to work with

the vector !κ originating from the node (π, π), i.e. k = kπ,π + !κ, where kπ,π = (π, π).

In the integral gap equation (1), one must integrate over a narrow band around

the Fermi surface SF (µ). Let θ be the angle of !κ relative to the horizontal line

through the (π, π) node: !κ = −κ(cos(θ) î + sin(θ) ĵ). If the integration is over a

narrow band δSF of width 2 δκ around the Fermi surface, then the gap equation
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prediction:   no superconductivity for h> 0.35
prediction:   gap will be anistropic,  largest in the anti-
nodal directions.   
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anti-node

a condensation of Cooper pairs as in the BCS theory, and we will adopt this point

of view in the present work. The observation made in [7] now comes to bear on

the problem: multi-loop quantum corrections to the scattering of Cooper pairs can

actually lead to effectively attractive interactions, even though the bare model was

defined with repulsive interactions. In the work [7], the focus was on the thermo-

dynamics at finite temperature and chemical potential, and evidence was presented

for instabilities toward the formation of new phases as the temperature was lowered.

However our purely thermodynamic formalism was unable to probe the nature of

the ground states of these potentially new phases. The present work attempts to

complete the picture. Namely, we explore how the attractive interactions described

in [7] can lead to superconductivity, and what its basic properties are.

Our starting point will be the BCS theory, but specialized to the Hubbard model.

The original Cooper argument[8] is quite robust, and shows that any attractive

interactions near the Fermi surface lead to a pairing instability. We thus assume

that the BCS construction of the ground state goes through, leading to the well-

known gap equation[5]:

∆(k) = −

∫
d2k′

(2π)2
V (k,k′)

∆(k′)

2E(k′)
tanh(E(k′)/2T ), E(k) ≡

√
ξ(k)2 + ∆(k)2

(1)

Here, ∆ is the energy gap, E(k) is the energy of excitations above the ground state,

and T is the temperature. We will later make some favorable checks on the approx-

imations that lead to the above equation. In the above gap equation, V represents

the residual interaction of Cooper pairs, and we will refer to it as the (Cooper) pair

potential. The main new input is that we compute V from the Hubbard model, in-

cluding quantum corrections, and show that it has attractive regions in the Brillouin

zone. The other ingredient is ξ(k), which represents normal state quasi-particle ener-

gies near the Fermi surface, where ξ = 0 at the Fermi surface. This can be identified

3

= pseudo-energy = 0 
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FIG. 8: Existence of solutions based on the iterative method. In the dark regions there

are no solutions to the integral equation for the pseudo-energy. The horizontal axis is the

hole doping h, and the vertical axis is the temperature T .

higher doping there is another region of no-solutions with a maximum T/t ≈ 0.07.

This could perhaps signify the temperature referred to as Tcoh in the literature, where

a crossover in the resistivity is observed from ρ ∝ T to ρ ∝ T + T 2[24].

We turn next to the thermodynamic functions, such as energy and entropy per

particle. For hole densities in the vicinity of the boundaries shown in Figure 8, our

crude solution to the integral equation for the pseudo-energy is not smooth enough

to reliably compute temperature derivatives numerically. However, at low density

our numerical results are better behaved, and although of less interest physically
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Regions in density/temperature with no solution to  
the pseudo-energy integral equation are interpreted 
as instabilities toward the formation of new phases. 

T

hole doping 
predictions:     * 60K  < Tc  < 120K
                           at  h=0.15    (exp: Tc/t = 0.025)
                          *instability continues to low doping,            
                            suggestive of pseudo-gap.   

(g=13)



FS

(0,0)

FIG. 6: Calculated Fermi surfaces for hole doping 0 < h < 0.4 in steps of 0.1, with h = 0.4

the innermost curve. The grey (pink on-line) region corresponds to the attractive region

for g = 26, t′ = −0.3 based on the Cooper pair potential V .

that ∆ cannot be strictly d-wave as defined from the origin, for example, it cannot

be of the simple form ∆ ∝ | cos kx − cos ky|, where k is measured from the origin.

Thus, in the first quadrant of the Brillouin zone, it is more convenient to work with

the vector !κ originating from the node (π, π), i.e. k = kπ,π + !κ, where kπ,π = (π, π).

In the integral gap equation (1), one must integrate over a narrow band around

the Fermi surface SF (µ). Let θ be the angle of !κ relative to the horizontal line

through the (π, π) node: !κ = −κ(cos(θ) î + sin(θ) ĵ). If the integration is over a

narrow band δSF of width 2 δκ around the Fermi surface, then the gap equation
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Solutions to the gap equation

first quadrant of 
Brillouin zone:  

takes the following form in the first quadrant:

∆(κ, θ) = −
1

8π2

∫ π/2

0

dθ′
∫ κF (θ′)+δκ

κF (θ′)−δκ

dκ′κ′ V−(κ, θ; κ′, θ′)
∆(κ′, θ′)

E(κ′, θ′)
tanh

(
E(κ′, θ′)

2T

)

(19)

where E = +
√

ξ2 + ∆2, and κF (θ) is the length of %κ along the Fermi surface. Here

V− is the negative (attractive) part of V since only when V is negative are there

solutions; the repulsive parts of V are already incorporated in determining the Fermi

surfaces. The doping h dependence of the above equation is implicit in κF (θ).

It remains to determine the cut-off δκ. There is some arbitariness in the choice

of δκ, and this is the weakest aspect of our calculation since Tc certainly depends on

it, just as Tc depends on the Debye frequency in ordinary superconductors. It could

be viewed as a free parameter that needs to be fit to the data. Or, one could carry

out a sophisticated renormalization group analysis requiring ∆ to be independent of

δκ, but this is at the expense of introducing an arbitrary scale that has to be fit to

experiments. Instead, we found the following choice to be physically meaningful and

well-motivated. As in the BCS theory, δκ should be related to the properties of the

potential V itself, namely the region in which it is attractive relative to the Fermi

surface[18]. Define κV such that V is attractive for κ < κV in the nodal direction.

For g = 26, t′ = −0.3, κV ≈ 2.7. We then take δκ as a measure of the distance of

the Fermi surface to the edge of the region of attractive interactions in the nodal

direction: δκ = |κV −κF (π/4)|. From the Figure 6, one sees that δκ is quite small, so

that our choice does correspond to a narrow band. For the Fermi surfaces computed

in the last section, δκ ≈ 0.04 for doping h = 0.15 and this value will be used in the

subsequent analysis.

The function ξ(k) in the gap equation represents the quasi-particle dispersion

relation of the normal state, and is zero along the Fermi surface. We wish to carry

out a self-contained calculation, thus we equate ξ with the pseudo-energy ε of the
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that ∆ cannot be strictly d-wave as defined from the origin, for example, it cannot

be of the simple form ∆ ∝ | cos kx − cos ky|, where k is measured from the origin.

Thus, in the first quadrant of the Brillouin zone, it is more convenient to work with

the vector !κ originating from the node (π, π), i.e. k = kπ,π + !κ, where kπ,π = (π, π).

In the integral gap equation (1), one must integrate over a narrow band around

the Fermi surface SF (µ). Let θ be the angle of !κ relative to the horizontal line

through the (π, π) node: !κ = −κ(cos(θ) î + sin(θ) ĵ). If the integration is over a

narrow band δSF of width 2 δκ around the Fermi surface, then the gap equation
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= cut-off  =  0.04   (based on distance between FS and attractive region. 



RESULTS

with increasing doping. We also wish to point out that our Figure 6 is suggestive of

an observation made in [14]: the Bogoliubov quasiparticle interference, indicative of

the existence of Cooper pairs, disappears along the diagonal line connecting the two

anti-nodes (0, π) and (π, 0). (See Figure 3 in [14].) Interestingly, this diagonal line

is very close to the contour that separates attractive from repulsive regions of the

pair potential, however we are unable to make a direct connection at present. These

observations are more pronounced in Figures 11 and 10.

20 40 60 80
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0.04

0.06

0.08

θ(degrees)

∆

h = 0.10

h = 0.20

FIG. 7: The zero temperature gap ∆ as a function of the Fermi surface angle θ for hole

doping h = 0.10, 0.15, 0.20.

The gap in the anti-nodal direction is plotted as a function of temperature for

h = 0.15 in Figure 8. Where it goes to zero defines Tc, in this case Tc ≈ 0.04. Our

results for the zero temperature gap in the anti-nodal direction and Tc for various

doping are summarized in the table below. Figure 9 plots both the zero temperature

gap and Tc as a function of doping. Moving down from the overdoped side, the

maximum Tc occurs first at h = 0.15, in good agreement with experiments. For

t = 3000K, one obtains ∆ = 19meV and Tc = 120K at h = 0.15, compared with
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the experimental values ∆ = 30meV and Tc = 90K for BSCO.
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FIG. 8: The gap ∆ in the anti-nodal direction as a function of T for hole doping h = 0.15.

hole − doping h ∆anti−nodal Tc

0.0 0.070 0.04

0.05 0.065 0.04

0.10 0.063 0.04

0.15 0.062 0.04

0.20 0.054 0.03

0.25 0.036 0.022

0.30 0.018 0.02

0.35 0.0 0.0

As explained in the last section, there is a succinct reason for why there is no

superconductivity at high enough doping, roughly h > 0.35, since beyond this, no

part of the Fermi surface overlaps with V−. See Figure 6. A slightly lower value of

h > 0.3 is more typical in experiments. However there is no mechanism in the gap
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FIG. 9: The zero temperature gap ∆ in the anti-nodal direction and Tc, in units of t, as a

function of doping h.

equation to turn off the gap at low enough doping, and it continues to increase all

the way down to zero doping. Superconductivity would turn off if g were smaller,

namely around g = 15, since in this case the region of attractive interactions is a

narrow band, and at low enough doping the Fermi surface does not overlap with

it[7]. However if eq. (8) is accurate, g is roughly twice as large, so this does not

account for the disappearance of superconductivity at low doping. Although this may

appear problematic when one compares with the usual phase diagram of the cuprates,

there is growing experimental evidence that this is actually the correct behavior[14,

15]. Namely, it has recently been found that the d-wave superconductivity gap

evolves smoothly into a d-wave pseudogap whose magnitude continues to increase to

arbitrarily low doping, where superconductivity is not present. In other words, the

so-called pseudo-gap energy scale T ∗ may be the continuation of the superconducting

gap, had there been no other other mechanisms to destroy it. As stated explicitly in

[15], these results are inconsistent with 2-gap scenarios. One check of this is that if
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At h=0.15, 
Tc= 120K (exp. = 90K)
Delta = 20meV (exp=30)



should be viewed as generated by the interactions, for example by equations such as

in section IV for the pseudo-energy ε. In Figure 10 we display the resulting Fermi

surfaces against the region of attractive interactions V− as computed in section III,

but with t′ = −0.163. In comparison with Figure 6, one sees that the effect that

leads to the anisotropy of the gap is more pronounced: the Fermi surfaces are pulled

away from the attractive region in the nodal direction in a stronger manner, which

implies that the gap will continue to be zero in the nodal direction for lower values

of h in comparison to the last section.

FIG. 10: Tight-binding fit to the Fermi surfaces for Bi2Sr2CaCu208+δ at dopings

0.07, 0.08, 0.14, 0.17, 0.19, eq. (20). The grey (pink online) region corresponds to the at-

tractive region for g = 26, t′ = −0.163 based on the Cooper pair potential V .
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In Figure 11 we plot the solution to the gap equation for h = 0.07, 0.14. The same

cut-off δκ = 0.04 as in the last section was used. For the reasons stated above, the

gap is zero for a wider region centered at θ = 45◦. Plots of the gap as a function of

temperature are very similar to those of the last section, and lead to a slightly lower

Tc, i.e. Tc ≈ 0.03 at optimal doping h = 0.14.

20 40 60 80

0.01

0.02

0.03

0.04

0.05

θ(degrees)

∆

h = 0.07 h = 0.14

FIG. 11: The zero temperature gap ∆ as a function of θ for hole doping h = 0.07, 0.14

based on the phenomenological ξ eq. (20).

VII. CONCLUSIONS

The central proposal of this work is that quantum loop corrections to the Cooper

pair potential, as computed here in the two-dimensional Hubbard model, could be

responsible for the effectively attractive interactions near the Fermi surface that

lead to the phenomenon of high Tc superconductivity. The validity of this idea is

easily explored, since the pair potential can be calculated exactly, and the results

favor our proposal. We showed that the resulting analysis of the solutions to the
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Fermi arc
(flat region)

Solutions for phenomenological fit to the Fermi surfaces

one identifies T ∗ with ∆, then T ∗ = 195K for t = 3000K at doping h = 0.05, again in

reasonable agreement with experiments. This suggests that on the underdoped side,

superconductivity is perhaps destroyed by competition with other orders, presumably

anti-ferromagnetic, bringing Tc to zero, even though the gap ∆ is still physically

present. It could also be destroyed by phase decoherence, as suggested in[16, 17].

These effects are of course not implemented in our gap equation, and it is beyond

the scope of this paper to address this, for example by comparing the free energies

for the competing orders or to study to phase fluctuations.

VI. SOLUTIONS TO THE GAP EQUATION FOR PHENOMENOLOGI-

CALLY DETERMINED FERMI SURFACES

In this section we repeat the analysis of solutions of the gap equation with the

normal state quasi-particle dispersion relation ξ(k) determined from experimental

data, but with the same pair potential V computed in section III. There is extensive

data on the Fermi surfaces for the compound Bi2Sr2CaCu208+δ. A tight-binding fit

to the data was performed in [12] based on the data in [? ]. The result is that the

Fermi surfaces are the contours ξ(k) = 0 for the following function:

ξ(k) = −µ̂ − 2 (cos kx + cos ky) + 0.6513 cos kx cos ky − 0.4455 (cos 2kx + cos 2ky)

− 0.1716 (cos 2kx cos ky + cos kx cos 2ky) + 0.6357 cos 2kx cos 2ky (20)

We have rescaled the result for ξ in [12] so that t = 1. The parameter µ̂ serves as

a renormalized chemical potential. For hole dopings h = 0.07, 0.08, 0.14, 0.17, 0.19,

µ̂ = −0.0500,−0.178,−0.503,−0.688,−0.809 respectively.

Let us assume that the underlying Hubbard hamiltonian has the same U/t = 13,

i.e. g = 26, and still only has nearest and next-nearest neighbor hopping parameters

t and t′, where from eq. (20) one reads off t′ = −0.163. The other terms in eq. (20)

21



• Energy scales are roughly correct:   Tc/t = 0.04  
(exp:  Tc/T = 0.025),  Gap = 30 meV, at optimal 
doping.  

• The gap has a flat region around 45 deg.  These 
are the Fermi arcs, and they exist at zero T.  
Gap is not d-wave, i.e. not   

• The gap increases all the way down to zero 
doping,  suggesting that the SC gap and 
pseudo-gap arise from the same mechanism.  
(There is growing experimental evidence for 
this.)   

Summary of the main features

FIG. 6: Calculated Fermi surfaces for hole doping 0 < h < 0.4 in steps of 0.1, with h = 0.4

the innermost curve. The grey (pink on-line) region corresponds to the attractive region

for g = 26, t′ = −0.3 based on the Cooper pair potential V .

that ∆ cannot be strictly d-wave as defined from the origin, for example, it cannot

be of the simple form ∆ ∝ | cos kx − cos ky|, where k is measured from the origin.

Thus, in the first quadrant of the Brillouin zone, it is more convenient to work with

the vector !κ originating from the node (π, π), i.e. k = kπ,π + !κ, where kπ,π = (π, π).

In the integral gap equation (1), one must integrate over a narrow band around

the Fermi surface SF (µ). Let θ be the angle of !κ relative to the horizontal line

through the (π, π) node: !κ = −κ(cos(θ) î + sin(θ) ĵ). If the integration is over a

narrow band δSF of width 2 δκ around the Fermi surface, then the gap equation
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Norman et. al. Nature (1998),  Chatterjee et. al.  Nature Phys. 2010,
Kohsaka et. al. Nature (2008). 



Comparison with recent STM experiments

S. Davis group
 Nature 454 (2008)

Our results are evocative of what is seen in STM at low doping,  i.e. a 
Fermi arc that persists to zero temperature.   ARPES sees more of a d-
wave gap everywhere.   

Extinction Fermi arc
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Fig. 3. The spectral gap as a function of angle around the Fermi surface 

and doping. (a) The spectral gap !(! ), normalized by its maximum value at the 

antinode, plotted as a function of the Fermi surface angle !. Different colors are 

used for various superconducting samples (single crystals and thin films), while 

an open symbol is used for the non-superconducting sample. The energy gap at 

all doping levels is consistent with the d-wave form |cos( 2! )| shown as a black 

curve. (b) Maximum gap as a function of hole-doping. Gaps of the 

superconducting samples are denoted by filled symbols (blue for thin films and 

red for single crystals measured in this work, and green for published data6), 

while open circles are used for the non-superconducting samples.  
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Conclusions 
• Main idea explored:  quantum loop corrections 

to the pair potential  leads to an attractive 
mechanism.    Energy scales for Tc and the gap 
come out right. 

• Results strongly suggest the pseudogap and SC 
gap arise from this same attractive mechanism.

• Calculated gap reflects some features recently 
seen in STM,  zero temperature Fermi arc,  at 
low doping, etc.  At higher doping,  agreement 
is not as good, and disagrees with the d-wave 
gap seen by ARPES.    (needs to be resolved.)
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