
1) Derive Child-Langmuir formula. 

  

Solution: 

We assume one-dimensional problem. Potential satisfies Poisson equation 
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Current density and charge density are related by zz vJ ρ= , while the velocity is found 

through energy conservation 
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Eliminating ρ  and zv , Poisson distribution is rewritten as 
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First, we need to determine if zJ  depends on the coordinate. From charge conservation 

we have 
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thus, constJ z =  in steady state ( 0/ =∂∂ tρ ). Therefore, one solves the differential 

equation for V .  Use sample solution BAzzV =)(  (note that 0)0( =V , and 

0/)0( =−= zEdzdV , or field at the cathode vanishes, just like Child law argues), 

substituting and solving for constants (Note: the value of B  is obvious from the fact that 

second derivative proportional to 2/1−z , and 
2)( −=′′ BB

zz ) yields 
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2) Prove the formula for focal length of the electrostatic aperture ( eV  being kinetic 

energy of the beam; assume it does not change appreciably as the beam traverses the 

aperture): 
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Solution: 

From Gauss law one can show that 
zr

E
r

E ′−=
2

 for small r . From the equation of 

motion, 
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 one arrives at (the radial velocity before the aperture is 0=

r
v ): 
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The deflecting angle is 1/ <<=
zr

vvα , and the focal length is α/rf −=  (negative sign 

means defocusing). Thus, we arrive at 

 

 
)(

2

)(

2

12

22

12

2

EEe

mc

EEe

mv
f z

−
=

−
=

γβγ
. 

 

Using 
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