1) Derive Child-Langmuir formula.

Solution:
We assume one-dimensional problem. Potential satisfies Poisson equation

Current density and charge density are related by J_ = pv_, while the velocity is found
through energy conservation
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Eliminating o and v,, Poisson distribution is rewritten as

v __J. | m_
dz’ g, \2eV '

First, we need to determine if J_ depends on the coordinate. From charge conservation
we have
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thus, J_ = const in steady state (dp/dt = 0). Therefore, one solves the differential
equation for V . Use sample solution V(z) = Az”® (note that V(0) =0, and
dV(0)/dz=—-E, =0, or field at the cathode vanishes, just like Child law argues),

substituting and solving for constants (Note: the value of B is obvious from the fact that
second derivative proportional to z"'*, and (z%)” = z"7) yields
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2) Prove the formula for focal length of the electrostatic aperture (eV being kinetic
energy of the beam; assume it does not change appreciably as the beam traverses the
aperture):
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Solution:
From Gauss law one can show that E, = —% E’ for small r. From the equation of
. dv . dv . .
motion, yn dtr =eLE , one finds yn dtr = jeErdt, or invoking dt =dz/ fc and
E = —% E’ one arrives at (the radial velocity before the aperture is v, =0):
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The deflecting angle is @ = v, /v_<<1, and the focal length is f =—r/a (negative sign
means defocusing). Thus, we arrive at
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, We arrive at
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