1) Derive Child-Langmuir formula.

Solution:

We assume one-dimensional problem. Potential satisfies Poisson equation

$$
\frac{d^{2} V}{d z^{2}}=-\frac{\rho}{\varepsilon_{0}}
$$

Current density and charge density are related by $J_{z}=\rho v_{z}$, while the velocity is found through energy conservation

$$
\frac{1}{2} m v_{z}^{2}=e V .
$$

Eliminating ρ and v_{z}, Poisson distribution is rewritten as

$$
\frac{d^{2} V}{d z^{2}}=-\frac{J_{z}}{\varepsilon_{0}} \sqrt{\frac{m}{2 e V}}
$$

First, we need to determine if J_{z} depends on the coordinate. From charge conservation we have

$$
\frac{\partial \rho}{\partial t}+\frac{\partial J_{z}}{\partial z}=0
$$

thus, $J_{z}=$ const in steady state $(\partial \rho / \partial t=0)$. Therefore, one solves the differential equation for V. Use sample solution $V(z)=A z^{B}$ (note that $V(0)=0$, and $d V(0) / d z=-E_{z}=0$, or field at the cathode vanishes, just like Child law argues), substituting and solving for constants (Note: the value of B is obvious from the fact that second derivative proportional to $z^{-1 / 2}$, and $\left.\left(z^{B}\right)^{\prime \prime}=z^{B-2}\right)$ yields

$$
V=\left(-\frac{9 J_{z}}{4 \varepsilon_{0}} \sqrt{\frac{m}{2 e}}\right)^{2 / 3} z^{4 / 3}, \text { or } J_{z}=-\frac{4 \varepsilon_{0}}{9} \sqrt{\frac{2 e}{m}} \frac{V^{3 / 2}}{z^{2}} .
$$

2) Prove the formula for focal length of the electrostatic aperture (eV being kinetic energy of the beam; assume it does not change appreciably as the beam traverses the aperture):

$$
f=4 V \frac{1+\frac{1}{2} e V / m c^{2}}{1+e V / m c^{2}} \frac{1}{E_{2}-E_{1}} .
$$

Solution:

From Gauss law one can show that $E_{r}=-\frac{r}{2} E_{z}^{\prime}$ for small r. From the equation of motion, $\gamma m \frac{d v_{r}}{d t}=e E_{r}$, one finds $\gamma m \frac{d v_{r}}{d t}=\int e E_{r} d t$, or invoking $d t=d z / \beta c$ and $E_{r}=-\frac{r}{2} E_{z}^{\prime}$ one arrives at (the radial velocity before the aperture is $v_{r}=0$):

$$
\mu m \frac{d v_{r}}{d t}=-\frac{e r}{2 \beta c} \int E_{z}^{\prime} d z=-\frac{e r}{2 \beta c}\left(E_{2}-E_{1}\right) .
$$

The deflecting angle is $\alpha=v_{r} / v_{z} \ll 1$, and the focal length is $f=-r / \alpha$ (negative sign means defocusing). Thus, we arrive at

$$
f=\frac{2 v_{z}^{2} \gamma m}{e\left(E_{2}-E_{1}\right)}=\frac{2 \beta^{2} \not m c^{2}}{e\left(E_{2}-E_{1}\right)} .
$$

Using $\beta^{2} \gamma=\frac{\frac{e V}{m c^{2}}\left(2+\frac{e V}{m c^{2}}\right)}{1+\frac{e V}{m c^{2}}}$, we arrive at

$$
f=4 V \frac{1+\frac{1}{2} e V / m c^{2}}{1+e V / m c^{2}} \frac{1}{E_{2}-E_{1}} .
$$

