USPAS course on
 Recirculated and Energy Recovered Linacs

Ivan Bazarov, Cornell University Geoff Krafft and Dave Douglas, JLAB

Computer class: Linear Optics in JLAB: Longitudinal Dynamics and BBU

JLAB IRFEL

Spreadsheet model of JLAB IRFEL includes:

- full first-order optics
- longitudinal phase space visualization
- beam break-up simulations

Downloading the lesson

Download the spreadsheet and bbu code to a single writeenabled directory from http://www.lns.cornell.edu/~ib38/uspas08/
Make sure macros are enabled. Start the spreadsheet (note: it may take a while to initialize all formulas).

Spreadsheet organization

The spreadsheet is organized into three main parts
---> elements
matrices
products
twiss
---> bbu
bbu_latfile
b.bu_homs
bbu__param
layout and lattice control
beam breakup simulation
---> long_phase_space
R56
Z
pz

Organization: layout and lattice

---> elements sheet contains optics controls

$-\operatorname{fin}^{2}=4 x^{2}$

Spreadsheet: beam break-up

---> b.bu controls execution of beam break-up code

---> long_phase_space tracks a bunch in the long. p.s.

$-4 A^{2}=8 x^{2}$

- first- and second-order correlation in longitudinal phase space
- second-order momentum compaction
- requirements for energy recovery

$$
\begin{aligned}
& \delta=\delta_{0}+\left.\frac{\partial \delta}{\partial l}\right|_{l=0} l+\left.\frac{1}{2!} \frac{\partial^{2} \delta}{\partial l^{2}}\right|_{l=0} l^{2}+\ldots \\
& \delta \cong \delta_{0}+\alpha_{\delta} l+\frac{1}{2} \beta_{\delta} l^{2}
\end{aligned}
$$

$$
\sigma_{\delta}=\sqrt{\sigma_{\delta_{0}}^{2}+\alpha_{\delta}^{2} \sigma_{l}^{2}+\frac{1}{2} \beta_{\delta}^{2} \sigma_{l}^{4}} \quad \varepsilon_{\delta-l}=\sigma_{l} \sqrt{\sigma_{\delta_{0}}^{2}+\frac{1}{2} \beta_{\delta}^{2} \sigma_{l}^{4}}
$$

$$
\alpha_{\delta}=-\frac{E_{\text {linac }}}{E_{\text {final }}} k_{R F} \sin \varphi \quad \beta_{\delta}=-\frac{E_{\text {linac }}}{E_{\text {final }}} k_{R F}^{2} \cos \varphi
$$

$$
k_{R F}=2 \pi / \lambda_{R F}=31.5 \mathrm{~m}^{-1} \text { for } 1.5 \mathrm{GHz}
$$

After acceleration

after the main linac:

$$
\begin{gathered}
\alpha_{\delta} \approx-k_{R F} \varphi \\
\beta_{\delta} \approx-k_{R F}^{2}
\end{gathered}
$$

assuming large $E_{\text {final }} / E_{\text {injection }}$ and small energy spread energy spread:
 longitudinal emittance:

$$
\begin{array}{ll}
\sigma_{\delta} \approx \alpha_{\delta} \sigma_{l} \quad \text { for }|\varphi|>\frac{1}{\sqrt{2}} k_{R F} \sigma_{l} & \varepsilon_{\delta-l} \approx \frac{1}{\sqrt{2}} \beta_{\delta} \sigma_{l}^{3} \\
\sigma_{\delta} \approx \frac{1}{\sqrt{2}} \beta_{\delta} \sigma_{l}^{2} \text { for }|\varphi|<\frac{1}{\sqrt{2}} k_{R F} \sigma_{l} &
\end{array}
$$

Longitudinal transform

$$
l^{*}=l+R_{56} \delta+T_{566} \delta^{2}
$$

$$
\delta^{*}=\delta
$$

$$
L=\int \sqrt{(1+x / \rho)^{2}+x^{\prime 2}+y^{\prime 2}} d s
$$

$$
\Rightarrow \quad \begin{aligned}
& \alpha_{\delta}^{*}=\frac{\alpha_{\delta}}{1+R_{56} \alpha_{\delta}} \\
& \beta_{\delta}^{*}=\frac{\beta_{\delta}-2 T_{566} \alpha_{\delta}^{3}}{\left(1+R_{56} \alpha_{\delta}\right)^{3}}
\end{aligned}
$$

momentum compaction (times the path length):

$$
R_{56}=\int \frac{\eta}{\rho} d s
$$

second-order momentum compaction:

$$
T_{566}=\int\left[\frac{\eta_{(2)}}{\rho}+\frac{\eta^{2}}{2 \rho}+\frac{\eta^{\prime 2}}{2}\right] d s
$$

Compression

for maximum compression need $R_{56}=-\frac{1}{\alpha_{\delta}} \approx \frac{1}{k_{R F} \varphi}$

for maximum compression need

$$
T_{566}=\frac{\beta_{\delta}}{2 \alpha_{\delta}^{3}} \approx \frac{1}{2 k_{R F} \varphi^{3}}
$$

actual (absolute) value of T_{566} can be smaller

$$
\Delta T_{566, \sigma_{l}^{\text {comp }}}=\frac{\sigma_{l}^{\text {comp }}}{\sqrt{2} \alpha_{\delta}^{2} \sigma_{l}^{2}} \approx \frac{\sigma_{l}^{\text {comp }}}{\sqrt{2} k_{R F}^{2} \sigma_{l}^{2} \varphi^{2}}
$$

no T_{566} is needed beyond a certain off-crest phase angle

$$
\varphi>\varphi_{T_{T_{s k-0}}}=\frac{\sigma_{l}^{2}}{\sigma_{l}^{\text {comp }}} \frac{k_{R F}}{\sqrt{2}}
$$

Achieving the right values of R_{56}

Adjustable R_{56}

$$
R_{56}=\int_{1}^{2} \frac{\eta_{x}}{\rho} d s
$$

Achieving the right values of T_{566}

changing sextupoles strength in the Arc...

$$
T_{566}=\int\left[\frac{\eta_{(2)}}{\rho}+\frac{\eta^{2}}{2 \rho}+\frac{\eta^{\prime 2}}{2}\right] d s
$$

$$
\eta_{(2)}^{\prime \prime}+K(s) \eta_{(2)}=-h+k_{1} \eta-\frac{1}{2} k_{2} \eta^{2}+\left(h^{3}+2 k_{1} h\right) \eta^{2}+\frac{1}{2} h \eta^{\prime 2}+h^{\prime} \eta^{\prime} \eta+2 h^{2} \eta
$$

Bunch length in the Bates'

Bunch length in the Arcs:

$$
\sigma_{l, t}^{2}=\sigma_{l, 0}^{2}\left(1+\frac{\partial \delta}{\partial l} R_{56}\right)^{2}+\text { second_term }{ }^{2}
$$

For off-crest of several deg: $\frac{\partial \delta}{\partial l} R_{56} \geq 1$

Energy recovery

$$
\Delta \delta=\beta_{\delta} I \Delta l
$$

$$
\begin{gathered}
\Delta l \sim R_{56} \sigma_{\delta} \quad \Delta l \sim T_{566} \sigma_{\delta}^{2} \\
\Delta \delta \sim \sigma_{\delta_{\text {dump }}} \\
R_{56} \sim \frac{\sigma_{\delta_{\text {dump }}}}{\beta_{\delta}^{2} \sigma_{l}^{3}} \quad T_{566} \sim \frac{\sigma_{\delta_{\text {dump }}}}{\beta_{\delta}^{3} \sigma_{l}^{5}}
\end{gathered}
$$

General rule of thumb for successful energy recovery is having the full recirculating arc isochronous to first and second order $\left(\mathrm{R}_{56}\right.$
$=\mathrm{T}_{566}=0$).
In IRFEL, the main difficulty is an additional energy spread generated at the wiggler due to FEL interaction.

Controlling Bates' quads

---> elements sheet, yellow region

- 千ffetean giaf

Off-crest phase, FEL energy spread and T_{566}

---> long_phase_space sheet

Exercises (longitudinal gymnastics)

- Set the off-crest phase angle in the main linac to 0 and 'turn-off' laser interaction. Observe how the longitudinal phase space looks throughout the accelerator and at the beam dump.
- Set the off-crest phase angle in the main linac to -10°. Achieve the shortest bunch possible at the wiggler location using linear optics only (T_{566} should be 0). Compare calculated R_{56} with the value in the model.
- Use T_{566} to maximally compress the bunch at the wiggler. Compare calculated T_{566} with the value in the spreadsheet. How much shorter is the bunch length when both second- and first-order compaction is used, as opposed to only the first-order compression? Achieve less than 150 fs rms bunch duration.

NOTE: R_{56} from the linac to the wiggler consists comes from
two parts: Bates' turn-around and a chicane

Exercises (optional)

- 'Turn-on' the laser interaction (actual max. energy spread of 5%). Observe the longitudinal phase space at the dump. Is the beam being successfully recovered?
- Adjust R_{56} in the second Bates' section to minimize energy spread at the dump. Note the smallest energy spread you were able to achieve.
- Use T_{566} to minimize energy spread at the dump. Note the values of R_{56} and T_{566} of the whole recirculating arc that allowed the result. What is the smallest energy spread you were able to achieve? Achieve less than 15% max energy spread at the dump.

Higher order modes

Two basic concerns:

- Multipass beam breakup (dipoles)
\bullet Resonant excitation of a higher order mode (monopoles)

$$
\text { monopole }(m=0)
$$

$T M_{o I}$-like

high energy losses, no kick
dipole ($m=1$)
$T M_{11}$-like

kick and losses when beam is not centered
quadrupole $(m=2)$
$T M_{21}$-like

kick, coupling and losses when beam is not centered

BBU threshold for a single dipole mode

$t_{r} \frac{\omega_{\lambda}}{2 Q_{\lambda}} \ll 1 \mathrm{NO} \longrightarrow t_{r}$	${ }_{r} \frac{\omega_{\lambda}}{2 Q_{\lambda}} \gg 1 \mathrm{NO}$ use code!
YES	YES $\begin{aligned} & \epsilon=\frac{\omega_{\lambda}}{2 Q_{\lambda}} t_{b}, \epsilon \ll 1 \\ & t_{r}=\left(n_{r}-\delta\right) t_{b} \end{aligned}$ integer n_{r} and $\delta \in[0,1)$ $\mathcal{K}=t_{b}\left(e / c^{2}\right)(R / Q)_{\lambda}$
$T_{12} \sin \omega_{\lambda} t_{r}<0 \xrightarrow{\mathrm{NO}} T_{12} \sin \omega_{\lambda} t_{r}>0$	
\downarrow YES	
$I_{0}=-\frac{\epsilon}{\mathcal{K}} \frac{2}{T_{12} \sin \omega_{\lambda} t_{r}}$	
$I_{0}=\frac{2}{\mathcal{K}\left\|T_{12}\right\|} \sqrt{\epsilon^{2}+\frac{1}{n_{r}^{2}} \operatorname{Mod}\left(\omega_{\lambda} t_{r}, \pi\right)^{2}}$	
$I_{0}=\frac{2}{\mathcal{K}\left\|T_{12}\right\|} \sqrt{\epsilon^{2}+\frac{1}{n_{r}^{2}} \operatorname{Mod}\left(\omega_{\lambda} t_{r} \pm \frac{\pi}{2}, 2 \pi\right)^{2}}$	$I_{0} \approx 2 \epsilon / \mathcal{K}\left\|T_{12}\right\|$, is independent of t_{r}

Controlling BBU code

---> bbu controls execution of beam break-up code

Controlling BBU code: HOMs

bbu_homs spreadsheet

Exercises (beam-break up)

- By commenting out modes in bbu_homs sheet, determine the worst mode (the one with highest threshold). How does the threshold due to the single worst mode compares to the situation when all modes are present?
- Work with the worst offending mode (for faster computing speed). Slightly change the frequency of the mode and obtain dependence of threshold vs. the mode frequency. Plot the dependency. What is the ratio of max over min threshold that you found in this manner? What is the frequency difference between the two adjacent maxima?
- Add 'fake' 1000 m to the recirculation length (---> bbu sheet) and repeat the steps from 2). What is the ratio of max over min threshold in this case? What is the frequency difference between the two adjacent maxima? Try to explain the result.

