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Synchrotron radiation, the radiation emitted from charge particles as their trajectory bends

in the presence of magnetic fields, provides one of the main driving forces behind the

development and construction of particle accelerators today. As the electron sources in

these accelerators are pushed to deliver increasingly brighter beams, significant physics and

technological challenges must be overcome. To do so requires both a theoretical and

computational understanding of the physics governing the dynamics in these sources,

and experimental demonstration of the feasibility of the conclusions drawn from this

understanding. To this end, we present a theoretical treatment of the linear dynamics in

the combined RF and solenoid fields used in the generation of electron bunches at their

source. Additionally, a method for computing and characterizing the asymmetric beam

focusing caused by the input power couplers of RF cavities is given. Incorporating these

methods, we present the results of a detailed study of the six dimensional phase space of

the electron beam in the Cornell ERL injector prototype, a high-brightness, high repetition

rate DC gun based photoinjector. The emittance results obtained in this work set a

new record low for DC based photoinjectors producing comparable bunch charges, and

demonstrate that DC gun based photoinjectors are capable of producing high-brightness

beams which surpass the beam quality found in storage rings by a factor 20 when the

energy spread in each type of machine is considered.
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CHAPTER 1
Introduction

1.1 A Brief History of Synchrotron Radiation and

Accelerator Based Light Sources

In the mid to late forties, several pivotal experiments concerning the emission of radiation

from electrons in circular accelerators took place at the General Electric Research Lab in

Schenectady, New York. In 1944, work by Iwanenko and Pomeranchuk [1] showed that the

maximum energy achievable in circular electron accelerators known as betatrons was

limited by the electromagnetic power radiated away by the electrons as they are bent in a

circular trajectory by applied magnetic fields. In 1945, the effect of this radiation, now

known as synchrotron radiation (SR), was indirectly measured by Blewet using the General

Electric 100 MeV betatron shown Fig. 1.1(a). Direct measurement of the radiation occurred

later in 1947, and was carried out by Elder, Gurewitsch, Langmuir, and Pollock [2] using

the General Electric 70 MeV synchrotron shown in Fig. 1.1(b), the second machine of its

kind [3]. At roughly the same time, Schwinger produced a classical description of this

radiation, based on previous work by Schott [4], which included predictions for the angular

and frequency distribution of the emitted light. Between these initial experiments at

General Electric, and later work at Cornell University using a 300 MeV synchrotron [5], the

classical theory of synchrotron radiation was experimentally tested and verified.

1
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(b) The General Electric 70 MeV synchrotron.

Figure 1.1: Early synchrotron light sources: (a) the General Electric 100 MeV betatron, and
(b) the General Electric 70 MeV synchrotron showing the emitted synchrotron light
beam (light spot in the left corner of the machine).

Many of the extraordinary properties of SR follow largely from the concentration of the

radiation into a forward cone [6, 7]. The opening angle of this cone is determined by the

normalized relativistic electron energy: θSR = 1/γ [6–9]. The total power radiated by a

(classical) relativistic electron undergoing circular motion can be written approximately as

[9]:

Ps ≈
2

3
remc

3

(
γ4

R2

)
. (1.1)

In this expression, R is the bending radius of the electron orbit and re = e2/4πε0/mc
2 is

the classical electron radius. Another important characteristic of SR comes from the fact

that the majority of the power radiated occurs up to a critical frequency, also determined

by the electron orbit radius and energy [9]:

ωc =
3c

2R
γ3. (1.2)

Despite early interest in SR, the production and use of this radiation was initially

limited to parasitic operation at synchrotron facilities designed for high energy physics
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experiments. With the advent of the electron storage ring in the late 1960’s, the stability

and quality of SR increased significantly. Indeed, roughly 105 times more continuous

radiation was provided by these first generation storage ring sources than by conventional

(x-ray) light sources of the time [10]. Subsequently, interest in this high intensity, directional

radiation source grew rapidly. The desire for higher SR brightness and quality lead to the

construction of storage rings around the world, many of which were (are) dedicated light

sources [10]. In these so-called “second generation” light sources, SR is produced primarily

in the bending magnets used to keep the particles moving through the torus shaped vacuum

pipe. A familiar example of combined storage ring and synchrotron facility is the Cornell

Electron Storage Ring (CESR) and Cornell High Energy Sychrotron Source (CHESS),

shown in Fig. 1.2(a) and 1.2(b).

(a) Overview of the CESR/CHESS facility. (b) Inner view of the tunnel.

Figure 1.2: The Cornell Electron Storage Ring and High Energy Synchrotron Source: a
roughly 5 GeV electron (positron) storage ring and x-ray source.

A significant breakthrough in SR science came with the advent of insertion devices

known as undulators and wigglers [11]. These devices use alternating magnetic dipole fields

perpendicular to the beam direction to periodically bend the beam trajectory in small
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circular arcs. Fig. 1.3 shows the conceptual schematic of an undulator [12]. Undulators

Figure 1.3: Conceptual schematic of an undulator.

typically bend the beam by an angle θU ≤ θSR. This results in the enhancement of the SR

intensity for certain wavelengths, producing a quasi-monochromatic source. Wigglers bend

the beam by an angle θW ≥ θSR, resulting in a broader frequency distribution due to the

dependence on the bend radius in Eq. 1.2. In both cases, by adjusting either the magnetic

field strength, dipole gap, or beam energy, undulators and wigglers offer a tunable method

for producing SR. With the advent of this technology, a third generation of light sources

were constructed and came online in the early 90’s. A key feature of these machines was the

incorporation of more straight sections for insertion devices. The use of undulators in third

generation rings produced a factor of roughly 104 times the brightness of the SR generated

from the bending magnets in earlier rings [10]. The significant gains in beam quality and

brightness achieved by storage ring light sources demonstrates that this technology has

substantially matured in the roughly forty years since its first implementation.
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1.2 Linac Based Light Sources

A key feature of the design of third generation storage ring light sources was the emphasis

placed on the SR brightness, defined as the flux per unit area of the radiation source per

unit solid angle of the radiation cone per unit spectral bandwidth [13]. This quantity is

integrally related to the electron beam brightness, defined roughly as

Be− =
I

εxεy
. (1.3)

In this expression I is the electron beam current, and the terms εx and εy are the horizontal

and vertical geometric emittances of the electron beam. These quantities provide a measure

of the area occupied by the electron beam in the the two dimensional phase spaces defined

by the coordinates (x, θx) and (y, θy). Here θx and θy are the transverse angles made by

each electron with respect to the beam line axis in the accelerator, and are approximately

given by θx,y ' px,y/pz in the straight sections of a machine. The resulting photon beam

brightness Bγ is related to the electron beam brightness through a convolution of the

photon beam emittance εγ and electron beam εx,y emittances. For a Gaussian mode photon

beam near the diffraction limit (εγ ∼ λ/4π), this means Bγ ∝ (εx,y + λ/4π)−2, assuming

cylindrically symmetric beams [9, 14]. Thus, to generate diffraction limited hard x-rays

(λ < 1
◦
A) requires electron emittances on the order of 10 pm or less.

As it turns out, SR sets a lower limit on the electron emittance in a storage ring. In

these machines, particles perform small oscillations around a closed reference orbit with

design energy E0. In the horizontal and vertical planes transverse to this orbit, these

small oscillations are known as betatron motion. Similarly, particles also perform energy

oscillations around the design energy known as synchrotron oscillations. To ensure particles

make closed orbits around the ring, betatron oscillations are controlled with transverse
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magnetic focusing fields, and synchrotron oscillations are controlled with time-dependent

energy focusing in the RF fields used to maintain the beam energy.

In general, the loss of energy to SR comes at the expense of both the transverse and

longitudinal momentum of the circulating particles, however, because the energy associated

with the transverse motion is in typically many orders of magnitude smaller than the

longitudinal energy, as well as the fact that RF fields replace energy only in the longitudinal

direction, SR tends to have a dampening effect on the betatron oscillations. In addition, in

light of the scaling of the emitted SR power with γ4 in Eq. (1.1), particles with higher

energy radiate more power than those with lower energy, providing a dampening mechanism

to synchrotron oscillations [14].

It turns out that these dampening effects are countered by the quantum nature of the

SR emission process. During the emission of a photon, an electron suddenly loses energy,

which in turn excites synchrotron oscillations. The loss of energy can also lead to a different

closed orbit for the electron if the photon is emitted in dispersive regions, as in the bending

magnets. The combination of the quantum and damping effects of SR lead to the formation

of a Gaussian equilibrium electron phase space distribution with the horizontal and vertical

emittances determined by the properties of the optical elements in the accelerator. In a

typical storage ring, the emittance in the horizontal plane may be 10 to 100 times larger

than in the vertical plane [10, 15]. For example, emittances in PETRA III, a representative

state-of-the-art third generation ring, are roughly 1 nm and 10 pm in the horizontal and

vertical direction respectively [15]. Because of the increased horizontal emittance resulting

from the formation of an equilibrium distribution with larger horizontal phase space area,

such a machine will not be able to produce diffraction limited hard x-rays.

While there are still many ways in which storage rings can be further optimized for
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x-ray production, the equilibrium process will always set a fundamental upper limit to the

brightness of a given ring design. An alternative approach to the use of storage rings is

provided by linear accelerators (linacs). Because beams in these devices are only accelerated

and recirculated at most a relatively small number of times, the quality of the beam

distribution is largely dominated by the beam quality of the initial source. In general, there

are currently two light source technologies being developed which are based on linac sources.

1.2.1 The Free Electron Laser

The push for extremely high peak brightness has lead to the development of the Free

Electron Laser (FEL). There are currently several x-ray FELs in operation around the

world. These include, but are not limited to, the Linac Coherent Light Source at the

Stanford Linear Accelerator Center (SLAC), SPring-8 Angstrom Compact Free Electron

Laser (SACLA) at the RIKEN institute in Japan, the Free-electron LASer in Hamburg

(FLASH), and the SwissFEL at the Paul Scherrer Institute in Switzerland [16–18]. These

machines are based on the self-amplified stimulated emission (SASE) principle in which the

initial electron beam is bunched longitudinally due by the undulator fields and emitted SR

fields. The resulting micro-bunches are longitudinally separated by roughly the wavelength

of the emitted light, yielding a coherent addition of the radiated fields. The resulting x-ray

beam brightness is staggering, with a demonstrated factor of roughly 1010 more peak

brightness compared to third-generation light sources [16]. SASE operation at LCLS has

been used to generate tens of GW of tunable x-rays (25− 1.2
◦
A) with pulse lengths as short

as 5− 10 fs at a repetition rate of 120 Hz. Recently, the LCLS has also demonstrated the

possibility of self-seeding the micro-bunching process with x-ray light initially generated by

SASE in the first section of the FEL, significantly increasing the temporal coherence of the

emitted x-rays [16].
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While these devices have set the bar for peak brightness, there is a growing desire for

machines with comparable average beam brightness, but operating at a much higher bunch

repetition rate [19]. In machines such as the LCLS, the power lost to the beam(s) is small

due to the low repetition rate. Using typical values for the LCLS machine gives a beam

loading of:

P = Ibeam · V ≈ 200 pC/bunch× 120 Hz× 12 GeV = 288 W. (1.4)

The limitation of the repetition rate is in part fundamentally set by the power losses in the

normal conducting RF (NCRF) cavity walls. While the use of superconducting RF (SRF)

cavities would help limit cavity wall losses, the beam loading becomes unmanageable if very

high (GHz) repetition rates are sought. For example, to continuously accelerate 77 pC

bunches to 5 GeV at 1.3 GHz requires an enormous power supply:

P = Ibeam · V = 77 pC/bunch× 1.3 GHz× 5 GeV = 0.5 GW. (1.5)

Clearly this is impractical. Thus a significantly different approach to the linac design used

to drive a high repetition rate hard x-ray source is required.

1.2.2 The Energy Recovery Linac

To solve the beam loading problem inherent in producing high-brightness, high repetition

rate beams, a machine known as an Energy Recovery Linac (ERL) was proposed by Tigner

[20] in 1965. A general schematic of this type machine is shown in Fig. 1.4. First, high

quality electron bunches are created and initially accelerated to moderate energy (shown in

red) in a short linac, known as the injector. The beam is then injected into a large linac,

and accelerated to high energy (shown in green) by RF fields where it can be used to

produce x-ray beams in both undulators and bend sections. After completing one loop
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Figure 1.4: The conceptual layout of an Energy Recovery Linac.

around the accelerator, the high energy beam is then sent back into the same RF linac used

for acceleration (fields shown in blue). However, the arrival of the recirculated beam is

timed so that it is exactly 180 degrees out of phase with the fields in the cavity fields

(shown in blue). The beam is then decelerated, and the energy is recovered from the

particles and deposited back in the accelerating fields. In order to efficiently recovery the

particle’s energy, the accelerating cavities must be continuously filled, and the ohmic cavity

wall losses must be kept to a minimum. This is accomplished with the use of high quality

superconducting RF (SRF) cavities.

Energy recovery has already been experimentally verified at several labs. Examples of

operating ERLs include the 135 MeV ERL at Thomas Jefferson Accelerator Facility

(Jefferson Lab), a 40 MeV ERL at the Budker Institute of Nuclear Physics (BINP), and the
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30 MeV ALICE facility at Daresbury Laboratory [21]. A common feature of these facilities

is the use of the ERL to drive an FEL, producing radiation in the Thz to IR/UV spectrum,

depending on the available beam energy. Building on the success of these machines,

scientists at Cornell University have been designing and developing the technology required

to realize a high-energy (GeV), high repetition rate (GHz), hard x-ray ERL [19]. This work

includes the design of a high-energy accelerator lattice making use of the existing CESR

facility, SRF cavity design and fabrication, the design and testing of a high-brightness DC

injector source, as well as laser and cathode research and development. A schematic of the

current Cornell ERL design is shown in Fig. 1.5. Table 1.1 shows the relevant simulated
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Figure 1.5: The proposed layout for a high energy hard x-ray ERL at Cornell University.

beam parameters determined from complete front-to-end simulations of the accelerator

lattice [19].
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Table 1.1: Cornell ERL design specifications and parameters.

Parameter Values

Energy (KE) 5 GeV

Repetition Rate 1.3 GHz

Current (I) (25) 100 mA

Bunch Charge (q) (19) 77 pC

Horizontal Emittance (εx) 13 - 66 pm

Vertical Emittance (εy) 10 - 25 pm

RMS Bunch Length (σt) 0.1 - 2.1 ps

RMS Energy Spread (σδ) 0.009 - 0.09 %

The parameters shown in Table 1.1, are based on simulations starting with an exceptional

electron source capable of producing high-brightness beams at high repetition rate. The

development of such a source, for this application as well as other types of next generation

light sources, presents many fundamental physics and technological challenges. As the

majority of this work centers on the physics in these state-of-the-art injectors, an overview

of modern electron sources is given in the next section.

1.3 High-Brightness Electron Sources

The basic electron source, known as an electron gun or in the case of an accelerator, the

injector, can be characterized by three critical properties: the cathode material, the

emission process used to generate electrons, and the type of electromagnetic field used to

accelerate the extracted electrons. The combination of these properties ultimately sets the

physical limits on the quality and quantity of the electron bunches produced.

In general, there are three important types of electron emission processes: thermionic,

where electrons are heated off a metal filament; field emission, where electrons are stripped
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off a filament via applied large electric fields; and photoelectric, where electrons are emitted

from a cathode via the photoelectric. Thermionic sources are widely used, and generally

feature a heated (often tungsten) filament. Uses of this type of source include cathode ray

tubes, electron microscopes, klystrons, as well as injectors for large scale accelerator

facilities [22–25]. Field emission sources have also been used electron microscopes [22].

Photo-emission based guns, the third class of electron guns, represent a relatively new

technology, which only recently has become the go to choice for high quality beam

production [26].

1.3.1 Photoinjectors and the Physics of Producing High

Quality Beams

Initially developed as specialized devices producing polarized electrons for high energy

physics, atomic physics, and materials science, photoemission-based guns offer significant

flexibility in critical design parameters such as bunch charge, repetition rate, bunch length,

and beam energy [26]. There are three main types of photo-emission sources: NCRF guns,

SRF guns, and DC guns (followed by SRF acceleration). While each type of source offers

particular benefits and potential draw backs, each type of gun ultimately attempts to solve

the fundamental problem of producing very bright initial bunches and accelerating them to

relativistic energies as quickly as possible. To see why this is necessary, the relevant physics

in these machines is discussed below.

One of the dominating effects in high-brightness photoinjectors are the self fields of the

beam [27–32]. In general, the interactions between beam particles is comprised of two parts

[28]. The first is due to Coulomb forces between neighboring particles, and the second is

the effect of the entire beam’s charge distribution as a whole. The relative importance of
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both these contributions is determined by three fundamental length scales: the Debeye

length λD, the inter-particle distance lp, and the beam dimension a [28]. The first of these

quantities, the Debye length λD, measures the distance over which screening of the fields

from a test charge placed in the beam occurs. Collective forces become important when

λD � a [28]. In this regime, smooth functions for the self-field effects can be used if

λD � lp. For the remainder of this work, it is assumed that this regime holds.

As previously mentioned, one of most important figures of merit for a high-brightness

photoinjector is the transverse emittance. Generally in linacs (where the energy may change

substantially), the normalized emittnace εn is used. The normalized emittance is related to

the geometric emittance defined Eq. (1.3) by εn = ε/(γβ), and gives a measure of the area

occupied in either the horizontal or vertical transverse phase spaces (x, px) or (y, py). While

there is no unique definition of emittance used in the literature [28], by far the most

common definition used is the rms emittance. To motivate the definition of this quantity,

the application of Liouville’s Theorem to charged particle beams is reviewed.

In general, the motion of electrons in the injector is (classical) Hamiltonian [28].

Subsequently, Liouville’s Theorem states that the probability distribution ρ6N describing an

ensemble of particle beams each occupying a point in the 6N-dimensional phase space

(x,p)×Nbeams is a constant of motion: dρ6N/dt = 0. Assuming the interactions among

particles in each beam of the ensemble can be approximated by average self-fields generated

by a continuous distribution of charge, the form of the Hamiltonian describing each beam

of the ensemble can be written as a sum over identical single particle Hamiltonians:

Hbeam =
∑

iHi. Consequently, the phase space required to describe the system reduces to

the 6D phase space of a single beam: (x,p)×Nparticles [33]. The single beam density

function in 6D phase space is then denoted ρ = ρ(x,p), and can be used to represent

the number of particles in a small 6D volume [28]: dN = Nρ(x,p)d3xd3p. As before,
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Liouville’s theorem implies dρ/dt = 0. Equivalently, the theorem states that the volume in

phase space occupied by the beam is a constant of motion.

If there is no coupling between the particle motion in each of the spacial dimensions,

then Liouville’s Theorem can be applied to the 2D phase spaces in the x, y, and z directions.

In this case, the area occupied by the beam in each coordinate phase space is an exact

constant of motion. Initially, these areas would seem like prime candidates for the definition

of emittance, and in fact many authors use a similar definition [28]. However, this definition

does not distinguish between “high quality” beams with “regularly” shaped phase space

areas, and ones where the occupied phase space area has become highly distorted in shape

due to nonlinear forces (such as space charge). Alternatively, a quantity which does provide

this distinction is the rms emittance:

εn,x =
1

mc

√
〈x2〉〈p2

x〉 − 〈xpx〉2. (1.6)

The various moments used here are defined by 〈...〉 =
∫

(...)ρx(x, px)dxdpx, where ρx is the

normalized particle distribution function in the x-px phase space. For a more detailed

description of the emittance please see Appendix A.

It is possible to show that the rms emittance is also an invariant of motion, provided

the forces acting on the beam are linear. Under this assumption, the map relating the

initial phase space coordinates of a particle in the beam to those at some later time t is

given by u(t) = M · u(0), where u = (x, px)
T , and the transfer matrix M is defined by

Mij = ∂ui(t)/∂uj(0). The fact that the beam’s phase space area is conserved implies

A(t) =

∫
final

dxdpx =

∫
initial

|det[M ]|dxdpx =

∫
initial

dxdpx = A(0), (1.7)

which implies det[M ] = 1. It should be noted that the fact that the the determinant of the

transfer matrix is equal to unity is a general consequence of Liouville’s theorem, and does
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not depend on the forces being linear. The emittance can be expressed as the square root of

the determinant of the matrix of second moments. This matrix is defined as

Σ =
1

(mc)2
〈uuT〉 =

1

(mc)2

(
〈x2〉 〈xpx〉
〈xpx〉 〈p2

x〉

)
. (1.8)

Using the definition of the transfer matrix, it is easy to show Σ(t) = MΣ(0)MT. Thus the

rms emittance at a given time t, and position along the accelerator z, is given by

ε2n,x(t, z) = det[Σ(t)] = det[MΣ(0)MT] = det[M ]det[Σ(0)]det[MT] = ε2n,x(0). (1.9)

The fundamental limit on the emittnace produced in a photoinjector is set by the

emittance at the cathode:

εn,x,y = σx,y

√
MTE

mc2
. (1.10)

In this expression, MTE is the mean transverse energy of the electrons as they are emitted

from the cathode and is an intrinsic property of the cathode material. The term σx,y stands

for the rms spot size of the laser beam on the cathode. Ideally this emittance would be a

constant of motion, however in practice there are many factors which can cause the

transverse emittances in a photoinector to grow. The most obvious cause of emittance

degradation comes from the violation of the assumption that the fields experienced by the

bunch are linear. Sources of non-linear fields include aberration fields from focusing

magnets, as well as space charge fields. To reduce aberration effects from magnetic optical

elements requires the design of high quality magnets as well as proper alignment of the

beam orbit through the resulting fields [34]. To reduce non-linear space charge effects, great

care is taken to shape the laser pulse so that the subsequent electron charge distribution

extracted from the cathode has predominantly linear self-fields [34, 35].

Assuming both aberration effects and nonlinear space charge fields are controlled, a

third source of emittance growth in injectors may be present if the transverse fields acting
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on the bunch have a longitudinal dependence along the bunch length. In order to picture

this effect, the bunch is sliced transversely at several positions along the direction of motion,

as shown in Fig. 1.6. When strong longitudinally dependent transverse forces act on each

slice of the bunch, a correlation in the orientation of the phase space area occupied by the

particles in each slice may develop. In this case, when these emittances are projected on top

of each other, the resulting projected emittance will be significantly larger than the

individual slice emittances which are generally on the order of the emittance value set at

the cathode. Fig. 1.6 shows how the emittance of different beam slices effect the total

projected emittance. Unfortunately, it is this projected emittance which is the quantity of

March 8, 2008 I.V. Bazarov, Electron Sources: Space Charge 3

Space charge

In a typical bunched beam from a gun, both charge and current 
density are functions of transverse & longitudinal coordinates. This 
makes space charge dominated behavior highly nonlinear.

For beam envelope equation we will assume that ! and Jz are 
independent of transverse coordinate and that the beam is not 
bunched (aspect ration << 1).

Figure 1.6: Profile of a sliced beam bunch and corresponding slice emittances. θx is the
divergence of the beam from the beam axis (left to the right): θx ≈ px/pz.

interest in insertion devices used to generate SR. Space charge forces (particular near the

cathode), and time-dependent RF forces both display longitudinal dependence along the

bunch length which produce larger projected emittance, and thus have to be compensated if

high quality beams are to be produced.

The mitigation of these effects, known as emittance compensation [29, 30], is of prime

importance in the design of photoinjectors. The effects of the space charge fields are highly

energy dependent. In fact, a straight forward calculcation shows that the (linear) transverse

force from a uniformly filled cylinder of charge scales with γ−3. Consequently, the effects of
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space charge are greatest when the beam has low energy. To counter this effect great effort

is taken to accelerate particles emitted from the cathode as rapidly as possible. It follows

directly that the accelerating field at the cathode, as well as the mean transverse energy

of the electrons emitted, fundamentally set the limit on the emittances produced in

photoinjectors, and thus determines the overall electron and photon beam quality in linac

based light sources.

1.3.1.1 NCRF Guns

Historically, it was the invention of NCRF guns [36] which solidified the position of

photoinjectors as one of the mainstays in the development of new accelerator projects [26].

As previously discussed, it is crucial to minimize the effect of self forces acting on a bunch,

particularly at low energies like those occurring right after the bunch is emitted from a

cathode. To do this requires supplying as large of an accelerating field as possible at the

time of emission. In general, the use of time-dependent fields allows the for a larger voltage

to be applied to the initial beam, as compared to DC fields [34]. In this regard, NCRF guns

provide the best performance, with accelerating fields of up to 115 MV/m at the cathode

having been demonstrated [37].

In terms of average beam power and high duty factor operation, the 433 MHz, 5 MeV

NCRF gun built by Boeing and Las Alamos National Laboratory shown in Fig. 1.8(a),

remains state-of-the-art to this day [38]. The accelerating gradient delivered at the cathode

for this machine was 26 MV/m. Bunches were produced at a 16th of the RF frequency (27

MHz) with a reduced duty factor of 25%. The demonstrated average current of 32 mA from

this machine held the world record for highest average current from a photoinjector from

1986 till until 2012 when the Cornell ERL DC photoinjector recently surpassed it [26, 39].
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guns are described in Section 5. The principle advantages
of this type of gun are the elimination of all RF field
asymmetries and complete freedom in the placement of the
emittance compensation solenoid. This gun has produced
excellent quality beams for the VUV-FEL at DESY in
Hamburg, Germany. Another approach to generating
symmetric fields is given in Section 6. In this gun design
for the SLAC/LCLS X-ray FEL, a rotationally symmetric
field is achieved with dual RF feeds and an elliptical cavity
shape. In Section 7, John Lewellen proposes a two-
frequency gun to limit the time for field emission from a
cathode stalk to a small portion of an RF cycle. In this way
he eliminates the need for a drive laser. Section 8 is the
summary.

2. State-of-the-art (D. H. Dowell, SLAC)

In terms of duty factor and average power operation, the
Boeing/LANL 433MHz gun remains the state-of-the-art.
This gun was fabricated in 1988–1989 [1] and tested at
high-average power from 1990–1992 up to 5MeV beam
energy [2]. In 1994–1996 it was incorporated into a higher
energy accelerator (20MeV) and was used as the electron
source in bunch compression experiments demonstrating
third-harmonic linearization of the longitudinal phase
space [3]. Fig. 1 shows a photograph taken from the
photocathode end of the gun. The cathode deposition
chamber is in the foreground with the large RF waveguide
feeds (black) connected at 451 (relative to vertical) to
independently power the two gun cells.

Table I lists the parameters for the 433MHz gun, which
were demonstrated during the 1992 high-duty test.
Unfortunately, the gun’s performance was severely limited

by poor vacuum which reduced the cathode lifetime to only
2–3 h [2]. This short lifetime was due to a vacuum leak from
the water-cooling channels into the gun as evidenced by the
large partial pressure of water.
The general configuration of this gun is given in Fig. 2. In

this design, the emittance compensation coil is embedded
(brazed) into the copper structure. This brazing distorted
the embedded coil producing a large dipole kick. This
dipole magnetic field was corrected using four permanent
magnets clocked at 901 around the coil [4]. After correcting
for the distortion, the rms emittance was measured to be
fairly good at [4.4+1.1*Q(nC)] microns. The general shape
of the gun cells can also be seen in Fig. 2. The re-entrant
design allowed the relatively high rf field of 25MV/m (peak)
to be reached at high-duty factor. This same re-entrant
shape for the nose cones is further optimized to reduce
thermal stress as described in Section 4.

3. The Los Alamos/AES CW NCRF gun (D. Nguyen,
LANL)

A key component of an energy recovery linac is a low-
emittance, high-average-current electron gun. The electron
beam’s average current (!1A) determines the electron
bunch charge (!1 nC) and bunch repetition rate (!1GHz).
The most straightforward approach to achieve low
emittance (!2mm-mrad) at 1 nC bunch charge is through
the use of the room-temperature RF photocathode gun.
These qualities have been achieved with RF guns operating
at low-duty factors. To date, a high-average-current RF
photocathode gun, operating continuously at 100% duty
factor, is yet to be demonstrated. The principal challenges
of a high-duty-factor normal-conducting RF gun are
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Fig. 1. Photograph of the Boeing/LANL 433MHz NCRF gun in the test vault.

D.H. Dowell et al. / Nuclear Instruments and Methods in Physics Research A 557 (2006) 61–6862

Figure 1.7: Photo of the Boeing/LANL NCRF gun.

One of the factors which limited the use of this gun was the poor vacuum created during

operation [38, 39].

For pulsed mode operation, NCRF guns represent the best option for producing

high-brightness beams [38]. The injector for the LCLS, as well as FLASH, makes use of a

pulsed mode NCRF gun. In this case, very large peak accelerating fields at the cathode

have been demonstrated: 115 MV/m for the LCLS and ∼ 60 MV/m for FLASH. It should

be noted though that these values are not the fields seen by the bunch at emission because

these guns must be run with an RF field phase offset. This results in a reduction of the

cathode field during emission by a factor of roughly 1/2− 2/3. These guns typically

operate at significantly lower duty rates (for example 120 Hz at the LCLS), which make

them unsuitable for use in an ERL.

Because of this limitation, as well as the effects of ohmic losses in the cavity walls, the

demonstration of a high average current NCRF injector operating at 100% duty factor has
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is just 2.5% with laser positioning feedback stabilization
switched on. The stability levels with feedback loops
switched off were not studied.

The laser oscillator synchronization is performed by
controlling a piezoelectric element which adjusts the
length of the mode-locked oscillator. This control is set
by a feedback circuit which measures the laser phase
relative to a 476-MHz reference signal from the low-level
rf system. The box functions as a phase detector and feed-
back amplifier, however its internal design is proprietary to
Femtolaser. The typical measured short-term ( < 1 min )
laser phase jitter is <0:2 ps rms (i.e., <0:2 degrees of S-
band) with respect to the rf reference phase. Slow phase
control of the laser is maintained by measuring the phase of
the 119-MHz mode-locked signal from the low-level rf
system. This phase is maintained by adjusting the phase
of the 476-MHz reference sent to the laser through a
software feedback loop.

IV. THE PHOTOCATHODE rf GUN

The LCLS photocathode rf gun has been described else-
where [4–6] and only its general features are summarized
here (see Fig. 5). The gun fields are fully rotationally
symmetric by incorporating dual feed (to eliminate dipole
fields) and a racetrack geometry (to cancel quadrupole
fields induced by the dual feed) for the full cell into which
the rf is coupled.

Since this gun is the sole electron source for the LCLS
user facility, it needs to operate reliably at the relatively
high repetition rate of 120 Hz as well as producing excep-
tional beam quality. This was done by making several
changes to the BNL/SLAC/UCLA gun design.

The gun was made more reliable by replacing the com-
monly used azimuth angle rf coupling with much larger
z-coupled ports running the full length of the cell. This
approach combined with careful design of the lip radii

greatly reduced the pulsed heating, which otherwise would
have limited gun lifetime. In addition, any field emission
from tuning slugs was eliminated by using deformation
tuners, which were not needed during the tuning process.
Finally, the shape of the iris between the two cells was
modified to reduce its surface fields below that of the
copper cathode (see Fig. 6).

The resulting cathode surface field is approximately
10% higher than the iris fields. With these modifications,
the gun was easily conditioned to 120 MV=m and 60 Hz
repetition rate. Conditioning at 120 Hz was limited to
107 MV=m due to excessive heating of the gun probes, a
limitation which will be corrected by the installation of
redesigned probes in early 2008. Therefore, to reduce any
risk of damaging the gun due to overheating of the probes,
it was decided to limit the repetition rate to 30 Hz and
115 MV=m during the 2007 commissioning run. As a
result, the gun operated nearly continuously at 30 Hz for
more than 3! 108 pulses from April 5 to August 24, 2007.

Another important innovation of the gun which im-
proved its beam quality was to greatly increase the fre-
quency separation of the 0-mode and !-mode. Previous S-
band guns had been built with 3.2-MHz separation, result-
ing in excitation of the undesired 0-mode by the low
frequency components of rf envelope waveform, allowing
it to beat against the !-mode. The presence of the 0-mode
increases the correlated energy spread and unbalances the
fields between the two cells during both transient and
steady state conditions [4,5]. Increasing the mode separa-
tion to 15 MHz greatly reduces excitation of the 0-mode,
giving a pure !-mode in the gun.

Also included in the injector design is a short, low-
energy spectrometer immediately after the gun at about
6 MeV (see Fig. 7). The gun rf phase and amplitude are

FIG. 5. (Color) The LCLS gun viewed from the cathode side
with dual rf feed, cathode flange, and focusing solenoid.

FIG. 6. (Color) The LCLS gun in cut-away view showing the
full and half cells with the cathode flange at right.
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(a) Photo of the LCLS NCRF gun.

is just 2.5% with laser positioning feedback stabilization
switched on. The stability levels with feedback loops
switched off were not studied.

The laser oscillator synchronization is performed by
controlling a piezoelectric element which adjusts the
length of the mode-locked oscillator. This control is set
by a feedback circuit which measures the laser phase
relative to a 476-MHz reference signal from the low-level
rf system. The box functions as a phase detector and feed-
back amplifier, however its internal design is proprietary to
Femtolaser. The typical measured short-term ( < 1 min )
laser phase jitter is <0:2 ps rms (i.e., <0:2 degrees of S-
band) with respect to the rf reference phase. Slow phase
control of the laser is maintained by measuring the phase of
the 119-MHz mode-locked signal from the low-level rf
system. This phase is maintained by adjusting the phase
of the 476-MHz reference sent to the laser through a
software feedback loop.

IV. THE PHOTOCATHODE rf GUN

The LCLS photocathode rf gun has been described else-
where [4–6] and only its general features are summarized
here (see Fig. 5). The gun fields are fully rotationally
symmetric by incorporating dual feed (to eliminate dipole
fields) and a racetrack geometry (to cancel quadrupole
fields induced by the dual feed) for the full cell into which
the rf is coupled.

Since this gun is the sole electron source for the LCLS
user facility, it needs to operate reliably at the relatively
high repetition rate of 120 Hz as well as producing excep-
tional beam quality. This was done by making several
changes to the BNL/SLAC/UCLA gun design.

The gun was made more reliable by replacing the com-
monly used azimuth angle rf coupling with much larger
z-coupled ports running the full length of the cell. This
approach combined with careful design of the lip radii

greatly reduced the pulsed heating, which otherwise would
have limited gun lifetime. In addition, any field emission
from tuning slugs was eliminated by using deformation
tuners, which were not needed during the tuning process.
Finally, the shape of the iris between the two cells was
modified to reduce its surface fields below that of the
copper cathode (see Fig. 6).

The resulting cathode surface field is approximately
10% higher than the iris fields. With these modifications,
the gun was easily conditioned to 120 MV=m and 60 Hz
repetition rate. Conditioning at 120 Hz was limited to
107 MV=m due to excessive heating of the gun probes, a
limitation which will be corrected by the installation of
redesigned probes in early 2008. Therefore, to reduce any
risk of damaging the gun due to overheating of the probes,
it was decided to limit the repetition rate to 30 Hz and
115 MV=m during the 2007 commissioning run. As a
result, the gun operated nearly continuously at 30 Hz for
more than 3! 108 pulses from April 5 to August 24, 2007.

Another important innovation of the gun which im-
proved its beam quality was to greatly increase the fre-
quency separation of the 0-mode and !-mode. Previous S-
band guns had been built with 3.2-MHz separation, result-
ing in excitation of the undesired 0-mode by the low
frequency components of rf envelope waveform, allowing
it to beat against the !-mode. The presence of the 0-mode
increases the correlated energy spread and unbalances the
fields between the two cells during both transient and
steady state conditions [4,5]. Increasing the mode separa-
tion to 15 MHz greatly reduces excitation of the 0-mode,
giving a pure !-mode in the gun.

Also included in the injector design is a short, low-
energy spectrometer immediately after the gun at about
6 MeV (see Fig. 7). The gun rf phase and amplitude are

FIG. 5. (Color) The LCLS gun viewed from the cathode side
with dual rf feed, cathode flange, and focusing solenoid.

FIG. 6. (Color) The LCLS gun in cut-away view showing the
full and half cells with the cathode flange at right.
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(b) Schematic of the LCLS NCRF gun.

Figure 1.8: Examples of a pulsed mode NCRF gun: the LCLS gun.

yet to be realized. A joint effort between Advanced Energy Systems (AES), and LANL has

led to the design of 700 MHz NCRF gun to test the feasibility of creating a NCRF source

capable of driving a high repetition rate ERL [38]. Unfortunately, the design of such a

machine requires the lowering of the field at the cathode to around 7 MV/m, which is

within the range of current DC guns [34, 38]. Additionally, scientists at Lawrence Berkeley

National Laboratory (LBNL) are currently working on the commissioning of a roughly

186 MHz NCRF gun with cathode fields on the order of 20 MV/m, though full current

operation of this machine has not been demonstrated [40].

1.3.1.2 DC Guns

Recent work started at Jefferson Lab and expanded at Cornell University has shown that

it is possible to achieve single bunch quality rivaling most NCRF guns, but at much

higher (GHz) repetition rates, using a high-voltage DC gun followed by immediately by

acceleration in by using a DC electron gun followed by acceleration with SRF cavities [34].

In general, DC guns offer significantly better vacuum then those found in NCRF guns
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(a) Schematic of the LANL NCRF gun.

around the world are actively working on alternative elec-
tron gun schemes and technologies to achieve the required
brightness at high repetition rates [14]. At the present
time, despite some promising results [15], none has dem-
onstrated the necessary set of requirements described in
Ref. [16].

The Advanced Photoinjector Experiment (APEX) [17]
at the Lawrence Berkeley National Laboratory is designed
to fill that gap by developing a gun and an injector capable
of the required performance. The gun, based on a novel
concept [18,19], has been fabricated and recently com-
pleted the first phase of its commissioning. All the per-
formance milestones included in this part of the project
were successfully achieved and this paper reports the
results of the related tests.

II. APEX, THE ADVANCED
PHOTOINJECTOR EXPERIMENT

APEX is an electron injector built around an rf photogun
designed to operate electron beams with parameters in the
range shown in Table I (even though operation of the gun
outside the specified ranges is quite possible). The core
of the gun is a NC copper rf cavity operating in continuous
wave (cw) mode in the VHF band at 186 MHz using
reliable and mature mechanical and rf technologies. The
frequency value is chosen to be close to either the 7th
subharmonic of 1.3 GHz or the 8th subharmonic of
1.5 GHz, making the gun operation compatible with both
of the main superconducting electron linac technologies
presently available [20,21].

Figure 1 shows a CAD cross section of the cavity with its
main components, and Table II contains the VHF gun main
design parameters selected to satisfy the requirements in
Table I and in Ref. [16]. The resonant copper structure
is surrounded by a stainless steel shell that ensures the
necessary mechanical rigidity and the proper vacuum

envelope. No sliding tuner is present and the required
frequency tuning is achieved by a mechanical system that
slightly pushes or pulls the cavity wall at the beam exit port
side. The rf power is supplied through two magnetic loop
couplers diametrically opposed on the cathode back wall
of the cavity. Figure 1 also shows the ‘‘bucking’’ solenoid
(imbedded into the cavity nosecone) used to cancel any
potential magnetic field at the cathode plane due to the
fringe field of the first solenoid in the downstream beam
line. A vacuum loadlock system, based on the Instituto
Nazionale di Fisica Nucleare (INFN) design [22] (used at
the FLASH and PITZ facilities in Germany) allows the
replacement and/or the in situ conditioning of photocath-
odes without breaking the vacuum in the gun.
More details on the gun can be found elsewhere [17–19];

here we want just to remark that the two major goals
targeted by the gun design are the cw operation, and the
low-vacuum performance (10!11–10!9 Torr) necessary to
operate with acceptable lifetime high quantum efficiency
(QE) semiconductor photocathodes sensitive to ion back
bombardment and contamination. Such cathodes are
required to generate the desired charge per bunch at high
repetition rate with the power available by present laser
technology.
The relatively low rf frequency choice for the VHF gun

has addressed both of these needs. The larger resonating
structure associated with the VHF frequency decreases the
power density on the cavity walls to a level small enough to

TABLE I. Expected VHF gun beam parameter range.

Parameter Value

Repetition rate Up to few MHz
Nominal beam energy (keV) 750
Charge per bunch (pC) "10–300
Normalized slice emittancea (!m) "0:2–0:6
Bunch length at the cathodea (flattop, ps) "5–50

aLarger values for larger charges/bunch.

FIG. 1. APEX VHF gun cross section with main components.

TABLE II. VHF gun main design parameters.

Parameter Value

Frequency (MHz) 186
Operation mode cw
Field @ cathode during emission (MV=m) 19.47
Ideal conductor quality factor, Q0 30900
Shunt impedance (M!) 6.5
Nominal rf power for Q0 (kW) 87.5
Stored energy (J) 2.3
Maximum surface field (MV=m) 24.1
Maximum wall power density (W=cm2) 25.0
Accelerating gap (cm) 4
Cavity inner diameter (cm) 69.4
Cavity length (cm) 35.0
Operating pressure (Torr) "10!11–10!9

F. SANNIBALE et al. Phys. Rev. ST Accel. Beams 15, 103501 (2012)
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(b) Schematic of the LBNL NCRF gun.

Figure 1.9: Examples of a cw mode NCRF guns.
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(a) Cornell University DC gun.

cause the break-down field for 500 kV at a general vacuum
gap is about 10 MV/m.22 With the reverse configuration, the
electric field has rather larger values, the maximum electric
field on the rod near the bottom end of the ceramic insulator
is 8.67 MV/m and the maximum electric field on the guard
rings is 13.9 MV/m. This configuration is suitable for sup-
pressing secondary electron emissions from the ceramic sur-
face triggered by x-rays emitted from the cathode and anode
electrodes, although the surface electric field is rather chal-
lenging. Maximum electric field near the nose of the support
rod is 14.3 MV/m with either configuration. The electric field
will be relaxed down to !10 MV /m after installation of the
cathode and anode electrodes for the beam operation.

The trajectories of field emitted electrons from the
support-rod electrode were calculated by GPT "Ref. 23# code.
The results of numerical calculations on the emitted electron
trajectories in the normal configuration are shown in Fig. 3.
As revealed in Fig. 3, the ceramic insulator gets shielded by
the guard-ring electrodes from any electrons emitted by the
support-rod electrode.

Electrical breakdown field between a metal gap depends
on the gap distance, material, and surface treatment of the
electrodes.22 It is also known that the breakdown field drops
strongly as the gap is increased, which is called the total-
voltage effect.24,25 In case of a small gap "!1 mm#, a sys-
tematic measurement of dark current between electrodes
made of stainless steel "SUS#, copper, molybdenum, and ti-
tanium revealed that a combination of molybdenum cathode
and titanium anode shows the highest breakdown field.26 It is
not clear that a large-gap system such as our 500-kV gun
follows the small-gap result. Nevertheless, we decided to use
titanium for the 500-kV gun for the positive result at a small-
gap system, low outgassing rate, and machinability. In the
500-kV gun, the support rod, the guard rings, the cathode
and anode electrodes, and the vacuum chamber were made of
titanium alloy with a special chemical polishing, which has
outgassing rate of 6"10−13 Pa m /s at 300 K after 20 h of
150 °C baking.27 This outgassing rate is 2–3 orders smaller
than that of a general SUS chamber.28 Ultrahigh vacuum is
important to keep a NEA surface of photocathode for long-
life operation.

Figure 4 schematically depicts the final design of the
500-kV gun, which consists of the segmented ceramic insu-
lator with the guard rings, the cathode and anode electrodes,
the support rod, and the vacuum chamber. A pressurized in-
sulating gas tank was designed to ensure that the high volt-
age circuit, output resistor, and ceramic insulator were all
positioned in a straight line. This configuration was utilized
to obtain an axially symmetrical field around the insulator
and the power supply. After air has been sufficiently evacu-
ated, SF6 is filled to a pressure of +0.2 MPa "gauge pres-
sure#. Figure 5 shows a schematic view of the gun and the
pressurized insulating gas tank, which contains the C-W gen-
erator, output resistor, and ceramic insulator.

III. HIGH-VOLTAGE TESTING

The 500-kV gun was assembled in the normal configu-
ration in a clean room to eliminate any dust contamination.
The ceramic insulator and the vacuum chamber were baked
at 190 °C for 8 h. After the baking, the chamber was
pumped down to a pressure lower than 3"10−8 Pa using
two turbo molecular pumps "pump speeds of 1.0 and
0.06 m3 /s# and a scroll pump "pump speed of 0.2 m3 /min#
connected in series.

The high-voltage conditioning was carried out with
maintaining the base pressure lower than 5"10−8 Pa. The
C-W generator was interlocked with the pressure and radia-
tion levels to prevent any excessive discharge during the
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FIG. 3. "Color online# Results of numerical calculations on the emitted
electron trajectories in the normal configuration.

FIG. 4. Schematic view of the 500-kV dc photocathode electron gun.

FIG. 5. Schematic view of the 500-kV dc photocathode electron gun to-
gether with the pressurized insulating gas tank.
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(b) JAEA/KEK DC gun.

Figure 1.10: Example high-voltage DC guns.

[26], allowing for a wider variety of photocathode materials to be explored. Several labs are

currently developing this gun techonology. Examples include, but are not limited to a the

375 kV gun at Jefferson lab, the 350 kV gun at Cornell, and recently a 500 kV gun at
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JAEA/KEK laboratory. Fig. 1.10 shows the schematics for the Cornell University and KEK

high-voltage DC guns.

Crucial to the performance of these types of machines is the quality and operational

integrity of the main ceramic insulator. In both the Jefferson Lab and Cornell guns, the

voltage and thus the field at the cathode are limited by the puncture of this ceramic,

likely due to field emission events. To overcome this problem, the gun designed and

constructed at KEK features a segmented ceramic insulator with metal guard rings to

project each insulator segment. Despite the limited voltage achieved, the Cornell gun has

recently been used to demonstrate the world record for the highest average beam current

from a photoinjector [26], as well as demonstrating record low emittances for DC based

photoinjectors with comparable bunch charge (described in Chapter §4) [41]. In addition

Cornell scientists are in the process of the fabrication and testing of a new gun featuring a

similar segmented insulator design as used in the KEK gun.

1.3.1.3 SRF Guns

In effort to combine the large fields at the cathode provided by NCRF guns, with the

excellent vacuum and high repetition rates possible in DC guns, several laboratories are

designing SRF guns. SRF gun technology is the most recent of all photoinjector types, with

the first electron beam created from an SRF gun being produced by the Forschungszentrum

Dresden-Rossendorf (FZD) 1.3 GHz SRF gun in 2002 [42]. Another notable example of an

SRF gun under development is the 703 MHz gun being designed and built as a joint

venture between AES and Brookhaven National Laboratory (BNL) shown in Fig. 1.11(b).

This machine is designed to produce very high currents (500 mA). In order to do so, an

excellent vacuum must be maintained, and extremely efficient photocathodes must be
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guns presently under development along with a list of their
respective design parameters.

III. NC CATHODE AND ELLIPTICAL CAVITY

Pioneering work in the development of elliptical SRF
injectors was mainly promoted by Dr. Dietmar Janssen.
Basically, three laboratories picked up this con-
cept: Forschungszentrum Dresden-Rossendorf (FZD),
Brookhaven National Laboratory (BNL), and Helmholtz-
Zentrum Berlin (HZB), and adapted it to their special beam
parameters requirements.

A. FZD 3.5 cell—1.3 GHz SRF gun

The development of the FZD SRF gun started in 1998.
In the year 2002 the development turned out to be suc-
cessful. The first ever electron beam was obtained from a
superconducting electron gun [5]. This prototype SRF
gun led to the present injector design for the electron
linear accelerator with high brilliance and low emittance
(ELBE linac). In the framework of collaboration between
Deutsche Elektronen-Synchrotron (DESY), FZD, Max-
Born-Institut (MBI), and HZB, a 3.5 cell TESLA shaped
cavity was built (Fig. 2). It was made from polycrystalline
bulk niobium with a residual resistance ratio of 300,
which is defined as the ratio of the electrical resistance
at room temperature to the electrical resistance at the
critical temperature.

The cathode insertion is designed to allow an easy
exchange and precise positioning of the Cs2Te cathodes.
Additionally, a resonant superconducting choke filter is
needed. It surrounds the cathode and prevents the rf power
from leaking out of the cavity. In this manner it works as a
bandpass filter. More information can be found in [4,10].
Two TESLA type HOM dampers and one 10 kW CW FZD
input coupler are attached to complete the design [11]. The
projected cavity parameters are summarized in Table I.

The cavity was fabricated by Research Instruments (RI
formerly ACCEL) and processed two times at DESYand at

RI, respectively. It turned out that caused by the narrow
cathode channel and the presence of the choke filter cell the
usual cleaning procedures applied at TESLA cells, i.e., the
buffered chemical polishing and the high pressure rinsing
are hampered for SRF gun cavities. For this reason, the
processing attempts were not as successful as expected.
The achieved peak field in the vertical test set at DESY was
limited by field emission to Epeak ¼ 23 MV=m at Q0 ¼
1" 1010. Details are published in [12,13]. To overcome
the cleaning issue, design modifications for the next gen-
eration gun cavity are considered [14].
Nevertheless, the commissioning phase of the gun

started in September 2007. The Q0 vs Epeak measurement
inside the cryomodule revealed an intrinsic quality factor
10 times lower than in former vertical tests. The achievable
peak field is again limited by strong field emission and total
helium consumption. In the following period, various mea-
surements, done under different conditions, have shown
that the performance keeps unchanged independent of
whether the cathode is inserted or not. On the other hand,
the gradient was improved by applying high power pulsed
rf processing in September 2008.
To this day, a stable CW operation up to Epeak ¼

18 MV=m corresponding to Pdiss ¼ 20 W dissipated he-
lium power is routinely establish (Fig. 3). As far as the
cathode is concerned, it was found that after a two year
operation of four different Cs2Te and two metal cathodes
(Cu, Mo), respectively, no performance degradation of the
cavity was observed.
During commissioning also measurements concerning

Lorentz force detuning, microphonics stimulation, helium
pressure sensitivity, in situ field distribution, and tuner
characteristics were done. None of those turned out to be
a show stopper. Details can be found elsewhere [15].

FIG. 2. 1.3 GHz—3.5 cells TESLA shaped FZD SRF gun
cavity.

FIG. 3. Intrinsic quality factor Q0 vs on-axis peak field
Epeak and the corresponding field emission dose for different

measurements.
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(a) Schematic of the 1.3 GHz FZD SRF gun.

new improved cavities are currently under fabrication and
preparation at Thomas Jefferson National Accelerator
Facility (TJNAF).

B. AES/BNL 703.75 MHz—0.5 cell SRF gun

Another very challenging project is running in the
framework of collaboration between BNL and Advanced
Energy Systems (AES). Since 2004 a superconducting rf
gun with several hundreds of milliampere is under develop-
ment. The gun is planned as an injector for the electron
cooler at Relativistic Heavy Ion Collider (RHIC), but it
offers also great potential for high-current injectors for
linac-driven megawatt-class FELs [8,9,19–21].

The RHIC version (Fig. 6) consists of a half cell super-
conducting cavity operating at 703.75 MHz, two high
power input couplers, a double quarter wave choke filter,
and a transfer mechanism for the electrically isolated and
LN2 cooled cathode. The beam pipe diameter is increased

to a cutoff frequency above the lowest higher order mode in
order to use ferrite HOM dampers. The cavity specifica-
tions are summarized in Table I.
The main challenge in this development is the demand

on high beam current (500 mA) and a bunch charge up to
5 nC. For this reason, much effort has been put into the
cathode R&D to achieve high QE cathodes with long
operational lifetime. Promising results are obtained using
CsK2Sb [22]. This alkali antimonide provides a current
density of 1:3 mA=mm2. In addition, a QE of 12% at
532 nm and even 30% at 355 nm are possible using a
sequential deposition technique (Fig. 7).
The vacuum required for long time storage of the cath-

odes has to be in the order of 10!10 mbar. Substantial
progress has also been reported in the field of diamond
amplified cathodes. An emission gain of 40 and a current
density of 20 mA=mm2 were measured [23]. The high-
current emission mode, the emission profile, and the elec-
tron affinity are the next properties to be investigated.

FIG. 5. HOM spectra of both HOM couplers and total channel power of dominant HOM frequencies, measured at a beam current of
500 nA and a bunch charge of 120 pC, respectively.

FIG. 6. 703.75 MHz—half cell BNL/AES cavity. Courtesy of
Gary McIntyre, BNL.
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FIG. 7. Spectral response of CsK2Sb BNL cathodes, measured
at room temperature. Courtesy of John Smedley, BNL.
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(b) Schematic of the 703 MHz AES-BNL SRF gun.

Figure 1.11: Example SRF guns.

developed. Additionally, two input power couplers capable of delivering 500 kW of power to

the gun must be demonstrated. This program has made great strides toward demonstrating

the principles of this design, though no beam running has been demonstrated yet [42].

While the use of superconducting technology significantly lowers the ohmic losses in the

cavity walls, several design challenges remain in demonstrating the viability of these

sources. One of the fundamental challenges facing these machines is the introduction of the

photocathode into the SRF cyro-environment. This leads to multipacting and vacuum

concerns. Other issues include, but are not limited too, the design of high power input

couplers, and in particular, minimizing the kicks to the beams generated by asymetric fields

in the coupler lines, and controlling the production of higher-order modes (HOMs) which

are produced in high quality cavities.

1.4 Overview

Having described the motivation behind the development and construction of fourth

generation linac based light sources such as FELs and ERLs, as well as the basic physics
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in the electron injectors used to drive these machines, we now turn to the three main

contributions to the field of photoinjectors presented in this work. These contributions take

the form of the remaining three chapters. The first two chapters deal with theoretical and

computational considerations dealing with the transport of low energy beams through RF

fields. Chapter §2 gives a semi-analytic approach to computing the linear transfer matrix

through combined cylindrically symmetric RF and solenoid fields. The resulting analytic

matrix for a small integration step clearly demonstrates the physics of single particle motion

in these fields and correctly maintains the symplecticity arising from the Hamiltonian nature

of this motion. These results are relevant to any combined RF and solenoid field set-up,

and can be used to simulate linear dynamics in DC guns, NCRF guns, and SRF guns.

Chapter §3 gives a complete method for creating realistic 3D RF cavity field maps

which include the time-dependent focusing of coaxial input power couplers. The method

detailed in this chapter extends previous results so that coupler focusing can be quantified

and simulated for non-relativistic beam energies, thus making it of particular relevance to

RF gun and injector design and simulation.

Finally, Chapter §4 gives the results of a detailed investigation of the six dimensional

electron beam phase space in the Cornell ERL injector prototype. Incorporating the results

of Chapters §2 and§3, a complete simulation model of the injector was constructed, verified

by measurement, and optimized. The results of the direct measurements of the tranverse

vertical and horizontal phase spaces, the time-resolved phase space, and the energy spread

of the beam are given and compared to simulation. Overall, excellent agreement was found

between measurement and simulation. These results set a new record for low emittances in

a DC photoinjector for comparable bunch charges, and represent a milestone in the

advancement of DC based high-brightness photoinjectors.
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CHAPTER 2
A New Method for Generating Linear Transfer

Matrices through Combined RF and Solenoid Fields

Originally published as: C. Gulliford and I. Bazarov, Phys. Rev. ST Accel. Beams 15,

024002 (2012) [43].

2.1 Abstract

We present a new method for computing the transverse transfer matrix for superimposed

axisymmetric RF and solenoid field maps. The algorithm constructs the transfer matrix

directly from one-dimensional RF and solenoid field maps without computing numerical

derivatives or eigenfunction expansions of the field map data. In addition, this method

accurately describes the dynamics of low energy particles starting from a solenoid-immersed

cathode, allowing the method to simulate transport through both RF and electrostatic guns.

Comparison of particle tracking with the transfer matrix, and direct integration of the

equations of motion through several field set-ups, shows excellent agreement between the

two methods.
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2.2 Introduction

Linear transfer matrices continue to serve as important simulation tools in the design,

commissioning, and operation of modern accelerators. Common examples of their use

include the computation of linear centroid motion, beam-based alignment of optical

elements, and orbit feedback. In addition, they feature prominently in the theory of

round-to-flat beam transforms in RF and DC guns [44, 45], and are used for emittance

measurements for beams without space charge [46]. Because of this utility, analytic

expressions for the transfer matrix through many beam line elements, such as magnets with

constant fields, are well known and are widely used. In contrast to these simple elements,

the fields of many beam line elements in modern accelerators have no analytic form

and may overlap each other. For example, in high brightness electron sources, solenoid

fields used for emittance compensation may overlap the accelerating fields at or near the

cathode. To properly describe the dynamics in these machines, the transfer matrix through

superimposed RF and solenoid fields must be constructed. In general, to model these

elements, one must use numerically computed electromagnetic field maps. Unfortunately,

no closed form solutions for the transfer matrix through such elements exist.

Nonetheless, a significant amount of work has gone into developing both semi-analytic

and numerical techniques to compute these matrices. In general, these techniques require

some form of manipulation of the field map data and often have a limited range of

validity. For example, the widely used RF transfer matrix given by Rozensweig and

Serafini [47] requires a Floquet expansion of the on-axis RF field map, and is only valid for

ultra-relativistic particles. Other methods expand the field map data in terms of the the

general solution to the homogeneous Maxwell equations in cylindrical coordinates [48, 49].

From this expansion, the vector potential can be computed, allowing the Hamiltonian for
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the overlapping solenoid and RF fields to be constructed. When combined with differential

and Lie algebra techniques, this method is quite powerful and can be used to generate

arbitrary order maps. Despite this, it requires significant overhead in setting up, and it may

not be suitable for online modeling purposes. A simpler solution has been put forth in [50].

In this approach, the particle energy and RF fields are assumed constant over a small time

step. The second order linear transverse equations of motion can then be solved ‘exactly,’

and the transfer matrix for the time step constructed. While this method works well for

relativistic particles, it does have several draw backs. First, the assumption that the energy

is constant requires extremely small time steps for very low energy particles like those

emitted from a photocathode. Second, the determinant of the resulting transfer matrix is

only correct to first order in the step size. Another simple approach is given in [51, 52], and

makes use of the “Equivalent Field” concept. While this method guarantees the correct

determinant of the transfer matrix, it assumes a constant velocity over each integration

step and is therefore not valid for very low particle energies. Alternatively, one can also

compute the transfer matrix elements from the equations of motion directly using numerical

integration [53]. In general, this requires computing numerical derivatives of the field maps

(or differentiating orbits). Additionally, in order to properly capture the dynamics of

the problem, some care must be taken to ensure the integrator used truly maintains

symplecticity [54].

To our knowledge, there is currently no simple, inherently symplectic method of

computing the transfer matrix directly from superimposed RF and solenoid field maps for

low particle energies. Because no analytic solution for the transfer matrix through the field

of an entire RF cavity or solenoid exists, any attempt at constructing a simple algorithm for

low energy dynamics will require multiple steps. Given the availability of numerical

integrators, any new algorithm must satisfy the following three requirements in order to be
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useful: (i) using reasonable step sizes, the method should be able to describe the low energy

dynamics found in RF or DC guns; (ii) the method should generate matrices with the

correct determinant, regardless of the step size; and (iii) the method for constructing the

transfer matrix should be easy to implement. Based on a new analytic solution to the

equations of motion, we derive a transfer matrix algorithm with all three of these qualities.

The layout of this work is as follows. First, the longitudinal equations of motion are

solved for a single small step in the independent variable. Then, the transfer matrix over

the same step is derived for electrostatic and solenoid fields. Building on this result, the

matrix for combined RF and solenoid fields is computed. This matrix is then tested with

tracking through a DC gun, a superconducting RF cavity and a RF gun with a solenoid

immersed cathode. Excellent agreement between the transfer matrix and direct integration

of the equations of motion is demonstrated in all three cases.

2.3 Notation and the Equations of Motion

In this section the variables, notation, and the equations of motion used throughout this

work are defined. In general, both standing and traveling wave RF fields can be written in

the complex form E = Ẽ(x, y, z)eiωt and B = B̃(x, y, z)eiωt. In these and all subsequent

expression, tildes are used to denote phasor quantities. The coordinate system for the fields

is set up so that the z-axis points along the length of the beamline. The functions Ẽ and B̃

represent the field maps generated by RF cavity field solvers and include the initial phase

offset of the cavity. For notational simplicity, the phase factor eiωt and the real symbol

Re[...] are suppressed in all but the final results for the transfer matrix. To derive the linear

equations of motion, the fields are expanded to first order in the transverse offsets x and y.
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The linearized RF fields take the form

Ẽ(x, y, z) = −x
2

(
dẼz
dz

)
x̂− y

2

(
dẼz
dz

)
ŷ + Ẽz(r = 0)ẑ,

B̃(x, y, z) = −y
2

(
iω

c2

)
Ẽzx̂ +

x

2

(
iω

c2

)
Ẽzŷ. (2.1)

Similarly, the expansion of the solenoid field gives

Bsol = −x
2

(
dBz

dz

)
x̂− y

2

(
dBz

dz

)
ŷ +Bz(r = 0)ẑ. (2.2)

Note that the solenoid field is distinguished from the RF magnetic field by the lack of a

tilde. The total physical fields are given by Etot = Re[Ẽeiωt] and Btot = Re[B̃eiωt] + Bsol.

For the single particle equations of motion, the longitudinal coordinate z is used as the

independent variable. Derivatives with respect to z are denoted with a prime: f ′ ≡ df/dz.

The equations of motion for the longitudinal phase space variables t and γ are

t′ =
1

β(z)c
, γ̃′(z) =

eẼz
mc2

= Ẽz/Ee, γ′ = Re[γ̃′eiωt]. (2.3)

Here the constant Ee = mc2/e gives the (signed) rest energy of the electron in [eV]. The

normalized energy is given by γ = Re[γ̃eiωt]. The transverse equations of motion can be

written as [28, 55]:

x′′ +
p′

p
x′ +

(
γẼ ′z

2Eep2
+
iωγ̃′

2cp

)
x+ 2∆θ′Ly

′ −
(
cB′z
2Eep

)
y = 0, (2.4)

y′′ +
p′

p
y′ +

(
γẼ ′z

2Eep2
+
iωγ̃′

2cp

)
y − 2∆θ′Lx

′ +

(
cB′z
2Eep

)
x = 0. (2.5)

In this expression, p = βγ is the normalized reference particle momentum, and ∆θL is the

Larmor angle, defined by

∆θL(z) = −
∫ z

zi

cBz

2Eep
dz, ∆θ′L = − cBz

2Eep
. (2.6)
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Note the use of a negative sign in front of the integral. With this definition, a positive

solenoid field creates a positive change in the Larmor angle for electrons. Decoupling these

equations requires rotating to the Larmor frame. By defining the variable η = x+ iy, the

transformation to Larmor coordinates takes the form [55]:

ηL(z) = xL + iyL = ηe−i∆θL(z). (2.7)

The equivalent transformation for the transverse phase space vector u = (x x′ y y′)T is

defined by 
xL

x′L

yL

y′L

 =


C 0 S 0

−∆θ′LS C ∆θ′LC S

−S 0 C 0

−∆θ′LC −S −∆θ′LS C




x

x′

y

y′

 . (2.8)

In this and following expressions, C ≡ cos ∆θL, and S ≡ sin ∆θL. The matrix in this

equation is denoted by L = L(∆θL,∆θ
′
L). It is easy to show that the determinant of this

matrix is equal to unity. Another important characteristic of this matrix is found by taking

the limit as z → zi. In this limit, ∆θL → 0, and the matrix reduces to

L(0,∆θ′L(zi)) =


1 0 0 0

0 1 ∆θ′L(zi) 0

0 0 1 0

−∆θ′L(zi) 0 0 1

 . (2.9)

The two remaining focusing terms describe the effect of starting a particle with Bz(zi) 6= 0,

the so-called “immersed cathode” condition.

Substituting the transformation in Eq. (2.7) into Eqs. (2.4) and (2.5) gives the transverse

equation of motion for the Larmor coordinates:

η′′L +
p′

p
η′L +

(
γẼ ′z

2Eep2
+
iωγ̃′

2cp
+ (∆θ′L)2

)
ηL = 0. (2.10)
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In this expression ηL stands for either xL and yL. Because the transformation between

the laboratory and Larmor coordinates is known, all that remains is solving the above

differential equation. With this solution, the transfer matrix for the lab phase space variables

follows directly: M(zi → zf ) = L−1(zf )ML(zi → zf )L(zi). Consequently, the majority of

this work is spent finding an exact solution to Eq. (2.10) within the approximation that the

fields are constant over a small step in z. Because all of the following derivations are carried

out in the Larmor frame, the subscript ‘L’ on the transverse variables is suppressed in the

remainder of this work.

2.4 Derivation of the Transfer Matrix

As stated before, general solutions to the differential equations in Eqs. (2.3), (2.6), and

(2.10), do not exist for arbitrary cavity and solenoid fields. As a result, any method for

computing the transfer matrix analytically requires some form of approximation to these

equations. The approach taken in this work is to find an exact solution to the equations of

motion for a step in z and t that is small enough so that the field profiles Ẽz(z) and B̃z(z),

as well as the RF phase, don’t change appreciably. The solution is exact in the sense that

the particle energy changes correctly over the course of the step. The change in the field

map profile as well as the RF phase are then included with the use of edge-focusing

matrices. Slicing the field maps and consecutively multiplying the matrices for each step

gives the total transfer matrix:

M(zi → zf ) ≈
∏
k

∆M(zk → zk + ∆z). (2.11)

The first step in constructing the transfer matrix for one step is to solve the longitudinal
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equations of motion in Eq. (2.3). To do so the electric and magnetic fields are assumed

constant and equal to their average value over the step from zi to zf :

Ez(z) ∼= 〈Ez〉, Bz(z) ∼= 〈Bz〉. (2.12)

For a constant electric field, γ′ ∼= 〈Ez〉/Ee is constant, and the normalized energy, momentum,

and velocity are given by

γ(z) = γi + γ′(z − zi), p(z) =
√

(γi + γ′(z − zi))2 − 1, β(z) = p(z)/γ(z). (2.13)

Using these expressions, the derivatives of t(z) and ∆θL(z) in Eqs. (2.3) and (2.6) can be

directly integrated:

t(z) =
1

cγ′
[p(z)− pi], (2.14)

∆θL(z) =

(
b

γ′

)
ln

(
p(z) + γ(z)

pi + γi

)
. (2.15)

In the last line, the constant b is the normalized solenoid field defined as b = p ·∆θ′L =

−e〈Bz〉/2mc [56] . Note that the expression for time given here is essentially the same as

Eq. (7) in [31]. For simplicity and speed, we take the average values here to be equal to the

fields evaluated at the midpoint of the step. In addition to defining the transformation

between the lab and Larmor coordinates, the function ∆θL plays an important role in the

derivation of the transfer matrix for both the electrostatic and RF field cases.

2.4.1 Overlapping Electrostatic and Solenoid Fields

The derivation of the transfer matrix for superimposed RF and solenoid fields is based in

part on the method used to derive the transfer matrix for static fields [46]. In this section,

a detailed derivation of the static field result is given. The same techniques are then
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modified and used to derive the RF matrix in the following section. For static fields, the

equation of motion is found by taking ω → 0 in Eq. (2.10):

η′′ +
p′

p
η′ +

(
γE ′z

2Eep2
+ (∆θ′L)2

)
η = 0. (2.16)

Note that p′ ∝ 〈Ez〉 and ∆θ′L ∝ 〈Bz〉 in this expression, implying η depends on both the

accelerating field and its gradient, as well as the solenoid field. The transfer matrix from zi

to zf = zi + ∆z is derived in a three-step process. Over the interval [zi, zf ], the electric and

magnetic fields are approximated as rectangular step functions. Formally the fields are

written as:

Ez(z) ∼= 〈Ez〉 {θ(z − zi)− θ(z − zf )} , E ′z ∼= 〈Ez〉 {δ(z − zi)− δ(z − zf )} ,

Bz(z) ∼= 〈Bz〉 {θ(z − zi)− θ(z − zf )} , B′z
∼= 〈Bz〉 {δ(z − zi)− δ(z − zf )} ,

where θ(z) is the Heaviside step function, and δ(z) is the Dirac delta function. The transfer

matrix is then found by solving the transverse equation of motion piecewise from zi to zf .

First, the equations of motion are integrated across the rising edge of the electric field at

zi. Because the rising edge is approximated as an instantaneous step, the particle’s position

does not change: η(z+
i ) = η(z−i ) = η(zi). Integrating the equation of motion gives the kick

delivered to the particle’s trajectory [47, 56]:

∆η′ = −
∫ zi+ε

zi−ε

{
p′

p
η′ +

(
γE ′z

2Eep2
+ (∆θ′L)2

)
η

}
dz

= −
∫ zi+ε

zi−ε

〈Ez〉
2γβ2Ee

η(z)δ(z − zi)dz

= − γ′

2γiβ2
i

η(zi).

The corresponding transfer matrix for the rising edge, RE, takes the form

RE(γ, γ′) =

(
1 0

− γ′

2γβ2 1

)
.
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Next, the equation of motion is solved across the interval (zi, zf), where both the

electric and magnetic field are approximately constant. In this region, the equation of

motion reduces to

η′′ +
γ′

γβ2
η′ + (∆θ′L)2η = 0, (2.17)

where ∆θ′L(z) ∝ 1/p(z). With the electric field held constant, γ, p, β, and ∆θL are given

by Eqs. (2.13) and (2.15). With these functions, the differential equation can be solved by

assuming η = η(∆θL). Plugging this into Eq. (2.17) gives

(∆θ′L)2

[
d2η

dθ2
L

+ η

]
+

dη

dθL

[
∆θ′′L +

γ′

γβ2
∆θ′L

]
= 0. (2.18)

Using Eq. (2.15), it is possible to show ∆θ′′ = −γ′∆θ′/γβ2, canceling the second term in

the above equation. Assuming ∆θ′ 6= 0, the first term in this expression must also vanish.

It follows that: η = A cos ∆θL +B sin ∆θL. Completing the initial value problem for this

solution determines the transfer matrix for the step from zi to zf :

Mi→f =

(
C pi

b
S

− b
pf
S pi

pf
C

)
. (2.19)

In this and following expressions, C ≡ cos (∆θL(z)), and S ≡ sin (∆θL(z)).

The last step in constructing the full matrix for the interval [zi, zf ] is to evaluate the

transfer matrix for the falling edge of the accelerating field. The result is essentially the

same as before, except now the derivative of the electric field has the opposite sign. This

allows the transfer matrix for the falling edge to be written as

R−1
E (γ, γ′) =

(
1 0
γ′

2γβ2 1

)
. (2.20)

Combining the three matrices for each region gives the full transfer matrix for the step ∆z:

∆Mdc
x,x′ = R−1

E (γf , γ
′)Mi→fRE(γi, γ

′)

=

 1 0
γ′

2γfβ
2
f

1

( C pi
b
S

− b
pf
S pi

pf
C

)(
1 0

− γ′

2γiβ2
i

1

)
. (2.21)
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One important thing to note about the matrix in Eq. (2.21) is that it has the correct

determinant for the phase space variables chosen: det(∆Mdc
x,x′) = pi/pf . The transfer

matrix for the canonical phase space variables xL and px,L can be found by applying the

transformation:

∆Mdc
x,px =

(
1 0

0 pf

)
∆Mdc

x,x′

(
1 0

0 1/pi

)
. (2.22)

It follows from this expression that the matrix ∆Mdc
x,px satisfies the symplectic condition

det(∆Mdc
x,px) = 1. In addition to this, the transfer matrix also has the convenient feature

that the derivative of the accelerating field never has to be calculated, bypassing the need to

compute derivatives numerically. It is important to note that the rising-edge matrix should

not be included in Eq. (2.21) when the electric field is nonzero at the initial position of the

reference particle. Including the edge matrix in this case is equivalent to a particle seeing

the field rise from zero to the actual value at the initial reference position. For particles

starting from a cathode, this is not physical. Similarly, the falling edge matrix should not

be included when tracking of the reference particle stops in a region of nonzero electric field.

2.4.2 Overlapping RF and Solenoid Fields

With the results for the electrostatic field determined, it is now possible to construct the

transfer matrix for RF fields. The approximation used here is similar to that used in the

electrostatic case: the field profiles Ẽz and Bz, as well as the RF phase, are assumed

constant over the step ∆z. This implies γ̃(z, t) is also constant, allowing the solutions to

the longitudinal equations of motion in Eq. (2.13) to be used. Over the interval (zi, zf ), the

general equation of motion in Eq. (2.10) reduces to

η′′ +
γ̃′

γβ2
η′ +

(
iωγ̃′

2cp
+ (∆θ′L)2

)
η = 0. (2.23)
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Because the RF magnetic focusing term proportional to ω scales as p−1 and not p−2 ∝ (∆θ′L)2,

the solution to the equation of motion used in the electrostatic case is no longer valid. In the

constant field and phase approximation, this term introduces a square root of a quadratic in

z into the equation of motion: p−1 = [(γi + γ′∆z)2 − 1]
−1/2

. The presence of this factor

makes this equation difficult to solve. To our knowledge no analytic solution exists.

In order to proceed, the RF magnetic focusing term must be removed from Eq. (2.23).

Changing variables to reduced coordinates, defined by η̂ =
√
βγη, provides a clue as to how

to remove this term. To see this requires transforming the general equation of motion in

Eq. (2.10) first, and then making the constant field and phase approximation. The general

equation of motion for the reduced variables is [55, 56]:

η̂′′ +

[
(γ̃′)2(γ2 + 2)

4(γ2 − 1)2
− iωγ̃′

2cp3
+ (∆θ′L)2

]
η̂ = 0. (2.24)

Unfortunately, the RF magnetic focusing term, now proportional to p−3, still contains a

square root in the denominator, and the reduced equation of motion does not have an

analytic solution. It is important to note, however, that switching to the reduced variables

effectively removes the RF electric contribution (the term proportional to E ′z) to the

focusing function [56]. This implies that a similar variable transformation can be used to

eliminate the RF magnetic focusing term. It turns out that such a transformation is

possible, and requires switching the independent variable from longitudinal position to time.

Doing so yields the equivalent equation of motion:

η̈ +
˙̃γ

γ
η̇ +

[
c2Ẽ ′z
2γEe

+ cβ
iωγ̃′

2γ
+ (∆θ̇L)2

]
η = 0. (2.25)

Next, the coordinates are transformed to the new reduced variables defined by η̄ =
√
γη. In

matrix form, this transformation is written as(
η̄

˙̄η

)
= ΛT

(
η

η′

)
, T (β) =

(
1 0

0 cβ

)
, Λ(γ, ˙̃γ) =

√
γ

(
1 0
˙̃γ

2γ
1

)
. (2.26)
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As before, the equation of motion for the reduced variables takes the form of Hill’s equation:

¨̄η +

[
ṗ2(p2 − 2)

4(p2 + 1)2
+

c2Ẽ ′z
2γ3Ee

+ (∆θ̇L)2

]
η̄ = 0. (2.27)

Comparing Eqs. (2.24), and (2.27) shows that switching the independent variable and using

the new reduced coordinates effectively exchanges the roles of the functions γ and p.

Additionally, switching between the two sets of reduced coordinates allows one to choose

which of the two RF focusing terms to hide in the variable transformation.

With the new definition of the reduced coordinates, all that remains now is to solve

Eq. (2.27) in the region where the solenoid and accelerating fields are constant. This

requires knowing the functions p(t) and γ(t). The momentum is easily found by rearranging

Eq. (2.14): p(t) = pi+cγ
′(t−ti). The normalized energy is then given by γ(t) =

√
p2(t) + 1.

Inserting these expressions into the equations of motion in the constant field region yields:

¨̄η +

[
(cγ̃′)2(p2 − 2)

4(p2 + 1)2
+

(bc)2

p2 + 1

]
η̄ = 0. (2.28)

Note that by approximating the fields as constant after changing variables, the RF electric

focusing term proportional to Ẽ ′zγ−3 in Eq. (2.27) is set to zero in the transformed equation

of motion. This eliminates the presence of any square roots in the resulting focusing

function, and effectively breaks the normal equivalence between using the two sets of

independent variables and reduced coordinates.

Eq. (2.28) can be solved with the function η̄ =
√
γ(A cos ∆θL + B sin ∆θL). The

transfer matrix is found by completing the initial value problem for this solution. The

resulting matrix can be written in the compact form

M̄ rf
i→f = Λ(γf , ˙̃γf )T (βf )M

dc
i→fT

−1(βi)Λ
−1(γi, ˙̃γ). (2.29)

In this expression ˙̃γf = cβf γ̃
′. The matrix in Eq. (2.29) correctly describes the evolution
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of the reduced variables. In order to get the transfer matrix for the usual phase space

variables, it must be transformed back:

M rf
i→f = T−1(βf )Λ

−1(γf , ˙̃γfe
iω∆t)Λ(γf , ˙̃γf )T (βf )M

dc
i→f . (2.30)

It is clear from this expression that the effects of the RF magnetic focusing must be

contained in the matrices left multiplying Mdc
i→f . Combining these matrices together gives

Rrf = T−1(β)Λ−1(γ, ˙̃γeiω∆t)Λ(γ, ˙̃γ)T (β) =

(
1 0

γ̃′

2γ
(1− eiω∆t) 1

)
. (2.31)

In the limit that ∆t = t− ti is small, this matrix reduces to

Rrf ≈
(

1 0

− iωγ̃′

2cpi
∆z 1

)
. (2.32)

From equation Eq. (2.10), it is clear that this is nothing but a thin lens approximation to

the focusing delivered by the RF magnetic field. The complete matrix for the step ∆z is

found by including the effects of the field edges. The effect of adding the time dependence

to the edge matrices is minimal; the rising edge matrix remains the same. For the falling

edge matrix, the change in the RF phase is included in the electric field: γ̃′f = γ̃′eiω∆t.

Adding the edge matrices to Eq. (2.30) gives

∆M rf
x,x′ = R−1

E

(
γf , γ̃

′eiω∆t
)
Rrf(γf , γ̃

′, eiω∆t)Mdc
i→fRE(γi, γ̃

′)

=

 1 0
Re[γ̃′eiω(ti+∆t)]

2γfβ
2
f

1

( 1 0
1

2γf
Re[γ̃′(1− eiω∆t)eiωti ] 1

)
× ...

...×
(

C pi
b
S

− b
pf
S pi

pf
C

)(
1 0

−Re[γ̃′eiωti ]

2γiβ2
i

1

)
. (2.33)

This is the main result of this work. As a reminder, γ̃′ = eẼz(zi)/mc2, where Ẽz is the

complex electric field map. Additionally, the expressions for γ, p, and ∆t can be found in

Eqs. (2.13-2.15), respectively. For clarity we leave the result in the above factorized matrix
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form. This allows several limiting cases to be easily evaluated. First, in the limit that both

the RF and solenoid fields vanish, b, γ̃′ → 0, and Eq. (2.33) reduces to a drift matrix. For

vanishing RF fields, γ̃′ → 0, and Eq. (2.33) reduces to a hard edge solenoid matrix. In the

limit that ω → 0, Rrf reduces to I2×2, and the total RF matrix reduces to the previous

electrostatic result in Eq. (2.21). In addition to having the correct limiting behavior, the RF

transfer matrix also has the correct determinant: det[∆M rf
x,x′ ] = det[∆Mdc

x,x′ ] = pi/pf . This

follows directly from the fact that det[Rrf ] = 1. The factorized matrix form in Eq. (2.33)

also clearly demonstrates the dynamics of a step through overlapped RF and solenoid fields:

focusing from the change in the accelerating field, rotation from the solenoid, compression

from acceleration, as well as focusing from the RF magnetic field. Additionally, because the

analytic form depends only on the reference trajectory defined by t(z), γ(z), ∆θL(z), and

the field maps at the same position, these quantities do not have to be computed using Eqs.

(2.13-2.15). This allows one to construct a transfer matrix directly from the reference and

field data output from any simulation code if desired.

2.5 Testing the Transfer Matrix

To test the validity of our approach, the energy gain and transfer matrix are calculated

through three different field set-ups and compared to direct integration of the equations of

motion using a fourth order Runge-Kutta algorithm. The three field set-ups used are a DC

gun with overlapping solenoid, a SRF cavity, and a RF gun with a solenoid-immersed

cathode. To check that the transfer matrix correctly describes the transverse dynamics in

each case, all four transfer matrix elements are compared with Runge-Kutta integration.

To do so, the two principle trajectories through each field set-up are computed. These
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trajectories are defined by the initial phase space coordinates u = (1 mm, 0)T , and

u = (0, 1 mrad)T .

Table 2.1: Simulation Parameters

Parameter DC gun & Solenoid RF Cavity RF gun & Solenoid

Voltage 500 kV 3 MV 1 MV

Phase 0 deg 0 deg (on-crest) 0 deg (on-crest)

Max Bsol 0.04 T N/A 0.04 T

KE(z = zi) 1eV 1 MeV 1 eV

Step Size Type fixed fixed adaptable

Step Size 1 mm 2 mm 0.1 mm (avg.)

For the first simulation, we use the field maps for the the high voltage DC gun and first

emittance compensation solenoid of the Cornell ERL injector prototype. Fig. 2.1(a) shows

the field maps corresponding to gun voltage and solenoid field strength given in Table

2.1. Fig 2.1(b) shows how the energy gain computed from the constant field solution in

Eq. (2.13) compares with the energy gain computed using Runge-Kutta integration. The

step size used for the constant field solution is 1 mm. The agreement between the two

methods demonstrates that the constant field solution works very well for the longitudinal

variables, even for low initial kinetic energies. Fig. 2.2 shows the results of tracking the

principle trajectories using both the RF transfer matrix with ω = 0, and Runge-Kutta

integration. As with longitudinal variables, the agreement between both methods of

tracking is excellent. In addition to these results, the expression for the electrostatic

transfer matrix has been experimentally verified in [46]. Next, the two principle trajectories

are computed through the field map of the 1.3 GHz Cornell ERL injector SRF cavity.

Fig. 2.3(a) shows the on-axis electric field map of the SRF cavity model with a 3 MV cavity

voltage. The corresponding energy gain through the cavity, computed using the constant

field solution and Runge-Kutta integration, are shown in Fig. 2.3(b). The results of
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(a) Field maps for the DC gun and solenoid.
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(b) Energy gain through the DC gun.

Figure 2.1: The fields and energy gain for a 500 kV gun voltage, 0.04 T maximum solenoid
field setting, and 1 eV initial kinetic energy.

tracking the two principle trajectories through the cavity, with a fixed step size of 2 mm,

are shown in Fig 2.4. As in the electrostatic case, the agreement is very good. Finally, the

principle trajectories are computed through the RF gun set-up. To simulate an RF gun, the

last 1.5 cells of the injector cavity field map are used. The solenoid field is positioned so

that the maximum value of the solenoid field occurs at the cathode. In order to make sure

that the RF phase is constant over each step, a simple adaptive step size algorithm is

included. This algorithm adjusts the step size so that the change in RF phase over the step

is less than a user-defined tolerance. Fig. 2.5(a) shows field maps for the RF gun set-up.

The corresponding energy gain through the gun is shown in Fig. 2.5(b). The accelerating

field is scaled so that the RF cavity voltage is 1 MV and the phase is set for maximum

acceleration. The tracking results for the two principle trajectories are shown in Fig. 2.6.

From the figure, it is clear that that the transfer matrix works well in the low energy case.

The average step size for the simulation was roughly ∆z = 0.1 mm.
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Figure 2.2: Comparison of Runge-Kutta integration (blue) and the tracking using the transfer
matrix (green) through the DC gun and solenoid fields.
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(a) SRF cavity field map.
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(b) Energy gain through the SRF cavity.

Figure 2.3: The field map for the SRF injector cavity and the corresponding energy gain. The
cavity voltage is 3 MV, the initial kinetic energy is 1 MeV, and the phase is
on-crest.
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Figure 2.4: Comparison of direct integration (blue) and tracking using the transfer matrix
(green) of the two principle trajectories.
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(b) Energy gain through the RF gun.

Figure 2.5: The fields and energy gain. The cavity field is scaled and rotated so that the cavity
voltage is 1 MV, and the phase is set to the on-crest value for a 1 MeV electron.
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Figure 2.6: Comparison of direct integration (blue) and tracking using the transfer matrix
(green) of the two principle trajectories.

2.6 Conclusion

We have derived and tested a new method for calculating the 4× 4 transfer matrix through

superimposed RF and solenoid fields. The algorithm computes the transfer matrix directly

from the field data without computing eigenfunction expansions or numerical derivatives.

Comparison with numerical integration demonstrates that this new method works for low

energy beams starting from a solenoid immersed cathode. Additionally, because the

algorithm relies on analytic solutions to the equations of motion, it is simple to implement

and guarantees the correct value for the determinant of the transfer matrix. One limitation

to this approach is the assumption (inherent in the derivation) that the fields display

cylindrical symmetry. For many applications this is a reasonable assumption; however,

previous work shows that asymmetric focusing from input power couplers may be noticeable
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when heavy beam loading is present [54]. In addition, when tracking ultra-relativistic

particles, the algorithm takes steps typically on the order of a few millimeters, and therefore

may not be the best choice for computational speed. In this case, one may still choose to

use the Rosenzweig-Serafini matrix. Nonetheless, the matrix algorithm given here strikes an

appropriate balance between accuracy, speed, and simplicity not previously achieved.
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CHAPTER 3
Study of the Asymmetric Focusing from Twin Input

Power Couplers Using Realistic RF Cavity Field

Maps

Originally published as: C. Gulliford, I. Bazarov, S. Belomestnykh, and V. Shemelin,

Phys. Rev. ST Accel. Beams 14, 032002 (2011) [54].

3.1 Abstract

Advanced simulation codes now exist that can self-consistently solve Maxwell’s equations

for the combined system of an RF cavity and a beam bunch. While these simulations are

important for a complete understanding of the beam dynamics in RF cavities, they require

significant time and computing power. These techniques are therefore not readily included

in real time simulations useful to the beam physicist during beam operations. Thus, there

exists a need for a simplified algorithm which simulates realistic cavity fields significantly

faster than self-consistent codes, while still incorporating enough of the necessary physics to

ensure accurate beam dynamics computation. To this end, we establish a procedure for

producing realistic field maps using lossless cavity eigenmode field solvers. This algorithm

incorporates all relevant cavity design and operating parameters, including beam loading

from a non-relativistic beam. The algorithm is then used to investigate the asymmetric
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quadrupole-like focusing produced by the input couplers of the Cornell ERL injector cavity

for a variety of beam and operating parameters.

3.2 Introduction

The effects on the beam dynamics due to the placement of both the input power couplers

and HOM couplers of superconducting radio-frequency cavities in linear accelerators have

been studied extensively. The majority of this work focuses on the transverse momentum

imparted to the beam due to a single input power coupler or a pair of up- and downstream

HOM couplers [57–59]. Many mitigation techniques for eliminating this ‘coupler kick’ have

been proposed and studied for a variety of cavity geometries, including the TESLA-style

ILC cavity, the CEBAF cavities [60], as well as the injector and main linac cavities

for the proposed Cornel ERL [61–64]. One of these techniques is to design the cavity

with twin symmetric power couplers. This approach has been used in the design for the

cavities in the current Cornell ERL injector prototype, a high-brightness photoelectron

source. While this effectively eliminates the dipole coupler kick, it still produces off-axis

quadrupole-like focusing near the couplers. Developing a way to correctly model this effect

in heavily beam-loaded super-conducting cavities like those found in high current electron

accelerators–particularly high brightness photoinjectors and RF guns (where the beam may

not be considered ultra-relativistic)–is the goal of this investigation.

The layout of our work is as follows. First, drawing on previous studies [57–64], a

detailed description of how to compute realistic field maps for RF cavities using lossless

eigenmode solvers is given. This method incorporates all relevant cavity design and

operating parameters. These include the cavity voltage, phase, detuning angle, input

coupling, and beam loading. While the basis of this method has been previously developed,
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to our knowledge there is no single comprehensive account of this procedure in the literature.

Additionally, for non-relativistic beams, this treatment yields implicit expressions for

the cavity fields. In order to extend the algorithm to account for low beam energies,

approximations for computing the effective cavity voltage and R/Q of the cavity are given

and tested. The use of these approximations results in explicit expressions for the cavity

fields. Next, the definition of the coupler kick is also extended to the non-relativistic regime

by explicitly writing the effect in terms of the transfer matrix elements through the cavity

field map. We provide one description of how to compute these matrices using orbit

differentiation [53], and also give a simple method for expanding the cavity fields in the

paraxial approximation assuming symmetry about the x-z and y-z planes (quadrupole-like

symmetry). Having extended the algorithm for computing the cavity fields as well as the

effect of the input couplers, we perform several checks on both and discuss the relevant

numerical issues involved. Finally, we apply this methodology to the model of the Cornell

ERL injector cavities and quantify the quadrupole focusing effect due to the use of twin

symmetric input couplers. The effect is documented for scans of both the initial beam

energy and the average beam current, and for both orientations of the cavity (the couplers

at the cavity entrance vs. exit).

3.3 Field Generation Algorithm

The computation of RF cavity fields can be greatly simplified by making one assumption:

the effects of beam loading do not alter the form of the fields in the cavity. In this limit, the

beam induces a voltage in the cavity in one of its fundamental modes. This assumption is

valid if the amount of energy lost to each bunch, ∆Ub, is very small compared to the energy
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stored in the cavity:

∆Ub
U
� 1. (3.1)

In this limit, it is possible to create realistic fields from lossless eigenmode solvers. The

procedure for synthesizing these field maps involves reconstructing the forward and reflected

traveling waves in the input power coupler(s). The proper normalization and phase of these

waves are related to the cavity design and operating conditions. By correctly including the

operating conditions, the combined traveling waves in the input coupler represent the

forward power from the RF generator and the reflected power back out of the cavity.

Proper construction of these waves ensures the correct form for the fields in the cavity.

3.3.1 The Cornell ERL Injector Cavity Model

Before moving directly to the procedure for constructing realistic cavity fields, it is

instructive to give a brief description of the Cornell ERL injector cavity as it is used as a

working example in following sections. The Cornell ERL photoinjector cryomodule houses

five superconducting two-cell niobium RF cavities. The relevant design and nominal

operating parameters for the injector cavities are listed in Table 3.1 [61]. Each cavity is

powered by two symmetric coaxial input couplers. The couplers are designed to deliver 50

kW of forward power when operating with 100 mA average current at a cavity voltage of 1

MV. The amount of coupling to the cavity can be adjusted depending on the desired

operating conditions (low or high current running). This is accomplished by changing the

insertion depth of the coupler antennae. To model the cavities we use the eigenmode field

solver in CST Microwave Studio (MWS) [65]. Fig. 3.1 shows the 3D injector cavity model

used in MWS. The model assumes the cavity is made of perfectly conducting material

surrounded by vacuum. The ends of the beam line are terminated by using an electric short
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Cornell ERL Injector Cavity Parameters

Frequency 1300 MHz

Number of Cells 2 Elliptical

Number of Couplers 2 Coaxial

Cavity Gap Voltage 1-3 MV

Quality Factor Q0 ≥ 5× 109

External Q-Factor Qext 4.6× 104 − 4.1× 105

Coupler Radii ri, ro 11, 30 mm

Table 3.1: List of Cavity Parameters.
CST MICROWAVE STUDIO 10/26/2010  - 16:10

File: C:\Documents and Settings\gullifoc\Desktop\Colwyn_MWS\ic_0_167_ebc.cst

CST MICROWAVE STUDIO 10/26/2010  - 16:11

File: C:\Documents and Settings\gullifoc\Desktop\Colwyn_MWS\ic_0_167_ebc.cstFigure 3.1: Microwave Studio model of ERL Injector Cavity showing the cavity exterior (left),
and the cavity cross-section and the inner conductors of the coaxial power couplers
(right).

(E‖ = 0). The choice of boundary condition for the end of the coaxial power couplers is

discussed later. The coordinate system in the model is defined so that z-axis in the model

coincides with the beam axis (the positive direction is to the right in Fig. 3.1) and the

y-axis is parallel to the center axis of the twin symmetric input couplers.
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3.3.2 Creating Traveling Waves in the Coaxial Coupler Line

3.3.2.1 Analytic Expressions

To create the correct fields in the power coupler, it is necessary to derive analytic formulas

for the fields in this region. Far from the end of the coupler and cavity, the fields take the

form of two superimposed TEM traveling waves. We assume no other types of modes are

excited in the coupler. In this region the fields are given by:

Ẽ± =
A±
r

exp [i(±k(y − y0) + φ±)] r̂,

B̃± = ∓A±
cr

exp [i(±k(y − y0) + φ±)] θ̂,

Here the ‘+’ and ‘−’ subscripts label the forward and reflected waves in the top coupler

(positive y-axis). The tilde denotes that these quantities are phasors with an associated

time dependence of eiωt. The location of the origin along the y-axis, y0, is arbitrary. The

forward and reflected power determine the amplitudes of each wave:

A± =

√
µ0cP±

π ln(ro/ri)
, A− =

√
P−
P+

A+, (3.2)

The terms ro and ri are the outer and inner radius of the coaxial coupler. The reflection

coefficient Γ is defined by the complex ratio of amplitudes of Ẽ− and Ẽ+:

Γ =

(
Ẽ−

Ẽ+

)
y=y0

=
A−
A+

ei∆φ = |Γ|eiφΓ . (3.3)

From this it follows that A− = |Γ|A+, and ∆φ = φ− − φ+ = φΓ.

3.3.2.2 Circuit Model and Relation to Operating Parameters

In addition to being related to the operating parameters, the forward and reflected power

also satisfy the general formula for the conservation of energy in the cavity-beam system:

P+ = P− + Pc + Pb. (3.4)
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In this equation Pc is the power lost in the cavity walls, and Pb is the average power

delivered to the beam. Satisfying the balance of powers in this equation provides one useful

check for the algorithm described below. From these quantities, the well known quality

factors for the cavity are defined [66, 67]:

Q0 =
ωU

Pc
, Qext =

ωU

Pext

, Qb =
ωU

Pb
. (3.5)

The term Pext is the power emitted back out of the input couplers when the cavity is

operated with both the beam and power generator turned off: Pb = P+ = 0. In this

limit, Pext = P−. The quality factor associated with the power lost to the beam can be

written as Qb = 2π(∆Ub/U)−1. The criterium in Eq. (3.1) is equivalent to having a large

value of Qb. Lastly, the measure of the coupling strength, denoted by β, is defined as

β = Pext/Pc = Q0/Qext.

The above quantities can now be related to the operating conditions using transmission

line theory and the equivalent circuit model for a beam loaded cavity first given by Wilson

[66]. The notation used here more closely follows that of Wangler [68] in a similar treatment.

Fig. 3.2 shows the equivalent parallel circuit for the cavity and waveguide including beam

loading. The waveguide is modeled as a matched external load coupled to the cavity

circuit via a transformer. In the figure, the waveguide impedance ZWG has already been

transformed into the cavity circuit. The effective voltage drop across the cavity is defined in

terms of the energy gain of an electron traveling through the cavity on axis:

Vc(φ0) =
[∆W (φ0)/e]

cosφ0

.

The phase φ0 is defined so that φ0 = 0 is the phase that maximizes the energy gain

∆W (φ0 = 0) = max(∆W ). In addition, the sign of φ0 is chosen so that it also represents

the difference in phase of the cavity voltage to the beam current. The cavity gap voltage is

defined by taking the ultra-relativistic limit of the effective cavity voltage: Vc → V0 as
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Vc

ZWG

(= R/β)

ig ib

C LR

Figure 3.2: Equivalent circuit model for a beam-loaded cavity as seen from the internal cavity
circuit. The cavity is excited by the generator current ig and the beam current ib.

v → c. The maximum effective voltage is used, along with the power lost in the cavity

walls, Pc, to define the effective shunt impedance:

R =
V 2
c

Pc
(φ0 = 0).

It is often useful to work with the ratio of the effective shunt impedance and the intrinsic

quality factor:

(R/Q) ≡ R

Q0

=
V 2
c

ωU
(φ0 = 0). (3.6)

Finally, the loaded detuning parameter is defined as

tanψ′ = 2QL

(
∆ω

ω

)
. (3.7)

Here ∆ω is the difference between generator frequency and the resonant frequency of the

cavity, and QL = Q0/(1 + β) is the loaded quality factor. For strongly coupled cavities

QL ≈ Qext.

In terms of these definitions, the complex impedance of the cavity is given by [66]

Zc =
(R/Q)Q0

1 + i tanψ′
. (3.8)

This impedance is in parallel to the beam impedance Zb = (Vc/Ib)e
iφ0 . This amounts to

having a total admittance of

Y =
1

Zb
+

1

Zc
=
Ib
Vc
e−iφ0 +

1 + i tanψ′

(R/Q)Q0

. (3.9)
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From the circuit, the waveguide impedance is given by ZWG = R/β. The general formula

for the reflection coefficient can be written as

Γ =
V−
V+

=
1− Y · ZWG

1 + Y · ZWG

. (3.10)

Substituting in the total admittance and the waveguide impedance yields

Γ = −
1−β
1+β

+ Ib
Vc

(R/Q)QLe
−iφ0 + i tanψ′

1 + Ib
Vc

(R/Q)QLe−iφ0 + i tanψ′
.

Using the fact that Vc = V+ + V− and the above expression for Γ, the forward and reflected

powers can be solved for:

P+ = Pc
(β + 1)2

4β
×

... ×
[(

1 +
Ib
Vc

(
R

Q

)
QL cosφ0

)2

+

(
tanψ′ − Ib

Vc

(
R

Q

)
QL sinφ0

)2
]
, (3.11)

P− = Pc
(β + 1)2

4β
× ...

... ×
[(

1− β
1 + β

+
Ib
Vc

(
R

Q

)
QL cosφ0

)2

+

(
tanψ′ − Ib

Vc

(
R

Q

)
QL sinφ0

)2
]
.

The formula for P+ is equivalent to the formula for the generator power Pg in [66]. With

these expressions for the forward and reflected power, it is easy to directly verify the

relationships in Eqs. (3.2) and (3.3), as well as the conservation of energy requirement in

Eq. (3.4).

It should be noted that any parameters defined in terms of the energy gain of a single

particle through the cavity, ∆W , are in fact functions of the fields we are trying to

construct. This is due to the fact that the energy gain is not in general given simply

by V0 cosφ0 in the non-relativistic limit. This issue will be further addressed after the

equations for the realistic field maps have been (implicitly) defined.
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3.3.2.3 Connection to Eigenmode Solutions

Having connected the analytic expressions for the fields in the coaxial coupler line to the

cavity design and operating parameters, we now connect the analytic expressions to the

solutions from the eigenmode solver. To re-create traveling waves in the coaxial coupler line

of the forms given in Eq. (3.2), two sets of electric and magnetic fields are generated

[57–59, 61–64]. Each set is created by terminating the input coupler line in the computer

model with either an electric or magnetic wall boundary condition. The field solutions in

the coaxial line near the boundary will then be of the form

Electric Wall

{
Ee = Ae

r
sin(k(y − yBC))r̂

Be = i · Ae

cr
cos(k(y − yBC))θ̂

(3.12)

Magnetic Wall

{
Em = Am

r
cos(k(y − yBC))r̂

Bm = −i · Am

cr
sin(k(y − yBC))θ̂

(3.13)

where yBC is the position of the coupler boundary condition. It is now easy to identify these

terms with the real and imaginary components of the fields given by the eigenmode solver:

Electric Wall

{
Re[Ee

MWS] = Ae

r
sin(k(y − yBC))r̂

µ0Im[He
MWS] = Ae

cr
cos(k(y − yBC))θ̂

(3.14)

Magnetic Wall

{
Re[Em

MWS] = Am

r
cos(k(y − yBC))r̂

µ0Im[Hm
MWS] = −Am

cr
sin(k(y − yBC))θ̂

(3.15)

From here it is evident that adding ±λ/4 to the line length of the electric wall solutions

transforms the fields into those produced using the magnetic wall condition (up to an

overall sign). With these relations, the MWS field maps are added together in the following

manner to yield the plane waves given in Eq. (3.2). First, the amplitudes are solved for in

terms of the field maps:

Ae = a · µ0c · Im[He
MWS](r = a, y = yBC) · θ̂,

Am = a · Re[Em
MWS](r = a, y = yBC) · r̂,
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for some arbitrary radius a such that ri ≤ a ≤ ro. It turns out that the field generation

algorithm is quite sensitive to the calculation of these amplitudes, as will be discussed later.

The fields are normalized and combined to form traveling waves using:

Ẽ± = A±

[
Re[Em

MWS]

Am
± iRe[Ee

MWS]

Ae

]
eiφ± , (3.16)

B̃± = iµ0A±

[
Im[Hm

MWS]

Am
± iIm[He

MWS]

Ae

]
eiφ± ,

φ± = ±k(yBC − yref) + φΓ(1∓ 1)/2.

Note the inclusion of the factor exp[±ik(yBC − yref)]. This is used to shift the origin of the

traveling waves. The position yref is the location of the reference plane, the point where the

maximum in the amplitude of the electric fields occurs when the reflection coefficient Γ is

positive and real. The next section gives the procedure for how to compute the position of

reference plane. It is easy to show using the analytic expressions for the field patterns in

Eq. (3.15) that this combination of fields yields the correct set of traveling waves in the

coaxial line. Plugging in the expressions for the forward and reflected waves, the total fields

can be written as

Ẽ = A

[(
1 + Γe−i(2k∆y)

) Re[Em
MWS]

Am
+ i
(
1− Γe−i(2k∆y)

) Re[Ee
MWS]

Ae

]
,

B̃ = iµ0A

[(
1 + Γe−i(2k∆y)

) Im[Hm
MWS]

Am
+ i
(
1− Γe−i(2k∆y)

) Im[He
MWS]

Ae

]
. (3.17)

In these equations ∆y = yBC − yref . These equations imply several important facts, all of

which depend on the value of the reflection coefficient Γ. First, if the cavity is run under

perfectly matched conditions, Γ = 0, and the resulting fields are independent of the position

of the reference plane. Physically this is due to the fact that when Γ vanishes, only an

incoming traveling wave exists in the input coupler, for which there is no reference plane.

The above equations also show that there are only two critical values of Γ for which

the equations for the fields reduce to one of the two eigenmode solutions (either the
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electric or magnetic solutions). These occur when the reflection coefficient is given by

Γ± = ± exp[i(2k∆y)]. In general these two critical values are complex and therefore not of

interest when simulating cavities under normal operation (where reactive beam loading is

compensated using cavity detuning and the reflection coefficient is real). Thus, in general,

to correctly model the fields near the couplers, one must use both eigenmode solutions.

3.3.2.4 Finding the Reference Plane

The position of the reference plane is related to the phase of the reflection coefficient Γ. This

is seen by computing the amplitude function of the total electric field in the coaxial line:

|Ẽ+ + Ẽ−| =
1

r

√
A2

+ + A2
− + 2A+A− cos(2k(y − yref)− φΓ).

The reference plane is defined as the position of the maximum of this function when the

reflection coefficient Γ is real and positive . If Γ has some non-zero phase then the position

of the maximum in this function shifts by ∆y = (φΓ/4π)λ.

It is possible to compute yref using several solutions from lossless eigenmode solvers [67].

When simulating the cavity fields using the eigenmode solver, there is no effect from a

beam: Ib = 0. In this limit, the reflection coefficient for a real cavity becomes

Γ =

β−1
β+1
− i tanψ′

1 + i tanψ′
.

For strongly coupled cavities (β � 1), this quantity is positive and close to unity when the

cavity is run on resonance. If the cavity is tuned very far from resonance then ψ′ → ±π/2.

In this limit Γ→ −1, and φΓ → ±π. This implies that the amplitude maximum will shift

by ∆y = ±λ/4. Thus, if one can simulate the lossless cavity model being detuned, then the

position of the reference plane can be computed. This is accomplished by terminating the

coupler with an electric (or magnetic) wall at several different positions. In general MWS
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Figure 3.3: Frequency of 0- and π-modes in coupler region vs. coupler length.

will produce two modes of interest with frequencies near the actual operating frequency ω

of the real RF system. The coupler and the cavity regions in the model form a pair of

coupled oscillators. Consequently there will be two modes of oscillation: one with the fields

in both regions oscillating in phase together, and another where the fields in the two regions

oscillate out of phase. We call these modes the zero and π modes of the cavity-coupler

system. These labels do not correspond to the zero and π resonant modes of the cavity

itself, the latter of which is considered the normal mode of operation for the two cell

cavities in the Cornell ERL injector. Fig. 3.3 shows the results of varying the position of

the electric wall condition and plotting the zero and π modes of the global cavity-coupler

system. In the region where the two mode frequencies nearly intersect, the ratio of the

magnitudes of the fields in the coupler region to those in the cavity region is a maximum.

In terms of a real cavity, this corresponds to tuning the cavity far from resonance. This

means that the reference plane is then ±λ/4 from this position:

yref = yoff
BC ±

λ

4
. (3.18)
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Figure 3.4: Radial electric field generated by combining the forward and reflected waves for
Γ = 1 and t = 0 sec. The fields are evaluated so that the radial field in the coupler
is given by Ez (V/m) in that region.

Here yoff
BC is the position of the boundary condition when the cavity is simulated off

resonance. Setting the boundary condition to this value makes it difficult to identify the

cavity π mode, which has a resonant frequency of 1300 MHz in the case of the Cornell

injector cavity. This can be seen in Fig. 3.3. The two modes plotted here have frequencies

which deviate from 1300 MHz when y = yoff
BC. If the boundary position is moved by ±λ/4

then, according to Eq. (3.15), when one switches from the electric to magnetic wall, this

will be equivalent to running the simulation with an electric wall at yoff
BC. One must then

place the boundary in between yoff
BC and yoff

BC + λ/4. As long as the boundary condition

is not near these points and the coupler length is large enough to accommodate the

TEM mode, the position of the boundary condition does not matter. Fig. 3.4 shows this

invariance of the radial electric fields in the coaxial input coupler at t = 0. The fields shown

are the combined forward and reflected traveling waves for the case where Γ = 1. In this

plot, the boundary condition has been varied from yoff
BC + (2/32)λ to yoff

BC + (6/32)λ. In the

figure, the two fields with the shortest coupler length show the greatest difference from the
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rest of the fields created, as is expected. This does not invalidate the assumption that the

position of the boundary condition is invariant within yoff
BC and yoff

BC + λ/4, but provides the

first indication that it may be necessary to add on length to the coupler in units of λ/2 to

ensure the proper standing wave pattern is achieved near the boundary condition. This fact

is addressed later on when we give a systematic check of the field generation algorithm.

3.3.2.5 Computing R/Q, Vc, and Qext

Having now defined all of the relevant cavity design and operation parameters, and given

the procedure for constructing the cavity fields assuming all of these parameters are

known, it is now time to address the problem discussed in previous sections that many of

the operating conditions depend on the computed energy gain through the fields. This

means that the fields have actually been implicitly defined in terms of themselves. In this

section we resolve this issue. In addition we also briefly describe a convenient method for

computing the external quality factor [63].

Because the injector cavities are designed to have large Qext values, the fields in the

cavity cells are standing waves. This fact can be used to compute approximate values for

the cavity voltage Vc and R/Q. The quantities are defined as

Vc =
[∆W (φ0)/e]

cosφ0

, R/Q =
[max(∆W/e)]2

ωU
.

The total energy stored in the fields can be approximated by noting:

U =
ε0
2

∫
cavity

|E|2dV ∼= ε0
2

∫
cells

|E|2dV,

assuming the cavity is not run far off resonance. This approximation is valid because the
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majority of the energy stored in the fields is found in the cavity cells. This means that this

quantity can be approximated by

U ∼= ε0
2

∫
cells

|αmEm|2dV = α2
m [Joule],

since the standing wave field pattern in the cavity cells should be roughly the same as the

standing wave from the MWS eigenmode solver. Here αm is a scaling factor used to

normalize the fields to the correct voltage. This can be easily computed by tracking particles

through the on-axis field Em
z (r = 0). The above equation makes use of the fact that MWS

normalizes the energy in its solutions to 1 J. The solution Ee could also be used. Similarly,

∆W (φi) ∼= e

∫
Re[αmE

m
z (r = 0)ei(ωt(z)+φi)]dz,

with the initial phase offset φi ∈ [0, 2π]. We define φoff so that ∆W (φoff) = max(∆W (φi)).

The effective cavity voltage and R/Q are then explicitly given by

Vc ∼=
1

cosφ0

∫
Re[αmE

m
z (r = 0)ei(ωt+φoff+φ0)]dz,

R/Q ∼= 1

ωα2
m

[∫
Re[αmE

m
z (r = 0)ei(ωt+φoff)]dz

]2

.

Fig. 3.5 shows the results of computing the on-axis energy gain as a function of initial phase

of the cavity through both the realistic fields, computed with the algorithm described

above (light blue line), and the fields generated by Microwave Studio using a magnetic

wall boundary condition (dark blue line). For this scan, the initial kinetic energy of the

beam KEi = 1 MeV, the speed-of-light cavity voltage V0 = 1 MV, the average beam

current Ib = 100 mA, the phase offset of the cavity φ0 = 30 deg (red line), Q0 = 1010,

Qext = 4× 104, and the reactive beam loading is compensated. The green line shows the

computed value of ∆W = eVc cosφ0, which intersects the graph at the correct point. It is

apparent that the energy gain of both sets of fields is the same, verifying the assumptions

made for the computation of ∆W and R/Q.
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Figure 3.5: Checking the energy gain approximation scheme.

The last quantity to compute before constructing the realistic cavity fields is Qext.

Several methods for computing Qext from two eigenmode solutions have been previously

proposed [67, 69]. We use a method prescribed by Buckley and Hoffstaetter [63]. This

method generally assumes one input coupler, but is easily modified for the case of several

identical input couplers. Assume the cavity has been excited by a generator to some voltage

and the generator then switched off. After some time, only waves traveling out of the cavity

will be present, and the fields E− and B− can be used to compute Qext. First, the stored

energy in the cavity is computed:

U =
ε0
2

∫
|E−|2dV =

ε0
2

(
A−
Ae

)2 ∫ (
ξ2|Em|2 + |Ee|2

)
dV,

where ξ = Ae/Am. The integrals over the electric fields are known. Microwave Studio

normalizes the integrals over each set of fields to one joule. Thus the total energy stored in

the cavity is U = (A−/A
e)2(ξ2 + 1). The power flowing out of the coupler(s) is given by

P− = π
µ0c
A2
− ln(ro/ri). Combining these expressions gives

Qext =

[
1

2

](
ξ2 + 1

ξ2

)(
k

πε0

)
1 Joule

(Am)2 ln(ro/ri)
.
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In this equation k = ω/c. The factor of 1/2 in brackets is included for the case of the twin

symmetric couplers used in the Cornell injector cavity model. If the normalization of the

fields is different (or not known), the factor ξ2 + 1 becomes ξ2Um + U e, which can still be

computed directly from the eigenmode fields. The realistic fields can now be computed:

first Vc, R/Q, and Qext are computed using the above expressions. With these quantities

and the rest of the operating conditions, the forward and reflected power P±, and the

reflection coefficient Γ are computed. Then, using Eqs. (3.16) and (3.17), the cavity fields

are constructed. The new fields can be used to recompute Vc and the process iterated until

the field profiles converge to a unique result. In the cases studied in this work, at most two

iterations were needed.

3.4 RF Coupler Kicks

3.4.1 Generalizing the Definition of the Coupler Kick

To quantify the effect of the input power couplers on the linear beam dynamics of the

cavity model, we generalize the formulas for the normalized momentum change in cavity.

This is done by first examining the ‘coupler kick’, as defined in the literature, and its

connection to the momentum change in the cavity. This leads to a natural generalization of

the momentum change in terms of the transfer matrix elements through the cavity.

The normalized coupler kick, as defined by Dohlus [58], is to linear order

k(x, y) =
V(x, y)

ez ·V(0, 0)
=


vx,0 + vx,xx+ vx,yy

vy,0 + vy,xx+ vy,yy

1 + vz,xx+ vz,yy

 ,
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where the complex voltage gain V(x, y) is defined as

V(x, y) =

∫
(Ẽ + cez × B̃)ei(ωz/c)dz.

Note that this definition assumes an ultra-relativistic and therefore rigid beam. The

coefficients vx,0 and vy,0 quantify any voltage change (normalized to the on-axis voltage

gain) due to dipole-like fields. In general any structure that breaks the cylindrical symmetry

of the cavity may contribute to these terms. The remaining coefficients quantify both the

focusing due to the cavity and the focusing due to the input and HOM couplers. The

normalized voltage change can be directly used to compute the momentum kick imparted to

a particle traversing the cavity:

∆p =
(e
c

)
Re
[
k(x, y)ei(ωs/c)

]
Vacc.

Here s denotes the position of a particle with respect to the center of the beam.

The formula for the momentum change can now be generalized by allowing the

transverse and longitudinal offset of particles moving through the cavity to vary. In this

case, the momentum change can still be related to the initial particle offset from the

reference particle, using the transfer matrix elements:

∆p(s) =


∆px,0 +Mpx,xx0 +Mpx,yy0

∆py,0 +Mpy ,xx0 +Mpy ,yy0

∆pz,0 +Mpz ,xx0 +Mpz ,yy0

 .

Dividing by the change of the reference energy defines the normalized momentum change

through the cavity

k(s) =
1

∆pz,0


∆px,0 +Mpx,xx0 +Mpx,yy0

∆py,0 +Mpy ,xx0 +Mpy ,yy0

∆pz,0 +Mpz ,xx0 +Mpz ,yy0

 . (3.19)
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3.4.1.1 Transfer Matrix Computation

For non-relativistic beam energies the transfer matrix elements cannot be computed

using analytic or semi-analytic methods like those of Rosenzweig and Serafini [47]. A

simple method, used by TEAPOT [53], to compute the transfer matrix is to numerically

differentiate particle trajectories. We use an eighth-order implicit symplectic integrator [70]

to track four separate particles. The transverse phase space variables used are

u = (x, γβx, y, γβy) . (3.20)

Each of the four particle trajectories is offset slightly in one of the four phase space

variables. Labeling the j-th particle trajectory as u(j) and its initial offset in the j-th phase

space variable as ∆u(j), the transverse transfer matrix elements can then be computed using

Mij =
∂ui(zf )

∂uj(zi)
∼= u

(j)
i (zf )

∆u(j)
.

The initial offsets ∆u(j) must be made small enough so as to avoid non-linear effects, as

well as to ensure the symplecticity of the resulting transfer matrix. Using the symplectic

integrator with initial particle position and momentum offsets of 10−15 meters, and

10−15 [γβ] respectively, yields transfer matrices which preserve the symplecticity of the

system to near machine accuracy: det(M)− 1 ∼ 10−15. Scanning the initial offsets between

10−4 and 10−14 shows little variation in the matrix elements themselves.

3.4.1.2 Off-Axis Expansion of the Fields

Because we are only concerned with linear dynamics, we can use an off-axis expansion of

the fields (as opposed to a full 3D interpolation) to speed up the particle tracking. In

general the fields can be expanded around the beam axis in the form

f(x, y, z) =
∞∑

n,m=0

f (n,m)(z)xnym, f (n,m)(z) =
1

m! · n!

∂n+mf

∂xn∂ym

∣∣∣∣
r=0

.
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The use of twin couplers in the cavity model imposes mirror symmetry in the x-z and y-z

planes. These symmetries imply

Ex =

{
Ex(−x, y, z) = −Ex(x, y, z)

Ex(x,−y, z) = Ex(x, y, z)
,

Ey =

{
Ey(−x, y, z) = Ey(x, y, z)

Ey(x,−y, z) = −Ey(x, y, z)
,

Ez =

{
Ez(−x, y, z) = Ez(x, y, z)

Ez(x,−y, z) = Ez(x, y, z)
. (3.21)

These conditions imply

E =
∞∑

n,m=0

x2ny2m
[(
E(2n+1,2m)
x x

)
x̂ +

(
E(2n,2m+1)
y y

)
ŷ + E(2n,2m)

z ẑ
]
.

B =
∞∑

n,m=0

x2ny2m
[(
B(2n,2m+1)
x y

)
x̂ +

(
B(2n+1,2m)
y x

)
ŷ + xyB(2n+1,2m+1)

z ẑ
]
. (3.22)

The expression for the magnetic fields follows directly from the form of the electric field and

Maxwell’s equations. For tracking we keep only the terms in the field expansions to first

order (the terms in brackets above with n = m = 0):

E ∼= xE(1,0)
x x̂ + yE(0,1)

y ŷ + E(0,0)
z ẑ, B ∼= yB(0,1)

x x̂ + xB(1,0)
y ŷ. (3.23)

The first order transverse expansion coefficients in these expressions can be expanded

around the axisymmetric first order coefficients. For axisymmetric fields the first order

coefficients have the form

E(1,0)
x = E(0,1)

y = E(1)
r , B(0,1)

x = −B(1,0)
y = −B(1)

θ , (3.24)

where the radial and azimuthal components are given by [31]:

E(1)
r = −1

2

dEz
dz

(r = 0), B
(1)
θ =

iω

2c2
Ez(r = 0).

The superscripts in this equation denote the number of derivatives taken with respect to

the radial coordinate r. For fields displaying the quadrupole symmetry described in
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Figure 3.6: The expansion coefficients of Ex and Ey in the coupler region at t = 0. Shown here

are E
(1)
r (dark blue), E

(1,0)
x (green), E

(0,1)
y (red), and the average the two (light

blue).

Eq. (3.21), one can define ∆E = E
(1,0)
x − E(1)

r and ∆B = B
(1,0)
y −B(1)

θ . To the appropriate

order, Maxwell’s equations then impose:{
E

(1,0)
x = E

(1)
r + ∆E

E
(0,1)
y = E

(1)
r −∆E

{
B

(0,1)
x = −B(1)

θ + ∆B

B
(1,0)
y = B

(1)
θ + ∆B

(3.25)

Fig. 3.6 shows the first order expansion coefficients for the electric field in the coupler

region computed from the general 3D field maps. It is clear from the figure that the field

expansion coefficients are of the form given in Eq. (3.25). Similar agreement was found for

the magnetic field coefficients. The form of the fields in Eq. (3.23) shows directly that the

use of symmetric power couplers decouples the x and y phase space variables and eliminates

the dipole kick. It is also apparent that the longitudinal momentum gain is independent of

the initial particle transverse offset to first order. The equation for the coupler kick in

Eq. (3.19) reduces to

k⊥ =
∆p⊥
∆pz,0

=
1

∆pz,0

(
Mpx,x(s)x0

Mpy ,y(s)y0

)
. (3.26)
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We find it useful to look at the gradient of this quantity with respect to the initial transverse

offset:

κ =
1

∆pz,0

(
Mpx,x(s)

Mpy ,y(s)

)
.

Plugging the linearized fields into the Lorentz force law gives

Fx = (F (1)
r + ∆F)x, Fy = (F (1)

r −∆F)y,

with F
(1)
r = e(E

(1)
r − cβB

(1)
θ ), the axisymmetric radial focusing force gradient, and

∆F = e(∆E − cβ∆B). The transverse gradients of these two forces satisfy

F (1)
r =

1

2

(
F (1,0)
x + F (0,1)

y

)
.

From this it is tempting to write the transfer matrix elements in a similar form; however,

Mr,pr 6=
1

2

(
Mx,px +My,py

)
(3.27)

in general. Only in the ultra-relativistic limit does this relationship hold. In this limit the

focusing matrix elements reduce to integrals over the transverse gradients of the force

components. The relative difference between κx and κy can be quantified using

∆x =
κx
κy
− 1, ∆y =

κy
κx
− 1, ∆̄ =

κx − κy
1
2
(κx + κy)

. (3.28)

The last term reduces to (κx − κy)/κr as v → c, giving a measure of the effect of the

quadrupole focusing relative to the ‘overall’ focusing strength.

3.5 Checking the Algorithm

3.5.1 Computation of the Transfer Matrix

As the coupler kick is quantified in terms of the transfer matrix elements, it is important to

check both the accuracy of the method to compute each element as well as the symplecticity
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of the total transfer matrix. To check the symplecticity of the transfer matrices, we

compute the determinant of the matrices as a function of z through the cavity. Using the

phase space variables in Eq. (3.20), the determinant should be unity. We also compare the

transfer matrix elements to those computed, using a simple ‘drift-kick-drift’ method which

is inherently symplectic. The results of these comparisons are shown in Fig. 3.7. The initial
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(a) Symplecticity of the transfer matrix.
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(b) Comparing matrix elements.

Figure 3.7: (a) Comparison of the transfer matrix determinant to unity. (b) Comparison of
the symplectic ray differentiation algorithm (blue) to the ‘drift-kick-drift’ algorithm
(green).

offset of the phase space variables used in position and normalized momentum is 10−15 m

and 10−15 [γβ] respectively. With these offsets, the determinant of the transfer matrix is

equal to unity to machine accuracy, as seen in Fig. 3.7(a). The comparison of the transfer

matrix elements with the ‘drift-kick-drift’ method, Fig. 3.7(b), shows good agreement,

indicating that either method could be used. Having two methods of computing the

transfer matrix elements is convenient for cross-checking and debugging.
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Figure 3.8: My,py focusing element for various coupler lengths and mesh sizes.

3.5.2 Numerical Issues

As mentioned before, it is important to accurately compute the amplitudes of the sinusoidal

fields in the coupler region. The computation of these amplitudes depends mainly on two

things: the mesh-size used to compute the fields in Microwave Studios, and the length of

the coupler section of the cavity model. For meshing the cavity we use Microwave Sudio’s

automatic meshing algorithm. The parameters used by Microwave Studio to define the

mesh are the lines per wavelength, lower mesh limit, and mesh line ratio. For these

simulation we set all of these to the same value. To test that we have found the correct

mesh size, the transfer matrix elements were computed for meshes of 20, 30, and 40

lines/wavelength. In addition to this, we added λ/2 and λ to the length of the coupler

section. The starting coupler length is yBC + λ/8. From equation Eq. (3.18) it is clear that

this should not have any effect on the fields in the cavities or the position of the reference

plane. As we are interested in computing the transfer matrix elements from the fields, we

use the focusing element to quantify the dependence on the mesh size and coupler length.

Fig. 3.8 shows the focusing element in the (y, py) phase space. The transfer matrix elements
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were computed for a 100 mA beam, on-crest beam with initial energy of 350 kV, and a 1

MV cavity voltage. It is clear that adding at least λ/2 is required to the reduce the

dependence of the focusing element on the mesh size. Consequently, the MWS solutions for

the original coupler length (labeled +0 in the figure) are not used for any of the studies in

this work. For the +λ/2 and +λ cases, the change with mesh size is roughly 2 % when

going from 20 to 40 lines/wavelength. The difference between the elements computed for

those two cases at each mesh size is roughly 2 to 3 %. This difference is likely being limited

by other factors: the residual tolerance of the MWS field solutions, how accurately the

cavity fields are phased and normalized, and the resulting numerical integration and

differentiation of the particle trajectories through the fields.

3.5.3 Semi-Analytic Check

One check of the algorithm to compute the coupler kick is to take the ultra-relativistic limit

of the transfer matrix through the cavity. In this limit Vc → V0 and R/Q→ 220 Ω. This

allows the computation of Γ without any numerical integration. The fields can then be

constructed and compared to the general algorithm given above. Fig. 3.9 shows the (x, px)

transfer matrix elements computed with the general algorithm for constructing the fields

(blue) and the semi-analytic algorithm in the β = 1 limit (green). The agreement in the

matrix elements as well as the fields is very good.

3.6 Results

Having developed and tested a method for producing realistic cavity fields and computing

the coupler kick for non-relativistic beams, we turn to investigating the effect for the Cornell
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Figure 3.9: Comparison of the general algorithm to the ‘β = 1’ algorithm.

ERL injector cavity model. As we will show, the results of these simulations demonstrate

the need to be able to model the coupler effects for a variety of input conditions. The full

set of input parameters required to generate the fields in the Cornell cavity model is given

in Table 3.2. In addition to the parameters listed in the table, we also vary the orientation

of the cavity (couplers at the entrance or exit of the cavity as seen from the incoming

beam). In the Cornell injector the cavities are arranged so that the first cavity is oriented

with the coupler at the exit of the cavity. The orientation of the subsequent cavities

alternates. We limit the number of parameters varied in our simulations to a subset most

often used in normal operation. The amount of coupling to the cavity is set for high current

running, as this should increase the effect of the quadrupole focusing due to the couplers.

To simulate this geometry, the coupler antennae are inserted into the cavity so that they

are nearly flush with the beam pipe, setting Qext to 4.6× 104. By making the antennae

fully flush in the cavity model, the Qext calculated from the fields is 4.02× 104. This

corresponds to roughly 1 mm difference in the insertion depth of the coupler and is

therefore considered acceptable for simulating the high current set-up of the injector

cavities. In general the cavities may be run slightly off-crest in order to minimize growth of
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Wi (MeV) Initial Beam Energy

Ib (mA) Average Beam Current

φ0 (deg) Beam Phase

Vc (MV) Effective Cavity Voltage

V0 (MV) Cavity Voltage for β = 1

Q0 Intrinsic Quality Factor

Qext External Quality Factor

tanψ′ Loaded Detuning Factor

Table 3.2: List of Simulation Input Parameters.

the projected emittance through the cryomodule. We simplify this by simulating the cavity

fields on-crest, as the offsets in the injector phases are usually less than 5 deg. Also, during

normal operation, any reactive beam loading is compensated by detuning the cavity. These

two restrictions imply sinφ0 = tanψ′ = 0. The remaining parameters left to vary then

include the initial kinetic energy of the beam, the average current, and the cavity voltage.

3.6.0.1 Kinetic Energy Scans

It is instructive to scan the initial kinetic energy of the beam first. The current voltage of

the ERL DC-gun used in beam operations is 350 keV. For proposed high current runs (100

mA average current), the beam is accelerated from the gun voltage to roughly 5 MeV in the

cryomodule. It is also instructive to look at the quadrupole focusing in the ultra-relativistic

limit. We perform two scans of the initial kinetic energies: one from the gun voltage to 5

MeV (the injector parameters), and the second from 5 MeV to 1 GeV (ultra-relativistic

limit), for both cavity orientations. Fig. 3.10 shows the results of both scans for a 1 MV

cavity gap voltage.

For the low energy scan, the first thing to note is that the mean focusing effect is
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(a) Low energy KE scan, couplers at entrance.
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(b) Low energy KE scan, couplers at exit.
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(c) High energy KE scan, couplers at entrance.
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(d) High energy KE scan, couplers at exit.

Figure 3.10: Scans of the initial beam kinetic energy for both orientations of the cavity model.

approximately the same for both cavity orientations in both energy scans. This implies the

majority of the focusing occurs in the cavity cells. In general the quadrupole strength has

different behavior for both orientations, as shown in Fig. 3.11. For the case where the

coupler is at the entrance to the cavity ∆̄ starts at -161 %and sharply increases to around

-11 % as the initial energy increases. When the coupler is at the exit, ∆̄ decreases from -1

to -36 % in a essentially a linear fashion. In both cases the overall focusing and the
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Figure 3.11: ∆̄ as a function of initial beam energy with the coupler at the cavity entrance
(blue) and exit (green).

quadrupole effect should become asymptotic as the particles become ultra-relativistic.

Fig. 3.10(c) and Fig. 3.10(d) show that the these asymptotic values are quite different from

the values at 5 MeV. The asymptotic values are -1138 and 2168 % for the coupler at the

entrance/exit respectively. The difference in sign is due to the fact that the mean of κx

and κy is near zero and has a different sign for each cavity orientation. Table 3.3 gives

the values of the quadrupole strength relative to the mean focusing for initial kinetic

energies near those at the entrance to each of the five cavities in the injector, as well as the

asymptotic values. The most significant result here is that the quadrupole effect becomes

Table 3.3: Relative Quadrupole Strength vs. Initial Beam Energy

KEi [MeV] 0.35 1 2 3 4 5 (→∞)

∆̄ent [%] -161 -8 -7 -8 -9 -11 -1138

∆̄exi [%] -1 -8 -15 -22 -29 -36 2168

very pronounced at low initial energy if the input couplers are located at the cavity

entrance. The opposite is true when the couplers are at the cavity exit, here the quadrupole

effect is larger at higher energy (5 MeV in the injector). Also, in the ultra-relativistic limit,

the quadrupole effect becomes increasingly more important as the mean focusing vanishes.
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3.6.0.2 Current Scans

The dependence of the linear focusing as a function of beam current is also of interest, as

the current will have to be ramped up to 100 mA in proposed experiments in the injector.

Fig. 3.12 shows the results of scanning the current from 0 to 100 mA for a 350 keV initial

beam energy, and a 1 MV cavity voltage. The Fig. 3.12(a) shows the current scan when the
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(b) Current scan, couplers at exit.

Figure 3.12: Current Scan from 0 to 100 mA for an initial beam energy of 350 keV and the
couplers located at the entrance (a), and the couplers located at the exit (b).

couplers are located at the entrance of the cavity. In this case, the quadrupole strength is

strong; however, the dependence on the current is small. When the couplers are at the exit

of the cavity (Fig. 3.12(b)), the dependence on current is more pronounced, with the

quadrupole effect decreasing roughly linearly to near zero at 100 mA. Initially, both of these

plots contained a noticeable amount of noise. This noise is caused by ‘jitter’ in the on-crest

phase offset, φoff , used to phase the cavity properly. To eliminate this noise, we fit a

polynomial to the plot of φoff as a function of the beam current and used the polynomial to

evaluate φoff(Ib) in a second current scan. The dependence of the quadrupole-like focusing

on the beam current demonstrates an important point for beam operations, as having
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current dependent focusing in the linear optics will effect the centroid motion. Thus, in

addition to the effects of space charge, the dependence of the coupler focusing on current

will have to be properly accounted for.

3.7 Conclusion

We have developed and tested an algorithm for producing realistic field maps for super-

conducting RF cavities from eigenmode solver solutions. The algorithm incorporates the

effects of beam loading and detuning, and is generalized to include the acceleration of

non-relativistic beams. In addition we have generalized the definition of the coupler kick to

correctly describe the linear optics for low energy beams. Fields for the RF cavities

in the Cornell ERL injector have been created for various initial beam energies and

average currents. The RF quadrupole focusing produced by the input couplers has been

computed for these fields and shown to be significant for certain beam parameters and

cavity orientations. The algorithm given in this work assumes that the single bunch beam

loading is small enough that the condition ∆Ub/U � 1 holds. While the fields generated in

this work generally satisfied this requirement with the single bunch loading on the order of

10−5 to 10−4, further study may be warranted to place a stricter bound on ∆Ub/U . In

addition, since only the linear beam dynamics have been computed here, the effects of space

charge and wakefields must be included for a full model of the cavity beam dynamics at

high current. In closing, we note that once one finds the reference plane and correct length

of the coupler(s) for a given cavity model, the field generation algorithm described in this

work can be included in any tracking code that can handle complex electromagnetic field

maps and can compute the on-axis energy gain of particles through each cavity. This allows

for its possible inclusion in both offline and online simulation codes.
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CHAPTER 4
Demonstration of Low Emittance in the Cornell

Energy Recovery Linac Injector Prototype

Originally published as C. Gulliford, A. Bartnik, I. Bazarov, L. Cultrera, J. Dobbins, B.

Dunham, F. Gonzalez, S. Karkare, H. Lee, H. Li, Y. Li, X. Liu, J. Maxson, C. Nguyen, K.

Smolenski, and Z. Zhao, Phys. Rev. ST Accel. Beams 16, 073401 (2013) [41].

4.1 Abstract

We present a detailed study of the six-dimensional phase space of the electron beam

produced by the Cornell Energy Recovery Linac Photoinjector, a high-brightness, high

repetition rate (1.3 GHz) DC photoemission source designed to drive a hard x-ray energy

recovery linac (ERL). A complete simulation model of the injector has been constructed,

verified by measurement, and optimized. Both the horizontal and vertical 2D transverse

phase spaces, as well as the time-resolved (sliced) horizontal phase space, were simulated

and directly measured at the end of the injector for 19 pC and 77 pC bunches at roughly 8

MeV. These bunch charges were chosen because they correspond to 25 mA and 100

mA average current if operating at the full 1.3 GHz repetition rate. The resulting 90%

normalized transverse emittances for 19 (77) pC/bunch were 0.23± 0.02 (0.51± 0.04) µm
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in the horizontal plane, and 0.14± 0.01 (0.29± 0.02) µm in the vertical plane, respectively.

These emittances were measured with a corresponding bunch length of 2.1± 0.1 (3.0± 0.2)

ps, respectively. In each case the rms momentum spread was determined to be on the

order of 10−3. Excellent overall agreement between measurement and simulation has

been demonstrated. Using the emittances and bunch length measured at 19 pC/bunch,

we estimate the electron beam quality in a 1.3 GHz, 5 GeV hard x-ray ERL to be at

least a factor of 20 times better than that of existing storage rings when the rms energy

spread of each device is considered. These results represent a milestone for the field of

high-brightness, high-current photoinjectors.

4.2 Introduction

The desire for light sources with substantially more coherence and brightness has fueled

significant interest in the research and design of ERLs and free electron lasers (FELs). The

feasibility of ERL technology has already been demonstrated at several laboratories, most

notably Thomas Jefferson National Accelerator Facility (TJNAF) [71], where energy

recovery was achieved for 100 MeV beams with an average current of up to 9 mA. However,

in order to design and construct a large scale, high energy (GeV) ERL x-ray source,

significant advancement of both superconducting RF (SRF) cavity technology, as well as

high-brightness, high current sources has been required. Over the last several years, Cornell

University has played a lead role in the development of both areas, and has successfully

reached several major milestones towards the realization of a practical ERL x-ray facility

[19].

To drive this type of machine requires an exceptional electron source producing

high-brightness bunches at high repetition rates. Traditionally it has been thought that the
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best beam quality was obtained using low duty factor normal conducting RF (NCRF) gun

based photoemission sources [37, 38, 72], as these devices are capable of providing high

peak cathode fields. These fields are typically in the vicinity of 100 MV/m, though the field

at the cathode during emission is often significantly lower since these devices are usually

run off-crest [37, 72]. Due to the considerable heat load generated in the cavity walls, the

cw operation of NCRF sources requires substantial lowering of the electric gradient, an

approach being pursued at several facilities [38, 73]. Work started at TJNAF and later

expanded at Cornell University, shows that the combination of a high-voltage DC gun

followed immediately by acceleration with superconducting cavities yields beams with single

bunch quality rivaling that produced by RF guns, but at much higher (GHz) repetition

rates [34, 74]. In addition, DC guns provide an excellent vacuum, allowing for a much

wider range of cathode materials to be used than in NCRF guns. While SRF guns show

significant promise for producing high-brightness, high-current beams, this technology is

currently in the development and testing stage, and the achieved beam parameters so far

are relatively modest [42].

Consequently, a photoinjector using a DC gun has been designed, built, and commissioned

at Cornell University. One of the main goals of this project was to demonstrate the ability

to produce high average current from this source. The Cornell injector has made great

strides toward this end, having recently set a new record for high average current from a

photoinjector with cathode lifetime suitable for an operating facility [26]. Another major

goal is the demonstration of low emittance at the end of the injector’s merger section,

where the (relatively) low energy beam would be injected into the main ERL linac. The

results in this work demonstrate that it is possible to produce and transport beams from a

DC source which have emittances at the point of injection approaching the diffraction limit
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for hard x-rays, and which have a bunch length and an energy spread within the parameter

space required by the specifications of a full hard x-ray ERL.

In general, to achieve the maximum brightness in a photoinjector, it is crucial to control

both the transverse and longitudinal space charge forces, as well as the effects of time

dependent RF focusing [27, 29–31, 34, 75]. Effective emittance compensation is possible

when bunches are created with a charge distribution that has predominantly linear space

charge fields [27, 29, 30, 75], and if done correctly, can lead to final emittances approaching

the intrinsic emittance of the photocathode. One fundamental limit to this approach occurs

when the amount of charge extracted from the cathode nears the virtual cathode instability

limit. A rough calculation shows that the lowest achievable emittance then becomes

proportional to the square root of the bunch charge q [27]:

εn ∝
√
q · MTE

Ecath

(4.1)

Here MTE and Ecath are the mean transverse energy of the photoelectrons and the

accelerating field at the cathode, respectively. Detailed simulations of well optimized DC

gun photoinjectors support this square root dependence on the bunch charge and the

cathode’s MTE [34, 74]. In this paper, we show that the final measured emittance also

scales in accordance with Eq. (4.1). This represents a key step in experimentally realizing

the maximum brightness limit for photoinjectors.

The outline of this work is structured as follows. First, a general description of the

Cornell ERL photoinjector is given. This includes a description of the beamline layout, the

relevant accelerating and optical elements, and the diagnostic systems used to take our

emittance data. Next, we describe how to model the dynamics in the injector using the

space charge simulation code General Particle Tracer (GPT) [76], and give a verification of

the GPT injector model against linear optics measurements. After this, a description of the
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optimization of this model and the process for determining our final optics settings used in

the experiment is given. This is followed by the main results of this work. These include

direct measurement and simulation of both the projected transverse phase spaces, as well

as the time-resolved horizontal phase space at the end of the injector merger section.

Additionally, the energy spread distribution was measured using a single dipole magnet in a

separate diagnostic beamline section, providing an upper bound on the rms energy spread

at the end of the merger.

4.3 The Cornell ERL Injector

Construction of the Cornell injector was completed in the summer of 2007. Initial beam

commissioning experiments revealed an issue with charging up of the ferrites in the

higher-order mode dampers in the injector cryomodule. After this problem was successfully

addressed [77], beam experiments started in earnest in the spring of 2010 and have

continued to this date [26, 32, 35, 78–82]. In that time, significant progress towards

meeting the target goals of the injector project has been made. Table 4.1 shows these

specifications. Of particular interest to this work are the specifications for the normalized

transverse emittance and rms bunch length. We demonstrate later in this work that these

specifications have been met.

4.3.1 Description and Layout

The layout of the Cornell ERL injector is shown in Fig. 4.1. The Cornell injector features

two laser systems. The primary system is a 1.3 GHz laser producing 520 nm, 1 ps rms

pulses with an average power of up to 60 W [83], and is used for high current experiments.
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Table 4.1: List of injector design specifications and target parameters.

Parameter Specification

Beam energy 5-15 MeV

Normalized emittance εn ≤ 0.3 µm

RMS bunch length σt ≤ 3 ps

Bunch Charge 77 (19) pC

Average Current 100 (25) mA

Figure 4.1: Top view of the Cornell ERL injector.

For emittance measurements with nonzero bunch charge, we exclusively use a 50 MHz

system, whose individual pulses have comparable pulse energy and duration to the 1.3 GHz

laser. This laser system allows us to limit the average electron beam power hitting our

interceptive emittance diagnostics. After being generated in one of these two lasers, the

final laser pulse train can be chopped using a Pockels cell, and shaped using our temporal

shaping system [79]. This system consists of four rotatable birefringent crystals, which are

used to divide the primary laser pulse into 16 copies, with tunable relative intensities set by

their rotation angles. These crystals are typically tuned to produce a roughly flat intensity

profile, with around 8 ps rms duration.

The cathode used for this study was a GaAs wafer grown using Molecular Beam

Epitaxy on a p-doped GaAs substrate. The cathode was heat cleaned to 620 ◦C for 2 hours

and then activated to negative electron affinity using Cs and NF3 via the “yo-yo” process.

The doping density was 5× 1018 cm−3. The top 100 nm was left undoped. The resulting
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cathode had a quantum efficiency of 4%, a mean transverse energy of 90 meV, and a

sub-picosecond response time at 520 nm.

The high-voltage DC gun used in these measurements is the same one used in previous

space charge and emittance studies [26, 32, 35, 78–82]. The gun was operated at 350 kV

for all measurements in this work. The beamline section just after the gun, labeled ‘A1’ in

Fig. 4.1, houses two emittance compensation solenoids and a 1.3 GHz normal conducting

buncher cavity. These elements were used to compensate the initial emittance blow up

near the cathode, and to compress the bunch longitudinally before further acceleration.

Immediately after emittance compensation, the bunches were accelerated using the five

superconducting niobium cavities in the SRF cryomodule, labeled ‘A2’ in Fig. 4.1. In

addition to increasing the beam energy, and thus partially freezing in the emittance, the

SRF cavities were also used to perform further emittance compensation and longitudinal

compression via time-dependent transverse and longitudinal focusing. Each cavity features

a symmetric twin input coupler design in order to eliminate any time-dependent dipole kick

[63, 64] and can be operated with a voltage in the range of 1 to 3 MV. For a more detailed

description of the injector cavities see [61].

Just after the cryomodule, the beam was passed through a four-quad telescope, labeled

‘A3’ in Fig. 4.1. The beam was then directed into one of several diagnostic beamline

sections. The section most relevant to this work is the ‘B1’ merger shown in detail in

Fig. 4.2. The injector merger section is comprised of a conventional three-dipole achromat

[84–86]. This design was chosen for its simplicity, and due to the limited space available for

the injector experiment. The trade off for this approach is that while this merger set-up

closes the single particle dispersion, it does not satisfy the second achromat condition

η′sc = 0 for the space charge dispersion function [84, 85]. Despite this, both our simulations

and measurements show that this merger design does in fact preserve low emittance for our
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Figure 4.2: Top view of the B1 injector merger section showing the emittance measurement
system.

operating parameters. As was anticipated in [85], this was accomplished by finding the

correct settings for the four quadrupole magnets in the A3 straight section.

The emittance measurement system (EMS) used for projected and time-resolved phase

space measurements is a two-slit system with no moving parts [32]. Fig. 4.2 shows the

layout of this diagnostic system. In front of each 20 µm slit is a scanner magnet. Each

scanner magnet consists of a pair of air core correcting coils with equal and opposite field

polarity and negligible sextupole field component. The resulting effect of the scanner

magnet is to translate the beam transversely without imparting any angle to it. In practice

the coil pairs in each scanner magnet cancel each other to better than a few percent [32].

For projected phase space measurements, the beamlet coming through both slits was

collected using the Faraday cup at the end of the merger section. For time-resolved

horizontal phase space measurements, the beamlet was passed through a horizontal

deflecting cavity [87] in order to resolve the time axis of the beam on the viewscreen at the

end of the merger section [35]. For a more detailed description of the EMS, refer to [32, 35].
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4.3.2 The GPT Injector Model

The 3D space charge code GPT was used extensively in this work. To model space

charge effects, GPT utilizes a 3D non-equidistant mesh solver [88, 89]. Additionally, GPT

allows users to define their own custom optical elements, as well as position and overlay

electromagnetic field maps in 3D space. These features provided sufficient versatility to

accurately model our machine, where the fields of several elements overlap. All of the

beam line elements relevant for the space charge simulations in this work have been

modeled using realistic field maps. POISSON-SUPERFISH [90] was used to generate 2D

cylindrically symmetric fields specifying Er(r, z) and Ez(r, z), as well as Br(r, z) and

Bz(r, z), for the high-voltage DC gun and emittance compensation solenoids respectively.

The on-axis fields for these elements are shown in Fig. 4.3(a), and 4.3(b).

In order to efficiently and accurately describe the injector dipoles and quadrupoles, we

created custom GPT elements which generate 3D fields using an off-axis field expansion of

1D field data. To create the 1D dipole and quadrupole field data, the full 3D fields for

each type of element were computed in Opera-3D [91]. From these fields the quantities

By(r = 0, z) and ∂By(r = 0, z)/∂x were extracted from the dipole and quadrupole fields

respectively. Fig. 4.3(c) and 4.3(d) show the 1D field data used for the dipoles and

quadrupoles in the injector.
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(a) On-axis electric field in the DC gun.
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(b) On-axis magnetic field for the A1 solenoids.
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(c) 1D Dipole field map.
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(d) 1D Quadrupole gradient data.
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(e) On-axis electric field for the buncher.
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(f) On-axis electric field for the SRF cavity.

Figure 4.3: On-axis electric and magnetic fields for: (a) the high voltage DC gun at 350 kV,
(b) emittance compensation solenoid at 3.75 A, (c) the A3 and B1 merger dipoles,
(d) the A3 and B1 merger quads, (e) the buncher cavity at 60 kV, (f) the SRF
cavity at 1 MV.

Our custom GPT rectangular dipole element uses an off-axis expansion of the fields

86



given by [92]:

Bx ∼ O(4)

By = B0(z)− y2

2

d2B0

dz2
+O(4),

Bz = y
dB0

dz
+O(4), (4.2)

to model the the higher order components of the dipole field. In this expression

B0 = By(r = 0, z). This expansion assumes that the particles do not see the fringe fields on

the lateral sides of the magnet. This is true for the particle trajectories and magnets in the

injector, where the maximum simulated rms beam size through the dipoles was ≤ 3 mm

(see Fig. 4.13(b)), and the dipole width was 25 cm. Similarly, the fields for the quadrupoles

were computed with an off-axis field expansion [92]:

Bx = y

[
G(z)− 1

2
(3x2 + y2)

dG

dz

]
+O(5),

By = x

[
G(z)− 1

2
(3y2 + x2)

dG

dz

]
+O(5),

Bz = xyG(z) +O(4). (4.3)

Here the term G(z) = ∂By/∂x(r = 0, z). To verify Eqs. (4.2) and (4.3), single particle

tracking through the fields created by our custom elements was compared to tracking using

the full 3D field maps. Excellent agreement was found in both cases. Additionally, the

custom elements proved significantly faster because they do not require look-up of 3D field

arrays.

All RF cavity fields were generated using the eigenmode 3D field solver in CST

Microwave Studio (MWS) [65]. The buncher cavity was modeled using a 2D cylindrically

symmetric map specifying: Er(r, z), Ez(r, z), and Hθ(r, z). The on-axis field map for the

buncher is shown in Fig. 4.3(e).

Previous work demonstrates that asymmetric focusing of the bunch near the input
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power couplers of the accelerating cavities is significant and can lead to asymmetric

horizontal and vertical emittances [35]. To address this issue, we generated full 3D field

maps for the accelerating cavities which incorporate the beam running conditions following

our method outlined in [54]. Fig. 4.4 shows the 3D cavity model used in MWS for the

accelerating cavities.CST MICROWAVE STUDIO 10/26/2010  - 16:10

File: C:\Documents and Settings\gullifoc\Desktop\Colwyn_MWS\ic_0_167_ebc.cst

(a) Exterior view of the MWS injector cavity
model.

CST MICROWAVE STUDIO 10/26/2010  - 16:11

File: C:\Documents and Settings\gullifoc\Desktop\Colwyn_MWS\ic_0_167_ebc.cst

(b) Cutaway view of the MWS injector cavity
model.

Figure 4.4: (a) The Microwave Studio model of ERL injector cavity: (a) the cavity and coupler
exterior, (b) cutaway view of the same model showing the inner coupler antennae.

The procedure for correctly constructing the fields in the coupler and cavity requires

two sets of MWS solutions. Each set of fields was created by terminating the input coupler

line in the MWS model with either an electric or magnetic wall boundary condition [54].

From these solutions, traveling waves carrying power into and out of the cavity through the

couplers were constructed, scaled, and shifted in phase to match the actual running

conditions in the injector. In order to further limit the beam power deposited in our

interceptive EMS, the pulse train from the 50 MHz laser was chopped using a Pockels

cell. The resulting beams typically had currents on the order of a micro-amp or less.

In generating the field maps for the accelerating cavities, this amounts to effectively
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having zero current. The parameter which determines how the cavity fields depend on the

operating parameters is the reflection coefficient [54]:

Γ = −
1−β
1+β

+ Ib
Vc

(R/Q)QLe
−iφ0 + i tanψ′

1 + Ib
Vc

(R/Q)QLe−iφ0 + i tanψ′
(4.4)

Here Ib and φ0 are the average beam current and phase of the beam with respect to the

cavity fields. The rest of the parameters in this expression describe the properties of the

cavities: β is the coupling parameter, Q is the intrinsic cavity quality factor, R is the shunt

resistance, Vc is the cavity voltage, QL = Q0/(1 + β) is the loaded quality factor, and

tanψ′ is the cavity detuning parameter. In the zero current limit (with the cavity tuned to

resonance), the reflection coefficient reduces to

Γ(Ib → 0) =
β − 1

β + 1
. (4.5)

This implies that the fields in the cavity and coupler coax depend only on the amount of

coupling. The coupling factor β is determined by how far the inner coupler antennae are

retracted from being flush with the beam pipe. For our emittances measurements, the

couplers were fully retracted (zero current setting). By fully retracting the coupler antennae

in the MWS model, and generating two set of solutions for both boundary conditions on

the end of the coupler coax, we created one set of complex 3D electric and magnetic field

maps for the SRF cavities. Fig. 4.3(f) shows the resulting on-axis electric field. We point

out that simulations subsequently showed that the asymmetric emittances caused by the

RF quad effect in the cavities could be successfully remedied by appropriate choice of

magnetic quadrupole focusing downstream.

After completing the GPT physics model of the injector, we developed a user interface

between the real machine and its GPT counterpart. Named the “Virtual Accelerator

GUI”, this program was designed to provide a single interface between the corresponding

optics settings in the EPICS control system of the real machine, and the stand alone

89



GPT code. Additional features include the ability to save and load optics settings and

simulation results to and from file, the ability to load injector settings from the machine

and independently adjust them in simulation, as well as the ability to visualize all relevant

simulation data. A screen shot of this application is shown in Fig. 4.5.

Figure 4.5: Screenshot of the Virtual Accelerator GUI.

In constructing this program, a master GPT input file was created which included not

only the optical elements described in this section, but also simulation output screens at all

of the corresponding locations of the beam position monitors (BPMs), viewscreens, and

emittance measurement systems in the injector. The result was a nearly one-to-one

simulation counterpart to the real machine. With this, we were able to use GPT in a more

useful and realistic way, with simulations often guiding experiments in near real-time in the

control room.
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4.4 Measurements

All of the measurements in this work fall into one of two categories: measurements

performed at near-zero bunch charge for verification and calibration purposes; or phase

space measurements of space charge dominated bunches.

4.4.1 Measurements at Near-Zero Bunch Charge

The measurements presented in this section include: comparison of difference orbits

(linear optics) in the injector with the GPT model including the effects of the RF input

couplers, measurement of the beam size envelope along the injector and its verification with

simulation, and calibration of the EMS and analysis procedures by comparing the emitance

computed from the direct measurement of the projected transverse phase spaces in the

merger and the emittance measured using a solenoid scan in the gun vicinity. In order to

accurately perform difference orbit measurements, the BPM system needed to be corrected

for its non-linear response, the procedure for which is presented below.

4.4.1.1 BPM Correction Procedure

The injector BPMs consist of four striplines, as seen in Fig 4.6(a). To model the system we

make two assumptions: (i) both the beam pipe and striplines are assumed to be infinitely

long perfect conductors connected to ground; and (ii) the beam is taken to be an infinite

line charge at the position rb = (xb, yb). The first assumption implies that the potential

must vanish at the beam pipe. This is accomplished by placing an image line charge with

opposite charge density at r = (R2/r2
b )rb. The resulting electric field everywhere is:

E(r, rb) =
λ

2πε0

[
r− rb
|r− rb|2

− r− (R2/r2
b )rb

|r− (R2/r2
b )rb|2

]
.
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From the electric field, the surface charge density on the beam pipe and striplines can be

computed using σ = −ε0E(R, rb) · n̂, where n̂ is the normal vector to the beam pipe surface.

Since this model assumes the beam pipe is a perfect conductor, the field is perpendicular to

the surface so that E(R, rb) · n̂ = |E(R, rb)|. In cylindrical polar coordinates, the surface

charge density takes the form

σ(R, θ, rb, θb) =
λ

2π

(
(r2
b/R

2)− 1

R2 + r2
b − 2Rrb cos(θ − θb)

)
R.

The angles θ and θb are defined in Fig 4.6(a). The signal from the ith stripline is defined as

the fraction of the surface charge density found on that stripline:

Si(xb, yb) =
1

λ

∫ θi+θs/2

θi−θs/2
σ(R, θ, xb, yb)Rdθ. (4.6)

Here the angle θs is the angle subtended by each stripline. Performing the integration yields:

Si(xb, yb) =

− 1

π
tan−1

[(
R + rb
R− rb

)
tan

(
θ − θb

2

)]∣∣∣∣θi+θs/2
θi−θs/2

, (4.7)

where θi ∈ {0, π/2, π, 3π/2}.

In order to invert the BPM signals and obtain the beam position, the signals from

Eq. (4.7) are fit to the injector BPM signals using a χ2-minimization with the beam position

as the fit parameters. To verify this procedure, a pair of upstream horizontal and vertical

corrector magnets was scanned in a grid pattern and the response on a test BPM was

measured. Fig 4.6(b) shows the comparison of the standard linear BPM model (blue), and

non-linear model given by Eq. (4.7) (red). The inclusion of this model effectively extended

the workable range of the BPMs in the injector by roughly a factor of two. This increased

range made the use of the BPMs in response measurements significantly more robust.

92



! 

"b

! 

"

! 

"
! 

"#

  

! 

! r b

  

! 

(R /rb )
2 ! r b

  

! 

! r 

!"#$%&'(#$$

)*+$%&'(#$$

,"-".$%&'(#$$

/(01&$%&'(#$$

! 

" s

(a) Parameters for the non-linear BPM model.
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(b) Comparison of linear and non-linear BPM models.

Figure 4.6: Non-linear BPM model description and verification: (a) shows the relevant
parameters for the model, while (b) shows the comparison of the standard linear
BPM position calculation (blue) and positions computed with a non-linear
correction (red) from a square grid scan of an upstream horizontal and vertical
corrector pair.

4.4.1.2 Difference Orbits and Coupler Effects

To verify each injector beamline element and its corresponding GPT model, linear optics

response measurements have been performed. The transverse dynamics were verified by

changing the initial position of the beam on the cathode or kicking the beam with a

corrector magnet and recording the change in position on all downstream BPMs. This was

repeated for each type of element in the injector, starting with the gun and moving

downstream turning on elements one by one and comparing the resulting response function

to GPT simulations. Fig. 4.7(a) shows an example response measurement and corresponding

GPT comparison. For this measurement, the first pair of horizontal and vertical correctors

in the A1 section were scanned and the response through the straight portion of the injector

recorded (with all quadrupoles off). Time of flight difference orbits were also measured

by adjusting the laser phase ±60 degrees relative to the cavity phases, and measuring

the bunch arrival phase from all BPMs via I/Q detection and bunch signal processing.
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(b) Asymmetric response through the second cavity
due to coupler fields.

Figure 4.7: Response measurements: (a) the response from the set of correctors through first
SRF cavity. The cavity was set to 1 MV on-crest. (b) The response asymmetry
due the coupler fields in the second cavity as a function of cavity phase. The
cavity voltage was 1.5 MV. The dashed line shows the expected response from a
cylindrically symmetric, or 1D field map model of the cavity.

Excellent agreement with the GPT model was obtained using all BPMs, including those in

the merger.

Difference orbits were also used to verify the 3D RF field maps used to model the

cavities and fields near the input power couplers. Simulations show that asymmetric

focusing from the couplers is worse when a low energy beam passes through the coupler

fields before being accelerated [54]. Thus to more clearly measure the effects of the couplers,

we turned off all of the SRF cavities except the second one, which has couplers at the

entrance of the cavity, as seen by the beam. A square grid of angles was scanned using the

last pair of horizontal and vertical correctors just before the entrance to the cryomodule,

and the resulting response pattern was measured on a downstream BPM. This was repeated

at multiple cavity phases shifted relative to the on-crest phase. By taking the ratio of the

change in position in x to the change in y, the asymmetry in the response through the

cavity was computed. Fig. 4.7(b) shows the comparison of the x to y response aspect ratio

94



measured in the injector and computed in GPT. The agreement is quite good except for the

point where the response in both planes goes through zero. With these measurements, we

are confident in our ability to include the 3D focusing effects of the cavity input couplers.

4.4.1.3 Alignment

Previous work has shown [32, 34, 35] that good alignment through each optical element is

required to diminish emittance growth, and indeed alignment of the beam through the gun,

emittance compensation section, and SRF cavities proved very important for obtaining the

low emittance results presented here. In order to arrive at these results, a methodical

element by element alignment procedure was developed. The benefit of such an approach

was that after a thorough execution of the following procedure, additional alignment work

was kept to a minimum on subsequent experiments.

Figure 4.8: Layout of the A1 emittance compensation section.

The first step of this procedure was to center the laser spot on the cathode. To do so,

the spot was scanned both horizontally and vertically to form a grid of positions. With the
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first solenoid off, the corresponding beam position was recorded on the viewscreen after the

gun, see Fig. 4.8. Fitting the response data to an off-axis expansion of the gun focusing

allowed us to the determine electrostatic center of the gun/cathode to within 50 µm. It

should be noted that in order to achieve a good cathode lifetime, off-center laser spot

operation is required to minimize ion back-bombardment [26]. However, we found that

offsetting the laser spot by 3 mm and using a corrector pair to bring the beam back through

the center of the 1st solenoid did not degrade the beam emittance by more than 5%.

After aligning to the gun, the beam was then aligned in the buncher cavity. To do so,

the gun was set to 350 kV, and the first and second solenoids were degaussed and turned

off. The buncher cavity was turned on at 50 kV and the two energy zero-crossing phases

determined. In order to keep the transverse beam size small, the cavity phase was set to the

de-bunching zero-crossing value, in order to provide focusing from the buncher. The use of

the zero-crossing phase also eliminated the effect of dispersion due to the combination of

unwanted stray fields and low beam energy. The beam position on the second viewscreen

was recorded with the cavity turned off and then turned on. The initial position offset going

into the cavity field region was then found by fitting the beam transfer matrix from the

corrector coil pair just before the buncher to the viewscreen after the cavity. The transfer

matrix was computed from the on-axis electric field map shown in Fig. 4.3(e) using the

method derived in [54]. The position offset in the buncher was then compensated by

adjusting the corrector coils just before it. Using this technique, we were routinely able to

align the beam through the center of the buncher to within 20 µm.

Next, the orbit was aligned through the first two SRF cavities. Each cavity was

separately turned on to 50 kV and set to the de-bunching zero-crossing phase just as

with the buncher. Once the correct phases were found, the beam position on the A3

viewscreen was recorded for three different settings: both cavities off, and then each cavity
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on separately. After recording the beam position on the A3 viewscreen for each setting, the

response functions from the last two pairs of horizontal and vertical correctors before the

cryomodule were measured. From this set of response measurements, the corrector settings

were determined that would place the beam at the same spot on the A3 viewscreen for all

three cavity settings. This process produced an orbit which did not change position on the

A3 viewscreen to within roughly 50 µm when the first two cavities were toggled on and off.

Finally, the solenoids were aligned. The alignment of the buncher and first two

SRF cavities fixed the settings of all the available corrector coils in the A1 section.

Consequently, the solenoids had to be physically moved to align their magnet centers with

beam orbit. For the solenoids, both their offset and angle in the horizontal and vertical

planes were found by performing a current scan of each magnet, recording the response on a

downstream viewscreen, and fitting the data using the transfer matrix of the solenoid

[43, 82]. The physical adjustment of the solenoid positions and angles was greatly aided by

the incorporation of alignment motors in the design of the solenoid magnet support

structure. At the completion of the final alignment measurements, the transverse offsets of

the solenoids were aligned to within roughly 50 µm, and the transverse angles to within 0.2

mrad.

Alignment of the orbit through the optical elements in the A3 straight and B1 merger

section was achieved by flattening the BPM readings in these sections. To check the overall

alignment once the orbits for emittance measurements were set up, a special laser mask

with a regular grid of 100 µm holes spaced 0.75 mm apart, was placed in the laser path.

Fig. 4.9 shows the initial grid pattern and the measured grid pattern in the B1 section. To

generate this image the buncher was purposefully set to give a longer bunch length in order

to exaggerate the time dependent RF focusing from the SRF cavities. In this image, the

center spot being circular and the other spots pointing towards the center indicates that the
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beam is aligned reasonably throughout the injector. Also, the lack of curvature to each of

the spots/lines indicates that aberration effects are minimal.

(a) Initial grid of laser spots as
measured on the laser ccd.

(b) Resulting beam image on
the viewscreen at the end of the
B1 merger.

Figure 4.9: Alignment check using a grid of laser spots (a) and the resulting beam image on
the viewscreen at the end of the B1 merger section (b).

4.4.1.4 Beam Sizes and Thermal Emittance

Before measuring emittance with nonzero bunch charge, we calibrated our emittance

measurement system and emittance analysis scripts by measuring the emittance at near-zero

bunch charge (q ≤ 0.03 pC). A baseline thermal emittance was measured after the gun and

before the cryomodule by scanning the current of the first solenoid and measuring the beam

spot size on a viewsreen downstream. By computing the linear transfer matrix through the

combined gun and solenoid fields, the emittance and initial rms beam spot size were

found using the method in [82]. Fig. 4.10(a) and 4.10(b) show the solenoid scan data and

fitted curve for the cathode used in this work. The resulting horizontal and vertical

emittances measured with the solenoid current scan were 0.12± 0.01 µm and 0.11± 0.01

µm respectively. To check the calibration of the EMS in the merger section, the projected
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horizontal and vertical phase space, as well as the horizontal time-resolved phase space were

measured. For these measurements, the 19 pC/bunch injector optics settings were used (see

Table 4.2), however the bunch charge was reduced so that space charge effects were

negligible.
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(a) Solenoid scan horizontal emittance data.
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(b) Solenoid scan vertical emittance data.
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(d) Vertical phase space in the merger.

Figure 4.10: Projected emittance measurement at the cathode using a solenoid scan (a-b), and
corresponding measurements in the merger section (c-d). Both the horizontal and
vertical emittance measured in the merger section agreed to within 9% of values
measured at the cathode. The colormap and normalization in (c-d) is used for all
subsequent phase-space plots in this work. The estimated error in for these
emittance values was ±0.01 µm.
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Fig. 4.10(c) and Fig. 4.10(d) show the projected emittance measured in the B1 merger

section with a beam momentum of roughly 8 MeV/c. The estimated systematic error in the

calibration of the merger EMS system was less than 7%. The horizontal and vertical

emittances from these measurements were 0.11± 0.01 and 0.12± 0.01, which agree with the

solenoid scan results to within the estimated error in both measurements. The same value

for the horizontal projected emittance, 0.11± 0.01 µm, was measured in the merger section

using the time-resolved EMS. These measurements not only verified the EMS diagnostics

and analysis procedures, but also provided an additional check of the orbit alignment.

As a final check of the optics settings in the machine and simulations, we measured the

transverse rms beam sizes at several locations along the injector with near-zero bunch

charge.
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Figure 4.11: Comparison of simulated and measured rms spot sizes along the beam line.

Fig. 4.11 shows the comparison of the simulated and measured rms spot sizes. The

optics settings were the same as those used in the EMS calibration measurements. The

measured values were computed from images of the beam on the A1 and A3 viewscreens,

and from the phase spaces measured in the merger section shown in Fig. 4.10(c) and

Fig. 4.10(d). The systematic uncertainty in these measurements due to the viewscreen

calibration and set-up resolution was estimated to be less than 5% for the direct viewscreen
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measurements. As Fig. 4.11 shows, excellent agreement between GPT and the measured

beam sizes was found.

4.4.2 Measurements with Space Charge

Two main data sets were produced for this work: one at 19 pC per bunch, and one at 77

pC. These correspond to 25 mA and 100 mA average current when operating at the full 1.3

GHz repetition rate. Each data set consists of a measurement of the projected horizontal

and vertical phase spaces, the time-resolved horizontal phase space, and the energy spread

distribution. All data was taken at the end of the merger section except the energy spread

data, which was measured using the A4 straight section and C2 bend section. From the

projected phase space the horizontal and vertical emittance as a function of beam fraction

was computed. Similarly, from the time-resolved phase spasce data, the slice emittance was

computed as a function of beam fraction, as well as the current profile along the bunch.

Refer to Appendix A for the emittance definitions used to characterize non-Gaussian phase

spaces.

4.4.2.1 Injector Settings and Simulation Parameters

To arrive at the final optics used for these experiments, optimizations of the GPT model

were carried out using a multi-objective genetic algorithm [34, 74]. In general, each

optimization was run with two competing objectives (e.g. minimizing the emittance at the

location of the merger EMS and maximizing the bunch charge), while varying the optics

settings (e.g. solenoid, rf, and quad settings). Upon convergence of the optimizer, this

produced an optimal front for the two objective variables. A complete list of the parameters

varied in the optimizer can be found in the first and second columns of Table 4.2. Note that
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for all optimizations, the gun voltage was fixed at 350 kV, and the beam energy was

constrained to be ≤ 8 MeV to reduce neutron production from the tungsten slits in the

EMS. The simulated temporal laser distribution was fixed to be roughly a flat-top with 8 ps

rms length, and was generated by adding 16 Gaussian pulses in accordance with the

temporal laser shaping system used for the injector [83]. The transverse laser profile was a

Gaussian truncated at 50% intensity with the resulting rms size varied in the optimizations.

Each simulation was run with a set of constraints which ensured the physicality of the

results and pushed the optimizer to explore regions of the variable space relevant to

achieving the injector design goals. The two most important constraints were the rms

bunch length: σt ∼ 2 ps, and the rms energy spread σδ ∼ 0.1 to 0.2 %. Note that these

values are slightly more stringent than the quoted design goals in Table 4.1.

Optics solutions from the last set of optimizations were loaded into the GPT virtual

accelerator GUI, and then tested in the injector. Doing so led to the recognition of a

common feature to all of the optimized solutions: the optimizer always focused the beam

through a waist at exactly the position of the EMS in the merger. As the experiment

proceeded, another general trend was observed using the virtual accelerator GUI. Optimized

solutions which kept the beam sizes small, particularly in the straight section and merger,

gave better measured emittance results. The settings used in the final measurements

presented here were both derived from one optimization solution for 50 pC bunch charge, as

this optics setting kept the beam sizes reasonably small through the entire injector. Using

this parameter set as a starting point in our virtual accelerator interface, the bunch

charge was reduced from 50 to 19 pC while adjusting the magnet and buncher settings to

compensate for the reduced space charge effects, as well as scaling the laser spot diameter

in accordance with σx,y ∝ √q. This allowed us to keep the simulated spot sizes small

through the injector, while also maintaining the location of the beam focus at the position
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of the merger EMS. The procedure was then started over, raising the charge from 19 to 77

pC. This time the phases of the first two SRF cavities, and the voltage and phase of the

last SRF cavity were also adjusted in order to maintain small emittance values at the

merger EMS.

These settings were then loaded into the injector and the measured projected emittance

was minimized by scanning both solenoid currents and adjusting the intensity cut off value

in the measured transverse laser profile. Fig. 4.12 shows the measured laser profiles for used

in the final measurements and the corresponding profiles used in the final GPT simulations.

The final solenoid currents used in the injector were within 3% of the simulation values.

The quads in the B1 section were also adjusted slightly for both optics settings, but kept

within 4% of the simulations. These slight adjustments to the simulated injector settings

are believed to be a consequence of hysteresis effects in the magnets, as well as error in the

calibration factors used to convert machine parameters to simulation parameters. Fig. 4.13

shows the rms beam sizes, projected horizontal and vertical emittances, kinetic energy, and

bunch lengths computed using the final simulation optics values. Table 4.2 shows injector

settings and parameters used in measurements. The beam kinetic energy measured after

the cryomodule was 7.5 and 7.7 MeV for the two bunch charges respectively.
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(c) Radial laser intensity for the 19 pC/bunch
settings.
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(d) Radial laser intensity for the 77 pC/bunch
settings.

Figure 4.12: Verification of the initial transverse laser spot in the injector and GPT input file:
(a) and (b) show the measured laser spot on a ccd camera as they would appear
on the cathode. The uncertainty in the rms spot sizes is (a) ±0.01 mm, and (b)
±0.02 mm. The plots in (c) and (d) show the corresponding measured radial laser
intensity (blue) and matching truncated Gaussian (red) used in simulation.
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(a) RMS beam sizes for 19 pC/bunch.
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(b) RMS beam sizes for 77 pC/bunch.
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(c) Projected emittance for 19 pC/bunch.
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(d) Projected emittance for 77 pC/bunch..
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(e) Kinetic energy and bunch length for 19 pC/bunch.
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(f) Kinetic energy and bunch length for 77 pC/bunch.

Figure 4.13: Simulation data for the 19 pC/bunch (left) and 77 pC/bunch (right) injector
settings: (a-b) show the rms beam size along the injector, (c-d) show the projected
horizontal and vertical emittances, and (e-f) shows both the kinetic energy (left
axis) and rms bunch length (right axis).
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4.4.2.2 Projected Emittance Results

As previously discussed, measuring low projected emittance after the merger section that

scales according Eq. (4.1), and meets the design specification of the injector was one the

main goals of this work. Tables 4.3(a) and 4.3(b) show the best projected emittance data

from measurement as well as the corresponding GPT simulation values. The measured

emittance data was processed with removal of a near constant background via an automatic

bias determination routine similar to the methods described in [32, 93]. The processed

data was then used to determine the 100% beam emittance, as well as to generate the

emittance vs. fraction curve, defined in Eqs. (A.2) and (A.3), and the corresponding

core emittance and core fraction, defined in Eq. (A.4). These curves are shown for the

horizontal and vertical projected phases at 19 (77) pC/bunch in Fig. 4.14. All of these

procedures were automated and available to operators in the control room after each

emittance measurement scan (lasting typically several seconds). Further details of the data

processing and experimental procedures can be found in Appendix!!!! The measured 19

(77) pC/bunch horizontal and vertical projected 100% emittances agreed with the GPT

model to within 6 (5) % and 25 (8) %, respectively. Similarly, the measured horizontal and

vertical 90% emittances agreed with GPT to within 21 (16) % and 27 (16) %, respectively.

We point out that the measured horizontal and vertical 100%, 90%, and core emittances

obey the expected scaling law εn ∝ √q. Also of note is the fact the horizontal core

emittance for 77 pC meets the injector design specification for an ERL. In the vertical

plane, both the 90% and core emittance meet this specification. For comparison purposes,

Fig. 4.15(a) and Fig. 4.15(b) show the measured and simulated phase spaces after the

merger for both the horizontal and vertical planes with near-zero, 19, and 77 pC/bunch.
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Table 4.2: Injector optics settings.

Element Parameter 19 pC/bunch Values 77 pC/bunch Values

laser pinhole (mm) 1 2

laser intensity cut off (%) 40 35

laser rms pulse length (ps) 8 8

DC gun voltage (kV) 350 350

solenoid 1 peak field (T) 0.032 0.031

buncher voltage (kV) 50 60

buncher phase (deg) -90 -90

solenoid 2 peak field (T) -0.020 -0.020

SRF cavity 1 voltage (kV) 1491 1491

SRF cavity 1 phase (deg) -10 -10

SRF cavity 2 voltage (kV) 1953 1953

SRF cavity 2 phase (deg) -16 -7

SRF cavity 3 voltage (kV) 1386 1386

SRF cavity 3 phase (deg) 0 0

SRF cavity 4 voltage (kV) 1386 1386

SRF cavity 4 phase (deg) 0 0

SRF cavity 5 voltage (kV) 1386 1500

SRF cavity 5 phase (deg) 0 -20

A3 quad 1
∫
G(z)dz ([T/m]·m) 0.013 0.013

A3 quad 2
∫
G(z)dz ([T/m]·m) -0.033 -0.033

A3 quad 3
∫
G(z)dz ([T/m]·m) -0.016 -0.016

A3 quad 4
∫
G(z)dz ([T/m]·m) 0.029 0.029

B1 quads
∫
G(z)dz ([T/m]·m) -0.017 -0.016
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Table 4.3: Measured and simulated projected horizontal (a), and vertical (b) emittances.
Emittance values are quoted in [µm].

(a) Horizontal projected emittance data.

19 pC Data Type εn,x(100%) εn,x(90%) εn,x(core) fcore εn,x(core)/fcore

Projected EMS 0.33± 0.02 0.23± 0.02 0.14± 0.01 67% 0.21± 0.01

Time-res. EMS 0.28± 0.02 0.21± 0.01 0.14± 0.01 72% 0.19± 0.01

Simulation 0.31 0.19 0.07 59% 0.12

77 pC Data Type εn,x(100%) εn,x(90%) εn,x(core) fcore εn,x(core)/fcore

Projected EMS 0.69± 0.05 0.51± 0.04 0.28± 0.2 64% 0.44± 0.03

Time-res. EMS 0.66± 0.05 0.48± 0.04 0.29± 0.2 67% 0.43± 0.03

Simulation 0.72 0.44 0.17 51% 0.33

(b) Vertical projected emittance data.

19 pC Data Type εn,y(100%) εn,y(90%) εn,y(core) fcore εn,y(core)/fcore

Projected EMS 0.20± 0.01 0.14± 0.01 0.09± 0.01 70% 0.13± 0.01

GPT Simulation 0.16 0.11 0.06 64% 0.09

77 pC Data Type εn,y(100%) εn,y(90%) εn,y(core) fcore εn,y(core)/fcore

Projected EMS 0.40± 0.03 0.29± 0.02 0.19± 0.01 70% 0.27± 0.01

GPT Simulation 0.37 0.25 0.11 59% 0.19
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(a) Horizontal 19 pC/bunch data.
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(b) Horizontal 77 pC/bunch data.
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(c) Vertical 19 pC/bunch data.
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(d) Vertical 77 pC/bunch data.

Figure 4.14: Emittance versus fraction curves: (a-b) the curves computed from the measured
horizontal phase space data at 19 and 77 pC/bunch, (c-d) the curves computed
from the measured vertical phase space data at 19 and 77 pC/bunch.

4.4.2.3 Time-resolved Phase Space and Energy Spread Results

In order to satisfy the injector design requirements, it was important to verify that the

emittance values were measured with an acceptable bunch length (σt ≤ 3 ps). The rms

bunch length was computed from the instantaneous current of each bunch measured with

the time-resolved merger EMS. Fig. 4.16(a) and 4.16(b) shows both the measured and

simulated bunch current for the 19 pC/bunch and 77 pC/bunch data, respectively. The

109



0.5 0 0.5 1 1.5 2 2.5 3

40

20

0

20

40

60

80

100

120

x (mm)

x×
10

00

GPT

data

77 pC19 pC0 pC

(a) Horizontal phase-space as a function of bunch charge.
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(b) Vertical phase-space as a function of bunch charge.

Figure 4.15: Comparison of the measured and simulated projected transverse phase-space as a
function of bunch charge. Plot (a) shows the the horizontal phase-space, while (b)
shows the vertical phase-space. Corresponding emittance values can be found in
Table 4.3.
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(a) Instantaneous current at 19 pC/bunch.
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(b) Instantaneous current at 77 pC/bunch.

Figure 4.16: Comparison of the measured beam current to GPT simulation. The estimated
uncertainty in the rms bunch lengths was (a) ±0.1 ps and (b) ±0.2 ps.

rms bunch lengths for the 19 (77) pC per bunch settings were measured to be 2.1± 0.1

(3.0± 0.2) ps, respectively, while GPT gave bunch lengths of 2.2 (3.1) ps, respectively. The

agreement between measurement and GPT was within 5% in both cases. As Fig. 4.16(a)

shows, the qualitative agreement between data and simulation was good for the 19

pC/bunch measurement. The difference in the overall scaling between the measured and

simulated data for this setting is due to the normalization of the data to the bunch charge.

In the 77 pC/bunch case, the qualitative agreement between measurement and simulation,

shown in Fig. 4.16(b), was excellent.

In addition to measuring the bunch length, the time-resolved emittance was measured

both because it is of interest to FEL applications and to elucidate the character of the

emittance growth in the merger. Fig. 4.17 shows the core and 90% emittance for both the

19 and 77 pC measurements. For the 19 pC data, both emittances are relatively constant

over the bunch length. Similarly, for the 77 pC data, the core emittance is constant over

the majority of the bunch length. Also important is the fact that the core emittance for

this data is below the design specification for the injector. The time-resolved emittance
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(a) 19 pC/bunch slice emittance data.
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(b) 77 pC/bunch slice emittance data.

Figure 4.17: The 90% and core slice emittance for: (a) 19 pC/bunch, (b) 77 pC/bunch.

measurements provide a very elegant way of viewing the resulting phase space distributions.

Fig. 4.18 shows the three-dimensional representation of the time-resolved phase space for

both data sets. The 3D representation demonstrates that the z-shaped features seen in the

projected emittance in Fig. 4.15(a) are actually a real effect formed along the time axis.

The last quantity measured was the rms energy spread. To do so, the beam was sent

through the A4 straight section, followed by a single dipole and viewscreen in the C2

section (see Fig. 4.1). Before entering the dipole, the beam was clipped by passing it

through a crossed pair of emittance measurement slits. The emittance measurement scanner

magnets in this section were set so that crossed slits selected out a beamlet from the

centroid of the horizontal and vertical phase spaces. Table 4.4 shows the simulated and

measured rms energy spread in the straight section, as well as simulated values in the B1

merger. The measured values were computed from the 1D dimensional energy spread

distribution obtained on the viewscreen in the C2 section using a 10% threshold to remove

background noise. The values are slightly smaller than simulation, which is likely due to the

fact that we were only measuring the energy spread of a single transverse beamlet, while

112



(a) 60% isosurface plot of the 19 pC data. (b) 60% isosurface plot of 19 pC data showing inner
isosurfaces.

(c) 60% isosurface plot of the 77 pC data. (d) 60% isosurface plot of 77 pC slice emittance
data showing inner isosurfaces.

Figure 4.18: Time-resolved phase space data: (a) 60% isosurface plot of the 19 pC data, (b)
60% isosurface plot of 19 pC slice emittance data showing inner isosurfaces,
(c) 60% Isosurface plot of the 77 pC time-resolved phase-space, and (d) 60%
isosurface plot of 77 pC slice emittance data showing inner isosurfaces.

the simulated values are computed from the entire beam distribution. While we did not

measure the energy spread directly in the merger section, the agreement found between

measurement and simulation for emittance and bunch length lead us to conclude that the
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Table 4.4: Simulated and measured rms energy spread as a function of bunch charge.

Data Type GPT Simulation Measurement

19 pC/bunch, A4 Section 0.16% 0.14± 0.01%

19 pC/bunch, B1 Section 0.12% N/A

77 pC/bunch, A4 Section 0.27% 0.26± 0.01%

77 pC/bunch, B1 Section 0.21% N/A

values measured in the straight section at least provide an upper bound on the energy

spread in the merger, following the same trend found in the simulation data.

4.5 Conclusion and Discussions

A comprehensive model of the Cornell ERL injector has been constructed using the space

charge code GPT. After verifying the accuracy of the GPT model against linear optics

measurements in the injector, multi-objective optimizations of the model were carried out in

order to find optics settings with which to measure low emittance after the merger section

in the injector. In addition, a user interface between the GPT code, the optimizer solutions,

and the injector was developed. This interface provided visualization of relevant simulation

data in one-to-one correspondence with measured data, and allowed users to explore

adjustments of the injector optics in simulation while in the control room, often in near real

time with measurements. Using this interface, and starting from a single optimized setting

of the injector model, optics sets for both 19 pC and 77 pC bunch charges were found which

kept both the simulated rms beam sizes small throughout the injector, in addition to

preserving the minimized emittance at the end of the merger section. These settings were

then loaded into the injector, and the phase space data for each bunch charge was taken.

The resulting data sets include the vertical and horizontal projected phase spaces, as
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well as the time-resolved horizontal phase space at the merger EMS, and the energy

spread distribution in the A4 straight section. Overall, we found excellent agreement

between measurement and simulation. For both bunch charges, the agreement between the

measured projected 100 and 90% emittance values was within 30% of the simulated

values in both transverse planes. We point out that for 77 pC/bunch, the measured

90% emittance in vertical plane, as well as the core emittance in both planes, meets the

ERL design specification of εn ≤ 0.3 µm. The projected emittance in both transverse

planes demonstrates the correct scaling with bunch charge shown in Eq. (4.1). Using the

time-resolved horizontal phase data, the longitudinal bunch profile and time-resolved

emittance were computed. The measured rms bunch length for both bunch charges was at

or below the 3 ps specification, and agreed with simulation to within 5%. For both bunch

charges, the time-resolved core emittance met the ERL specification. Finally, an estimation

of the energy spread of the beam in merger was found by measuring the energy spread in

the straight section. Agreement between the measured and simulated rms energy spread

was within 13% for both bunch charges.

These results represent a significant advancement in high-brightness photoinjectors. The

measured emittances in this work set a new record low for DC photoinjectors producing

beams with comparable bunch charge. To put these results in a broader picture, it is

instructive to compare the performance of the Cornell injector for its designed application

of a 5 GeV x-ray ERL to the beam quality of existing storage rings. For this comparison,

we assume a 100 mA, 1 nm-rad horizontal emittance storage ring with 10−3 energy spread

and 1% coupling factor, representing the best of existing third generation light sources [15].

As a figure of merit for non-Gaussian beams, it is convenient to use the effective transverse

average beam brightness over the rms energy spread of the beam at the location of an

115



undulator: (
I · fx · fy

εx(fx) · εy(fy)

∣∣∣∣
core

)
× 1

σδ
. (4.8)

Here εx and εy are the transverse geometric emittance values as a function of the horizontal

and vertical beam fractions, respectively. The energy spread is included in this expression to

reflect the fact that undulators with larger number of periods can be more efficiently utilized

for beams with smaller energy spread. In an ERL, the energy spread after the main linac

will be defined by the RF curvature and the bunch length according to (2πfrf · σt)2/
√

2 [94].

Using our 19 pC/bunch data, and assuming the full repetition rate, the estimated energy

spread and effective average brightness of a 1.3 GHz, 5 GeV ERL yields a higher transverse

brightness over the best storage ring by a factor of 20.

Looking forward, we point out that the measurements shown here demonstrate two

crucial points: (i) that low emittances reported previously in simulations [34, 74] are

well within the reach of the next planned iteration of the photoinjector; and (ii) the

relevant physics and control parameters required to produce these low emittances are

now understood. In developing a plan for reducing the emittance further, we note that

optimization results indicate that lower emittances and shorter bunch lengths at the

end of the merger are possible at higher beam energies [85]. As a result, the optimal

photoinjector for a future ERL light source will operate at higher beam energies (roughly 12

MeV) than those used in this work [19]. Eq. (4.1) shows two more directions for further

improvement. For a given bunch charge, the emittance in this equation can be reduced by

lowering photocathode MTE, or by increasing the accelerating field at the cathode. In fact,

the results for the vertical emittance demonstrate that the emittance in this plane is

dominated by the thermal emittance, and thus colder cathodes are required. Currently,

there is an active cathode research program at Cornell University dedicated to improving

cathode performance [95]. Already, cathodes with MTE values as low as 30 meV have been
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experimentally realized both for negative affinity and multi-alkali photocathodes [96]. In

parallel, Cornell is developing an improved DC gun, in order to overcome the current

voltage limitation. The new gun design features a segmented insulator with guard rings [97]

in order to minimize damaging the insulator from field emission. Lastly, improved laser

shaping will aid in creating bunches with more linear space charge fields. According to the

rough scaling law in Eq. (4.1), as well as more detailed calculations reported in [19, 34],

these improvements are expected to reduce the emittance in the photoinjector by roughly a

factor of 3, resulting in a beam brightness roughly 10 times higher than reported here. This

ability to independently improve critical elements in the injector, resulting in better

performance, is one of the major strengths of a linac based accelerator.
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APPENDIX A
Emittance Definitions

Here we provide the relevant emittance definitions used in this work to describe

non-Gaussian phase space distributions. We use the standard definition of the normalized

transverse rms emittance:

εn =
1

mc

√
〈x2〉〈p2

x〉 − 〈xpx〉2 =
√
〈x2〉〈γ2β2

x〉 − 〈x · γβx〉2, (A.1)

where γ and βx are the normalized energy and transverse velocity of each electron. In

this and all following expression the subscript “n” is used to distinguished between the

normalized emittance εn and geometric emittance ε, which are related by εn = (γβ) · ε. In

this and all subsequent expressions, 〈u〉 denotes the average over the particle distribution in

phase space: 〈u〉 =
∫∫
u(x, px)ρ(x, px)dxdpx, where ρ(x, px) is the normalized 2D phase

space distribution function. The rms emittance as a function of beam fraction is defined as

follows [98]. For an area in phase space πa, an ellipse with Twiss parameters given by

T =

(
βn −αn
−αn γn

)
,

is defined so that the phase space region enclosed by the ellipse is given by d(a, T ) ={
x : xTT−1x ≤ a

}
, where x = (x, px)

T. The twiss parameters in T are varied until the

fraction of particles enclosed in the ellipse is maximized. Labeling this phase space region

D(a), the beam fraction is defined as:

f(a) = max

{∫∫
d(a,T )

ρ(x, px)dxdpx

}
=

∫∫
D(a)

ρ(x, px)dxdpx. (A.2)
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The corresponding fractional emittance takes the form

εn(a) =
1

mc

√
〈x2〉D〈p2

x〉D − 〈xpx〉2D, (A.3)

where 〈u〉D = 1
f(a)

∫∫
D(a)

uρ(x, px)dxdpx. The parametric curve defined by {f(a), εn(a)} is

the emittance vs. fraction curve εn(f). Also important for understanding emittances of

non-Gaussian beams are the definitions of the core emittance and corresponding core

fraction [27, 98]:

εn(core) =
dεn
df

∣∣∣∣
f→0

, fcore : εn(fcore) = εn(core).

(A.4)

For comparison purposes, the emittance vs. fraction curve for 2D uniform, elliptical, and

Gaussian distributions have been computed. To do so the correlation between x and px has

been removed and the coordinates rescaled so that the distributions can be written as radial

functions of the normalized coordinate r̂ =
√
x̂2 + p̂2

x. Additionally, the distributions are

parameterized so that the resulting emittance vs. fraction curve ε̂n(f) is normalized:

ε̂n(f = 1) = 1. Fig A.1(a) shows each of the three distributions as a function of the

normalized radial coordinate. The corresponding emittance vs. fraction curves are shown

in Fig. A.1(b). From these curves the 90% and core emittance (relative to the 100%

emittance) can be computed. Table A.1 gives these ratios, as well as the core fraction, for

each distribution. For additional discussion on the connection between core emittance and

brightness, see [98].
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Figure A.1: Example transverse phase space distributions as a function of the normalized
coordinates r̂2 = x̂2 + p̂2

x (a), and the corresponding emittance vs. fraction curves
(b). Dashed lines indicate core emittance and core fraction values.

Table A.1: The scaled emittance and fraction data for various phase-space distributions.

Distribution Type ε̂n(90%) ε̂n(core) fcore ε̂n(core)/fcore

uniform 0.90 1 100% 1

elliptical 0.87 5/6 87% 0.96

Gaussian 0.74 1/2 72% 0.69

120



APPENDIX B
Phase Space Noise Subtraction

It is well known that a density distribution with a nonzero noise offset leads to

significantly higher second moments. All of the raw measured phase spaces in Chapter

§4 had such a background, and subsequently, several procedures had to be developed

before the second moments and emittance could be reliably extracted from the data. The

analysis procedures used are split into two cases: projected phase space measurements and

time-resolved (horizontal) phase space measurements.

B.1 Projected Phase Space Distributions

Performing a projected phase measurement yields the 2D transverse distribution function

ρ = ρ(x, P ), where P = px/mc = γβx. An example phase space is shown in Fig. B.1(a). It

is clear from this image that both a constant noise offset and sinusoidal feature along the

x-axis are present. This sinusoidal variation is attributed to 60 Hz noise in the measurement

system. Before removing these backgrounds, a 2D interpolation of the distribution function

was done in order to use the scanner magnet current read-backs (as opposed to the

command values) used to perform the phase space measurements. This was done with the

gridfit Matlab package [99].

After this, the 60 Hz effect was removed in a four step process described below:

121



1. Select the 1D distribution function ρi(P ) = ρ(x = xi, P ) for the ith value along the

x-axis.

2. Define the noise region along this column of data using a user specified threshold T

(typically 3%): Rnoise(P ) = {P : ρi(P ) < T ·max[ρi(P )]}.

3. Compute the average noise value for this region: N̄i = 1
∆P

∫
Rnoise(P )

ρi(P )dP .

4. Subtract the noise from the initial distribution: ρ(xi, P ) = ρ0(xi, P )− N̄i.

Having removed any possible 60 Hz distortions along the x-axis, the remaining

background offset is subtracted out using a method based on the SCUBEEx algorithm [93].

This outline of this algorithm used in this work is given below:

1. An initial estimate of the background noise is made using the outer 5% of the phase

space data area: Rnoise(x, P ) = {(x, P ) : (x, P ) ≤ 1.05 · (xmin, Pmin)
⋃

(x, P ) ≥

0.95 · (xmax, Pmax)}.

2. Compute the average noise: N̄ =
∫∫
R(x,p)

ρ(x, P )dP/
∫∫
R(x,p)

dP .

3. Subtract the noise from the distribution: ρ(x, P ) = ρ0(x, P )− N̄ , and use this to

compute the Σ matrix and emittance:

Σ =

(
〈x2〉 〈xP 〉
〈xP 〉 〈P 2〉

)
, εn,x =

√
det[Σ].

4. Compute the corresponding Twiss matrix T = Σ/εn,x, and define the noise region as

Rnoise = {(x, P ) : (x, P )T−1(x, P )T ≥ Nε2n,x. This correspondes to defining the noise

as lying outside Nσ of a Gaussian distribution. Typically N = 5.

5. Repeat 2-4 for a desired number of times (typically 5).
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The subtraction of background offset was calibrated against thermal emittance measurements

taken using a solenoid scan in the A1 emittance compensation section. Fig. B.1 shows how

the removal of the 60 Hz noise lead more consistent results. The top row of the figure shows

how the 60 Hz noise subtraction reduced the emittance substantially when the signal to

noise ratio was relatively lower. In this case the 60 Hz noise subtraction reduced the

emittance from 0.92 µm to 0.73 µm. The bottom row of the figure shows the same phase

space measured with better signal to noise. In this case the emittance was hardly changed.

The results both give emittances around 0.7 µm.

B.2 Time-resolved Phase Space Distributions

A detailed description of the time-resolved measurement process is given in [35]. For every

current setting of the two EMS scanners, a snapshot of the beamlet passed through the

EMS system with the deflector on is taken on a downstream viewscreen. The distribution

describes a time resolved phase space. Noise subtraction in this case must be performed on

each snapshot. Note that the vertical axis in each snapshot, labeled y, is a dummy variable,

and is eventually integrated out. The noise subtraction process for each snapshot is detailed

below:

1. Load the intensisty profile (snapshot) and only save data within a rectangular region

of interest supplied by the user.

2. Apply an upper threshold TH to define the initial noise region: Rnoise,H(t, y) =

{(t, y) : ρ(t, y) < TH ·max[ρ(t, y)]}.

3. Grow the boundary of this region using a simple convolution function which smears
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(a) 60 Hz present, εn,x = 0.92 µm.
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(b) 60 Hz noise subtracted, εn,x = 0.73.
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(c) Same as (a), but better signal to noise, εn,x = 0.7
µm.
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(d) 60 Hz noise subtracted, εn,x = 0.69 µm.

Figure B.1: Comparison of two phase space measurements before and after 60 Hz noise
removal.

out the boundary by several phase space pixels. The boundary is grown until a lower

threshold TL is reached: Rnoise,L = {(t, y) : ρ(t, y) < TL ·max[ρ(t, y)]}.

4. Compute the average noise outside of the data region: N̄ =
∫∫
R(x,p)

ρ(x, P )dP/
∫∫
R(x,p)

dP .

5. Subtract the average noise from the distribution data: ρ = ρ0 − N̄ .
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The snapshot is then used in computing the time-resolved phase space as described in [35].

This method was calibrated against both the projected noise subtraction algorithm and a

measurement of the thermal emittance in the machine using a solenoid scan.

125



References

1. D. Iwanenko and I. Pomeranchuk, “On the maximal energy attainable in a betatron,”
Phys. Rev. 65 (Jun, 1944) 343–343.
http://link.aps.org/doi/10.1103/PhysRev.65.343. 1

2. F. R. Elder, R. V. Languir, and H. C. Pollock, “Radiation from electrons accelerated in
a synchrotron,” Phys. Rev. 74 no. 1, (July, 1948) 52–56. 1

3. J. P. Blewett, “Synchrotron radiation - early history,” J. Synchrotron Rad. 5 (1998)
135–139. 1

4. G. A. Schott, Electromagnetic Radiation. Cambridge University Press., 1912. 1

5. D. H. Tomboulian and P. L. Hartman, “Spectral and angular distribution of ultraviolet
radiation from the 300-mev cornell synchrotron,” Phys. Rev. 102 (Jun, 1956)
1423–1447. http://link.aps.org/doi/10.1103/PhysRev.102.1423. 1

6. J. P. Blewett, “Radiation losses in induction electron accelerators,” Phys. Rev. 69 no. 3
and 4, (February, 1946) 87–95. 2

7. J. Schwinger, “On the classical radiation of accelerated electrons,” Phys. Rev. 75 (Jun,
1949) 1912–1925. http://link.aps.org/doi/10.1103/PhysRev.75.1912. 2

8. J. D. Jackson, Classical Electrodynamics. John Wiley and Sons, Inc., 2nd ed., 1975.

9. A. Hofmann, The Physics of Synchrotron Radiation. Cambridge University Press., July,
2004. 2, 5

10. H. Winick, “Fourth generation light sources,” SLAC-PUB 7525, Stanford Linear
Accelerator Center, Stanford Universtiy, May, 1997. 3, 4, 6

11. G. N. Kulipanov, “Ginzburg’s invention of undulators and their role in modern
synchrotron radiation sources and free electron lasers,” Physics-Uspekhi 50 no. 4, (2007)
368. http://stacks.iop.org/1063-7869/50/i=4/a=R06. 3

12. http://www.esrf.eu/Accelerators/news/art-undulator, 2013.
http://www.esrf.eu/Accelerators/news/art-undulator. 4

13. http://xdb.lbl.gov/, 2009. http://xdb.lbl.gov/. 5

14. A. Chao and W. Chou, eds., Reviews of Accelerator Science and Technology, vol. 1.
World Scientific Publishing Co. Pte. Ltd., Singapore, 2008. 5, 6

15. https://photon-science.desy.de/facilities/petra_iii/machine/

parameters/index_eng.html, 2013. https://photon-science.desy.de/facilities/

petra_iii/machine/parameters/index_eng.html. 6, 115

16. AmannJ., BergW., BlankV., D. J., DingY., EmmaP., FengY., FrischJ., FritzD.,
HastingsJ., HuangZ., KrzywinskiJ., LindbergR., LoosH., LutmanA., N. D., RatnerD.,
RzepielaJ., ShuD., Shvyd’koYu., SpampinatiS., StoupinS., TerentyevS., TrakhtenbergE.,
WalzD., WelchJ., WuJ., ZholentsA., and ZhuD., “Demonstration of self-seeding in a

126

http://dx.doi.org/10.1103/PhysRev.65.343
http://link.aps.org/doi/10.1103/PhysRev.65.343
http://dx.doi.org/10.1103/PhysRev.102.1423
http://dx.doi.org/10.1103/PhysRev.102.1423
http://link.aps.org/doi/10.1103/PhysRev.102.1423
http://dx.doi.org/10.1103/PhysRev.75.1912
http://dx.doi.org/10.1103/PhysRev.75.1912
http://link.aps.org/doi/10.1103/PhysRev.75.1912
http://stacks.iop.org/1063-7869/50/i=4/a=R06
http://www.esrf.eu/Accelerators/news/art-undulator
http://www.esrf.eu/Accelerators/news/art-undulator
http://xdb.lbl.gov/
http://xdb.lbl.gov/
https://photon-science.desy.de/facilities/petra_iii/machine/parameters/index_eng.html
https://photon-science.desy.de/facilities/petra_iii/machine/parameters/index_eng.html
https://photon-science.desy.de/facilities/petra_iii/machine/parameters/index_eng.html
https://photon-science.desy.de/facilities/petra_iii/machine/parameters/index_eng.html


hard-x-ray free-electron laser,” Nat Photon 6 no. 10, (10, 2012) 693–698.
http://dx.doi.org/10.1038/nphoton.2012.180. 7

17. D. Pile, “X-rays: First light from sacla,” Nat Photon 5 no. 8, (08, 2011) 456–457.
http://dx.doi.org/10.1038/nphoton.2011.178.

18. H. H. Braun, “The future of x-ray fels,” in Proceedings of IPAC2012, no. FRYAP01.
2012. 7

19. I. V. Bazarov, S. A. Belomestnykh, D. H. Bilderback, M. G. Billing, J. D. Brock, B. W.
Buckley, S. S. Chapman, E. P. Chojnacki, Z. A. Conway, J. A. Crittenden, D. Dale,
J. A. Dobbins, B. M. Dunham, R. D. Ehrlich, M. P. Ehrlichman, K. D. Finkelstein,
E. Fontes, M. J. Forster, S. W. Gray, S. Greenwald, S. M. Gruner, C. Gulliford, D. L.
Hartill, R. G. Helmke, G. H. Hoffstaetter, A. Kazimirov, R. P. Kaplan, S. S. Karkare,
V. O. Kostroun, F. A. Laham, Y. H. Lau, Y. Li, X. Liu, M. U. Liepe, F. Loehl,
L. Cultrera, T. Miyajima, C. E. Mayes, J. M. Maxson, A. Meseck, A. A. Mikhailichenko,
D. Ouzounov, H. S. Padamsee, S. B. Peck, M. A. Pfeifer, S. E. Posen, P. G. Quigley,
P. Revesz, D. H. Rice, U. Sae-Ueng, D. C. Sagan, J. O. Sears, V. D. Shemelin, C. K.
Sinclair, D. M. Smilgies, E. N. Smith, K. W. Smolenski, C. Spethmann, C. Song,
T. Tanabe, A. B. Temnykh, M. Tigner, N. R. A. Valles, V. G. Veshcherevich, Z. Wang,
A. R. Woll, Y. Xie, and Z. Zhao, “Cornell energy recovery linac project definition
design report,” tech. rep., Cornell University, September, 2012. 8, 10, 78, 116, 117

20. M. Tigner, “A possible apparatus for electron clashing-beam experiements,” Nuovo
Cimento 37 (1965) 1228–1231. 8

21. IPAC2012, ed., Review of ERL Projects at KEK and Around the World, no. TUXB02.
Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012. 10

22. W. Coene, G. Janssen, M. Op de Beeck, and D. Van Dyck, “Phase retrieval through
focus variation for ultra-resolution in field-emission transmission electron microscopy,”
Phys. Rev. Lett. 69 (Dec, 1992) 3743–3746.
http://link.aps.org/doi/10.1103/PhysRevLett.69.3743. 12

23. M. E. Read, G. Miram, R. Ives, V. Ivanov, and A. Krasnykh, “A gridded electron gun
for a sheet beam klystron,” SLAC-PUB 13205, Stanford Linear Accelerator Center.

24. P. Kung, H.-c. Lihn, H. Wiedemann, and D. Bocek, “Generation and measurement of
50-fs (rms) electron pulses,” Phys. Rev. Lett. 73 (Aug, 1994) 967–970.
http://link.aps.org/doi/10.1103/PhysRevLett.73.967.

25. P. of the 1992 Linear Accelerator Conference, ed., Generation of Multi-bunch Beam with
Thermionic Gun for the Japan Linear Collider. Ottawa, Ontario, Canada, 1992. 12

26. B. Dunham, J. Barley, A. Bartnik, I. Bazarov, L. Cultrera, J. Dobbins, G. Hoffstaetter,
B. Johnson, R. Kaplan, S. Karkare, V. Kostroun, Y. Li, M. Liepe, X. Liu, F. Loehl,
J. Maxson, P. Quigley, J. Reilly, D. Rice, D. Sabol, E. Smith, K. Smolenski, M. Tigner,
V. Vesherevich, D. Widger, and Z. Zhao, “Record high-average current from a
high-brightness photoinjector,” Applied Physics Letters 102 no. 3, (2013) 034105.

127

http://dx.doi.org/10.1038/nphoton.2012.180
http://dx.doi.org/10.1038/nphoton.2011.178
http://dx.doi.org/10.1103/PhysRevLett.69.3743
http://link.aps.org/doi/10.1103/PhysRevLett.69.3743
http://dx.doi.org/10.1103/PhysRevLett.73.967
http://link.aps.org/doi/10.1103/PhysRevLett.73.967
http://dx.doi.org/10.1063/1.4789395


http://link.aip.org/link/?APL/102/034105/1. 12, 17, 20, 21, 79, 81, 83, 96

27. I. V. Bazarov, B. M. Dunham, and C. K. Sinclair, “Maximum achievable beam
brightness from photoinjectors,” Phys. Rev. Lett. 102 (Mar, 2009) 104801.
http://link.aps.org/doi/10.1103/PhysRevLett.102.104801. 12, 80, 119

28. M. Reiser, Theory and Design of Charge Particle Beams. WILEY-VCH Verlag GmbH
and Co. KGaA, 2008. 12, 13, 14, 28

29. B. E. Carlsten, “Nuclear instruments and methods in physics research uclear
instruments and methods in physics research uclear instruments and methods in
physics research uclear instruments and methods in physics research new photoelectric
injector design for the los alamos national laboratory xuv fel accelerator,” Nuclear
Instruments and Methods in Physics Research A (1989) 313–319. 16, 80

30. L. Serafini and J. B. Rosenzweig, “Envelope analysis of intense relativistic quasilaminar
beams in rf photoinjectors:ma theory of emittance compensation,” Phys. Rev. E 55
(Jun, 1997) 7565–7590. http://link.aps.org/doi/10.1103/PhysRevE.55.7565. 16,
80

31. K.-J. Kim, “Rf and space-charge effects in laser-driven rf electron guns,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 275 no. 2, (1989) 201 – 218.
http://www.sciencedirect.com/science/article/pii/0168900289906888. 31, 65,
80

32. I. V. Bazarov, B. M. Dunham, C. Gulliford, Y. Li, X. Liu, C. K. Sinclair, K. Soong,
and F. Hannon, “Benchmarking of 3d space charge codes using direct phase space
measurements from photoemission high voltage dc gun,” Phys. Rev. ST Accel. Beams
11 (Oct, 2008) 100703. http://link.aps.org/doi/10.1103/PhysRevSTAB.11.100703.
12, 81, 83, 84, 95, 106

33. J. Rees, “Symplecticity in beam dynamics: An introduction,” SLAC-PUB 9939,
Stanford Linear Accelerator Center. 13

34. I. V. Bazarov, A. Kim, M. N. Lakshmanan, and J. M. Maxson, “Comparison of dc and
superconducting rf photoemission guns for high brightness high average current beam
production,” Phys. Rev. ST Accel. Beams 14 (Jul, 2011) 072001.
http://link.aps.org/doi/10.1103/PhysRevSTAB.14.072001. 15, 17, 19, 79, 80, 95,
101, 116, 117

35. H. Li, Mutli-dimensional Characterization of the Laser and Electron Beams of the
Cornell Energy Recovery Linac Photoinjector Prototype. PhD thesis, Cornell University,
August, 2012. 15, 81, 83, 84, 88, 95, 123, 125

36. J. Fraser, R. Sheffield, and E. Gray, “A new high-brightness electron injector for free
electron lasers driven by {RF} linacs,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
250 no. 12, (1986) 71 – 76.

128

http://link.aip.org/link/?APL/102/034105/1
http://dx.doi.org/10.1103/PhysRevLett.102.104801
http://link.aps.org/doi/10.1103/PhysRevLett.102.104801
http://dx.doi.org/10.1103/PhysRevE.55.7565
http://dx.doi.org/10.1103/PhysRevE.55.7565
http://link.aps.org/doi/10.1103/PhysRevE.55.7565
http://dx.doi.org/10.1016/0168-9002(89)90688-8
http://dx.doi.org/10.1016/0168-9002(89)90688-8
http://dx.doi.org/10.1016/0168-9002(89)90688-8
http://www.sciencedirect.com/science/article/pii/0168900289906888
http://dx.doi.org/10.1103/PhysRevSTAB.11.100703
http://dx.doi.org/10.1103/PhysRevSTAB.11.100703
http://link.aps.org/doi/10.1103/PhysRevSTAB.11.100703
http://dx.doi.org/10.1103/PhysRevSTAB.14.072001
http://link.aps.org/doi/10.1103/PhysRevSTAB.14.072001
http://dx.doi.org/10.1016/0168-9002(86)90862-4
http://dx.doi.org/10.1016/0168-9002(86)90862-4
http://dx.doi.org/10.1016/0168-9002(86)90862-4


http://www.sciencedirect.com/science/article/pii/0168900286908624. 17

37. R. Akre, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, P. Hering, R. Iverson,
C. Limborg-Deprey, H. Loos, A. Miahnahri, J. Schmerge, J. Turner, J. Welch,
W. White, and J. Wu, “Commissioning the linac coherent light source injector,” Phys.
Rev. ST Accel. Beams 11 (Mar, 2008) 030703.
http://link.aps.org/doi/10.1103/PhysRevSTAB.11.030703. 17, 79

38. D. H. Dowell, J. W. Lewellen, D. Nguyen, and R. Rimmer, “The status of normal
conducting rf (ncrf) guns, a summary of the erl2005 workshop,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 557 no. 1, (2006) 61 – 68.
http://www.sciencedirect.com/science/article/pii/S0168900205019741. 17, 18,
19, 79

39. D. H. Dowell, K. J. Davis, K. D. Friddell, E. L. Tyson, C. A. Lancaster, L. Milliman,
R. E. Rodenburg, T. Aas, M. Bemes, S. Z. Bethel, P. E. Johnson, K. Murphy,
C. Whelen, G. E. Busch, and D. K. Remelius, “First operation of a photocathode radio
frequency gun injector at high duty factor,” Applied Physics Letters 63 no. 15, (1993)
2035–2037. http://link.aip.org/link/?APL/63/2035/1. 17, 18

40. F. Sannibale, D. Filippetto, C. F. Papadopoulos, J. Staples, R. Wells, B. Bailey,
K. Baptiste, J. Corlett, C. Cork, S. De Santis, S. Dimaggio, L. Doolittle, J. Doyle,
J. Feng, D. Garcia Quintas, G. Huang, H. Huang, T. Kramasz, S. Kwiatkowski,
R. Lellinger, V. Moroz, W. E. Norum, H. Padmore, C. Pappas, G. Portmann,
T. Vecchione, M. Vinco, M. Zolotorev, and F. Zucca, “Advanced photoinjector
experiment photogun commissioning results,” Phys. Rev. ST Accel. Beams 15 (Oct,
2012) 103501. http://link.aps.org/doi/10.1103/PhysRevSTAB.15.103501. 19

41. C. Gulliford, A. Bartnik, I. Bazarov, L. Cultrera, J. Dobbins, B. Dunham, F. Gonzalez,
S. Karkare, H. Lee, H. Li, Y. Li, X. Liu, J. Maxson, C. Nguyen, K. Smolenski, and
Z. Zhao, “Demonstration of low emittance in the cornell energy recovery linac injector
prototype,” Phys. Rev. ST Accel. Beams 16 (Jul, 2013) 073401.
http://link.aps.org/doi/10.1103/PhysRevSTAB.16.073401. 21, 77

42. A. Arnold and J. Teichert, “Overview on superconducting photoinjectors,” Phys. Rev.
ST Accel. Beams 14 (Feb, 2011) 024801.
http://link.aps.org/doi/10.1103/PhysRevSTAB.14.024801. 21, 22, 79

43. C. Gulliford and I. Bazarov, “New method for generating linear transfer matrices
through combined rf and solenoid fields,” Phys. Rev. ST Accel. Beams 15 (Feb, 2012)
024002. http://link.aps.org/doi/10.1103/PhysRevSTAB.15.024002. 24, 97
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H. J. Grabosch, M. Hänel, L. Hakobyan, H. Henschel, Y. Ivanisenko, L. Jachmann,
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