

Transducers

PHYS3360/AEP3630 Lecture 33

Terminology

- Transducers convert one form of energy into another
- Sensors/Actuators are input/output transducers
- Sensors can be *passive* (e.g. change in resistance) or *active* (output is a voltage or current level)
- Sensors can be *analog* (e.g. thermocouples) or *digital* (e.g. digital tachometer)

Transducer types

Quantity being Measured	Input Device (Sensor)	Output Device (Actuator)	
Light Level	Light Dependant Resistor (LDR), Photodiode, Phototransistor, Solar Cell	Lights & Lamps, LED's & Displays, Fiber Optics	
Temperature	Thermocouple, Thermistor, Thermostat, Resistive temperature detectors (RTD)	Heater, Fan, Peltier Elements	
Force/Pressure	Strain Gauge, Pressure Switch, Load Cells	Lifts & Jacks, Electromagnetic, Vibration	
Position	Potentiometer, Encoders, Reflective/Slotted Opto-switch, LVDT	Motor, Solenoid, Panel Meters	
Speed	Tacho-generator, Reflective/Slotted Opto-coupler, Doppler Effect Sensors	AC and DC Motors, Stepper Motor, Brake	
Sound	Carbon Microphone, Piezo-electric Crystal	Bell, Buzzer, Loudspeaker	

Positional Sensors: potentiometer

Processing circuit

Positional Sensors: LVDT

Positional Sensors: Inductive Proximity Switch

- Detects the presence of metallic objects (non-contact) via changing inductance
- Sensor has 4 main parts: field producing Oscillator via a Coil; Detection Circuit which detects change in the field; and Output Circuit generating a signal (NO or NC)

Positional Sensors: Rotary Encoders

- Incremental and absolute types
- Incremental encoder needs a counter, loses absolute position between power glitches, must be re-homed
- Absolute encoders common in CD/DVD drives

Temperature Sensors

• Bimetallic switch (electro-mechanical) – used in thermostats. Can be "creep" or "snap" action.

• Thermistors (thermally sensitive resistors); Platinum Resistance Thermometer (PRT), very high accuracy.

Thermocouples

• Two dissimilar metals induce voltage difference (few mV per 10K) – electro-thermal or Seebeck effect

- Use op-amp to process/amplify the voltage
- Absolute accuracy of 1K is difficult

Thermocouple Sensor Colour Codes Extension and Compensating Leads			
Code Type	Conductors (+/-)	Sensitivity	British BS 1843:1952
E	Nickel Chromium / Constantan	-200 to 900 ⁰ C	e ten t
J	Iron / Constantan	0 to 750 ⁰ C	the second se
к	Nickel Chromium / Nickel Aluminium	-200 to 1250°C	the t
N	Nicrosil / Nisil	0 to 1250 ^o C	e ta
т	Copper / Constantan	-200 to 350 ^o C	to the t
U	Copper / Copper Nickel Compensating for "S" and "R"	0 to 1450 ^o C	

Light sensors: photoconductive cells

• Light dependent resistor (LDR) cell

Light level sensitive switch

Photojunction devices

Photovoltaic Solar Cells

- Can convert about 20% of light power into electricity
- Voltage is low (diode drop, ~0.6V)

Photomultiplier tubes (PMT)

- Most sensitive of light sensors (can detect individual photons)
- Acts as a current source

Motion sensors/transducers

- Switches, solenoids, relays, motors, etc.
- Motors
 - DC
 - Brushed/brushless
 - Servo
 - Stepper motors
 - AC

Sound transducers

• Note: voice coil can also be used to generate fast motion

Piezo transducers

- Detect motion (high and low frequency)
- Sound (lab this week), pressure, fast motion
- Cheap, reliable but has a very limited range of motion

Summary

- We've only briefly touched on most basic types
- Many other transducers are used/common, almost for any physical quantity one can think of
- Processing electronics is often essential: output of many sensors is not linear, needs impedance transform, filtering, etc.
- For additional references see
 - <u>http://www.electronics-tutorials.ws/io/io_1.html</u>
 - Handbook of Transducers by H.N. Norton