

Diagnostics Needs for Energy Recovery Linacs

Georg H. Hoffstaetter

Cornell Laboratory for Accelerator-based Sciences and Education & Physics Department Cornell University, Ithaca New York 14853-2501

gh77@cornell.edu

- Plans for x-Ray ERLs
- x-Ray ERL challenges
- x-Ray ERL diagnostics needs
- Ongoing R&D
- High current FEL-ERL challenges
- High current ERL-FEL diagnostics needs

Cornell ERL

Georg H. Hoffstaetter Scientific Assessment of FEL Technology Panel of the National Academy of Sciences 04 / 05 / 2008

Georg H. Hoffstaetter Scientific Assessment of FEL Technology Panel of the National Academy of Sciences 04 / 05 / 2008

Georg H. Hoffstaetter Scientific Assessment of FEL Technology Panel of the National Academy of Sciences 04 / 05 / 2008

How large is the advantage of ERLs ?

The injector: goals for the ERL

	Energy recovered modes			One pass	
Modes:	(A) Flux	(B) Coherence	(C) Short-Pulse	(D) Short & High charge	Units
Energy	5	5	5	5	GeV
Current	100	25	100	0.1	mA
Bunch charge	77	19	77	1000	рС
Repetition rate	1300	1300	1300	0.1	MHz
Norm. emittance	0.3	0.08	1	5.0	mm mrad
Geom. emittance	31	8.2	103	1022	pm
Rms bunch length	2000	2000	tbd by CSR	100	fs
Relative energy spread	0.2	0.2	1	3	10 ⁻³
Beam power	500	125	500	0.5	MW
Beam loss	< 1	< 1	< 1	<1	micro A

(1) Challenges for x-ray ERLs

Production of low emittances

- Space charge compensation in the injector

Diagnostics needs

- Phase space measurement for injector setup
- Laser diagnostics for bunch position and bunch timing feedback
- Laser diagnostics for transverse and longitudinal profile

Georg H. Hoffstaetter Scientific Assessment of FEL Technology Panel of the National Academy of Sciences 04 / 05 / 2008

Production of low emittances

- Space charge compensation in the injector - less critical by >10

Diagnostics needs

- Phase space measurement for injector setup still important
- Laser diagnostics for bunch position and bunch timing feedback
 - still relevant
- Laser diagnostics for transverse and longitudinal profile
 - less critical

(2) Challenges for x-ray ERLs

• Limited emittance growth

- Beam stabilization to fraction of the very small beamsize
- Optics in the linac for very different energies (0.01 5GeV)
- Low emittance growth optics similar to light sources
- Limit optics errors and adjust fields to radiated energy
- Limit coupler kicks / cavity misalignments

Diagnostics needs

- Sub micron BPMs
- Beam position measurements for two simultaneous beams
- High energy beam-size measurements
- High energy emittance measurements

BPMs for the Cornell ERL

Challenges:

- 1) Two beams of different energy have to be measured simultaneously in much of the ERL
- 2) Tolerances of transverse motion are very stringent, 0.3μ m in some places: 0.5μ m at 10kHz and < 0.1μ m at 10Hz for 77pC, 1.3GHz.
- 3) Wake-field heating and energy spread from wake fields has to be tolerable
- 4) BPMs have to work in 80K environment, or use HOM bpms (< 4micron resolution, PRST-AB 9/112802)

Possible solutions:

1) Read out a difference orbit at 1.3GHz and a sum orbit at 2.6GHz.

2) Buttons: ok

Strip line: size for 1/6 of the rf wavelength No Cavity BPM: would need a resonance at 1.3GHz and 2.6GHz.

Strategy: Use buttons all around the ring and strip lines at a few critical places for low currents, use HOMs

Button Beam Position Monitors

Design: four 10mm buttons in a 25.4mm beampipe

- Initial injection tune-up mode: 50MHz, 1ms bunch train, 2-10pC per bunch Resolution: +/- 20 – 4micron at 10kHz readout
- Orbit refinement mode: 50MHz, 1ms bunch train, 10-77pC per bunch
 Resolution: +/- 4 0.5micron at 10kHz readout
- Low current CW tune-up mode: 1300MHz, 1ms bunch train, 2-10pC per bunch Resolution: +/- 20 – 4micron at 10kHz readout
- High current CW ramp-up mode: 1300MHz, 1ms bunch train, 10pC per bunch Resolution: +/- 4micron at 10kHz readout
- 5. High current CW ramp-up mode: 1300MHz, CW, 10-77pC per bunch

Resolution: +/- 4 – 0.5micron at 10kHz readout

6. Stable ERL operational mode: 1300MHz, CW, 77pC

Resolution: +/- 0.5micrometer at 10kHz readout at 0.1micron at 10Hz

Alignment requirements

General comment about DC alignment requirements:

These are similar to that in ring light sources because the vertical beam size in such sources is as small and smaller than the vertical and horizontal size in the ERL.

Achieved orbit stability in 3rd generation light sources:

	Horizontal O	rbit $[\mu m]$	Vertical Orbit y [µm]		
	Requirement	Achieved	Requirement	Achieved	
APS	14.0	12.6	0.45	0.59	
ESRF	N/A	1.0	N/A	0.6	
ALS	10.3	2	1.2	0.5	
ELETTRA	5.0	0.85	5	0.47	
SPring-8	28.0	4	0.4	1	
SLS	N/A	1.0	0.7	0.6	

Georg H. Hoffstaetter Scientific Assessment of FEL Technology Panel of the National Academy of Sciences 04 / 05 / 2008

The orbit can be controlled with the placement of BPMs and correctors.

Uncorrected orbit for 0.3mm rms quadrupole misalignments:

Corrected orbit for 0.3mm rms quadrupole misalignments:

Georg H. Hoffstaetter Scientific Assessment of FEL Technology Panel of the National Academy of Sciences 04 / 05 / 2008

Limited emittance growth

- Beam stabilization to fraction of the very small beamsize
 - much less critical but probably much more vibrations
- Optics in the linac for very different energies (0.01 5GeV)
 much less critical (approx. 7-100MeV)
- Low emittance growth optics similar to light sources
- Limit optics errors and adjust fields to radiated energy
- Limit coupler kicks / cavity misalignments
- Diagnostics needs
 - Sub micron BPMs
 - Beam position measurements for two simultaneous beams
 - High energy beam-size measurements
 - High energy emittance measurements

(3) Challenges for x-ray ERLs

Limit energy spread after deceleration, e.g. 5GeV to 10MeV

- Accurate time of flight correction, including sextupoles
- Limit energy spread from wake fields
- Limit energy spread from intra beam scattering (IBS) and rest gas scattering
- Limit energy spread from incoherent / coherent synchrotron radiation (ISR / CSR)
- Dumping a beam with very large energy spread

Diagnostic needs

- Bunch arrival time diagnostics
- Halo diagnostics after deceleration (end of linac and dump)
- X-ray diagnostics for personal and electronics protection
- Dump diagnostics, based on beam loss

Georg H. Hoffstaetter Scientific Assessment of FEL Technology Panel of the National Academy of Sciences 04 / 05 / 2008

just outside the wall, at arc center.

Moe's estimate for APS (300mA,10 hour lifetime or 1/57 pA/m) \rightarrow 80cm normal concrete wall limits dose to 8 mrem/yr @ 50m

Public: limit to less than 100mrem/year, occupational limit to less than 5000mrem/year

- Limit energy spread after deceleration, e.g. 5GeV to 10MeV
 - Accurate time of flight correction, including sextupoles more severe
 - Limit energy spread from wake fields less severe (less deceleration)
 - Limit energy spread from intra beam scattering (IBS) and rest gas scattering – less severe (less deceleration)
 - Limit energy spread from incoherent / coherent synchrotron radiation (ISR / CSR) – much more severe due to FEL induced spread
 - Dumping a beam with very large energy spread

Diagnostic needs

- Bunch arrival time diagnostics similar
- Halo diagnostics probably more severe (FEL energy spread)
- X-ray diagnostics for personal and electronics protection similar
- Dump diagnostics based on beamloss 4 times worse and larger

(4) Challenges for x-ray ERLs

Beam loss concerns

- Disturbance from ions / ion removal
- Halo development
- Component failures and machine protection system

- Ion composition monitor
- Halo detectors
- Beam Loss monitors (e.g. fiber BLMs, W. Goettmann et al., DIPAC05)

Ion focusing

• Ion are quickly produced due to high beam density

Ion	$\sigma_{col}, 10 \text{MeV}$	$\sigma_{col}, 5 \text{GeV}$	$\tau_{col}, 5 \text{GeV}$
H_2	$2.0 \cdot 10^{-23} \mathrm{m}^2$	$3.1 \cdot 10^{-23} \mathrm{m}^2$	$5.6\mathrm{s}$
CO	$1.0 \cdot 10^{-22} \mathrm{m}^2$	$1.9 \cdot 10^{-22} \mathrm{m}^2$	92.7s
CH_4	$1.2 \cdot 10^{-22} \mathrm{m}^2$	$2.0 \cdot 10^{-22} \mathrm{m}^2$	85.2s

- Ion accumulate in the beam potential. Since the beam is very narrow, ions produce an extremely steep potential they have to be eliminated.
- Conventional ion clearing techniques:
 - 1) Long clearing gaps have transient RF effects in the ERL [2ms every 7ms].
 - Short gaps have transient effects in injector and gun and produce more beam harmonics that excite HOMs [0.4 ms every 7ms].
 - DC fields of about 150kV/m have to be applied to appropriate places of the along the accelerator, without disturbing the electron beam.
 But remnant ion density before clearing can still cause emittance growth.

Ions concentration diagnostics

(4) Comparison to HIGH POWER ERL-FELs

Beam loss concerns

- Disturbance from ions / ion removal
 - less severe (less cross section, more gap between bunches)
- Halo development
 - similar significance before undulator
 - more significant after undulator
- Component failures and machine protection system
 - similar for electron beam, more severe for photon beam

- Ion composition monitor
- Halo detectors more severe after undulator
- Beam Loss Monitors (e.g. fiber BLMs, W. Goettmann et al., DIPAC05)
 - similar

Superconducting RF challenges

- Phase and amplitude control for very narrow frequency window (10⁻⁸) in the presence of microphonics
- Avoid heating / Higher order mode absorption
- Limit cooling power

- Cavity field diagnostics, input coupler diagnostics
- Thermometry, HOM-power diagnostics
- Cryogenic diagnostics
- Microphonics diagnostics, e.g. Piezo electric

• Superconducting RF challenges

- Phase and amplitude control for very narrow frequency window (10⁻⁸) in the presence of microphonics – more microphonics
- Avoid heating / Higher order mode absorption
 - more significant (denser bunch spectrum)
- Limit cooling power similar

- Cavity field diagnostics, input coupler diagnostics similar
- Thermometry, HOM-power diagnostics similar
- Cryogenic diagnostics similar
- Microphonics diagnostics, e.g. Piezo electric even more relevant