

Georg H. Hoffstaetter in WG2 ERL05 workshop 20 March 2005 JLAB / VA

Cornell	Parameters		NSF
			CHESS & LEPP
Operation mode	High Flux	Coherence	Short pulse
Current (mA)	100	10	1
Charge/b (nC)	0.08	0.008	1.0
$\epsilon_{x/y}(\text{nm})$	0.1	0.015	1
Energy (GeV)	5.3	5.3	5.3
Rep. rate (GHz	() 1.3	1.3	0.001
Av. flux $\left(\frac{\text{ph}}{0.1\%\text{ s}}\right)$	(3) 9 10 ¹⁵	$9 \ 10^{14}$	$9 \ 10^{12}$
Av. brilliance			
$\left(\frac{\text{ph}}{0.1\% \text{ s mm}^2 \text{ mr}}\right)$	$\frac{1}{1.6} \frac{10^{22}}{10^{22}}$	3.010^{22}	$2.0\ 10^{17}$
Bunch length (ps) 2	2	0.1

Georg H. Hoffstaetter in WG2 ERL05 workshop 20 March 2005 JLAB / VA

CORNELL

Results on BBU

CHESS & LEPP

Many HOMs in one cavity :

- only the most dangerous HOM contributes to the threshold.
 HOMs in different cavities :
- HOMs in different cavities cannot cancel, but they can be decoupled by optical choices.
- Multi turn recirculation :
- The threshold decreases approximately quadratically with the number of turns.

Closed orbit drift instability :

> Allways has a threshold that is larger than the coherent oscillation BBU

ERL@CESY: 400mA BBU limit for 7-cell TESLA-like cavities.

See PRST-AB May 2004

Georg H. Hoffstaetter in WG2 ERL05 workshop 20 March 2005 JLAB / VA

Georg H. Hoffstaetter in WG2 ERL05 workshop 20 March 2005 JLAB / VA

Georg H. Hoffstaetter in WG2 ERL05 workshop 20 March 2005 JLAB / VA

CORNELL

What needs testing ?

CHESS & LEPP

- Full average current injector with the specified emittance and bunch length
- Emittance preservation during acceleration and beam transport:
 - Nonlinear optics (code validation at CEBAF), coherent synchrotron radiation (JLAB, TTF, SPPS), space charge
- Delivery of short duration (ca. 100 fs, and less in simulations), high charge bunches (TTF, SPPS)
- Dependence of emittance on bunch charge
- Stable RF control of injector cryomodule at high beam power
- Stable RF control of main linac cavities at high external Q, high current, and no net beam loading (JLAB to 10mA)
- Understanding of how high the main linac external Q can be pushed (JLAB)
- Study of microphonic control using piezo tuners (JLAB, SNS, NSCL, TTF)
- Recirculating beam stability as a function of beam current with real HOMs, and benchmarking the Cornell code BI (JLAB)
- Feedback stabilization of beam orbit at the level necessary to utilize a high brightness ERL
- Photocathode operational lifetime supporting effective ERL operation
- Performance of high power RF couplers for injector cryomodule
- Demonstration of non-intercepting beam size and bunch length diagnostics with high average current at injector energy and at high energy (TTF)
- HOM extraction and damping per design in injector and main linac (code validation from Phase Ia)
- Performance of HOM load materials to very high frequency
- Performance of full power beam dump
- Detailed comparison of modeled and measured injector performance
- Study of halo generation and control in a high average current accelerator at low energy and with energy recovery (JLAB)
- Study of beam losses and their reduction in recirculation of high average current with energy recovery (JLAB, NAA)
- Precision path length measurement and stabilization (Phase Ia, JLAB)

