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1 Introduction

Spin—orbit resonances in high energy accelerators arise when the electro-magnetic fields on
synchro-betatron trajectories cause disturbances to the spin motion which build up coherently
from turn to turn. These disturbances are described in first order by the spin—orbit coupling
integrals to be described next. The integrals are especially big at first order resonances and
when the spin disturbances from each FODO cell add up coherently [1].

In a perfectly flat ring, an initially vertical spin of a particle traveling on the closed orbit
remains vertical during the particle motion. On a vertical betatron trajectory the particle tra-
verses horizontal fields in quadrupoles and the spin no longer remains vertical. This disturbance
of spin motion due to the vertical betatron motion is described in first order by the spin—orbit
coupling integrals [2, 3] which take the form
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where k, = k\//?y whereby k is the quadrupole strength and 3, is the vertical beta function; W
is the phase advance of the spin rotation around the vertical and W, is the vertical betatron
phase. The integral is evaluated over the ring circumference L. Spin—orbit coupling integrals
describing spin disturbances due to horizontal betatron motion and synchrotron motion can
also be defined. But in a flat ring they vanish.

Thus in a first order approximation we only need the integrals [;t and they yield the follow-
ing important information: if the spin—orbit coupling integrals [;t vanish, all initially vertical
spins are again vertical after one turn, although they have traveled along different betatron
trajectories. The ring is then said to be spin matched or spin transparent when viewed from
lp. In general the spin—orbit coupling integrals depend strongly on the beam energy and on the
chosen optic. However, as expected and as implied by the numerical results presented earlier,
the inclusion of Siberian Snakes can significantly weaken such dependencies. It is then inter-
esting to see if snake configurations can be chosen by analytical means for which the spin—orbit
coupling integrals can be made to vanish. We call this version of spin matching ‘snake match-
ing’. In large rings with many snakes, snake matching can be achieved for separate sections
of the ring [2]. In HERA-p with a maximum of eight snakes this cannot be done in general.
However, HERA-p has an approximate four fold symmetry and as we will see later, in rings
with exact four fold symmetry all spin orbit integrals can be canceled completely even with only
eight snakes. In fact, it is even possible to find snake axis orientations for these eight snakes
which are independent of energy and nevertheless cancel all the spin orbit coupling integrals.
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2 Spin matching with Type III snakes

For a ring with super—period 4, the one turn spin integral starting at [o = 0 is

[yi — [it(l + ei(u:i:Q)/4 + ei2(u:tQ)/4 + ei3(u:f:Q)/4) (2)

where [T = 0L/4 k,el=¥+%)d] and where v = —W(L) and Q are the spin phase advance and the
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orbital phase advance during one turn. The sign convention is chosen so that v = 27 Gy where
(G is the gyromagnetic anomaly and ~ is the Lorentz factor. Spin transparency requires that
[;‘ as well as [~ vanish. This requires that the bracket in equation (2) vanishes which implies

that Q = 7 where the symbol = indicates equivalence modulo 27. However storage rings are
never operated at such an orbital resonance so that the four—fold repetitive symmetry cannot
be employed to impose spin transparency at any energy.

Type I1I snakes are devices which rotate spins around the vertical direction by some angle ¢,
while leaving the betatron motion unaltered. They can be used to manipulate the spin phase
advance between quadrants. The spin disturbances of one quadrant can be made to cancel
against the disturbances of another quadrant by choosing an appropriate spin phase advance
between these quadrants. There are exactly three ways to arrange that the spin disturbances
cancel during one turn. They are indicated in figure 1.

Figure 1: The three ways in which the depolarizing effects of the quadrants of a ring with
super—period 4 can cancel each other. The arrows indicate which quadrants have canceled
against each other after one turn.

When the Type IIl snake at [ = j%, J € {1—4} has the rotation angle ¢;, then the spin—orbit
coupling integrals are
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For a spin match, the bracket on the right hand side has to vanish for ‘4+’ and for ‘—’. A sum
of four complex numbers with unit modulus can only vanish when it consists of two pairs of
numbers which cancel each other. The three possibilities of cancelation are demonstrated in
figure 1 and are described by the following three sets of equations:
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2. 2(v+Q)/4— b1 — ¢ =7 and ¢35 = ¢y,
3.3v+£Q)/4— 1 — o — s =mand (v Q)[4 — ¢y = T.



To spin match, one of these three conditions has to hold for ‘+’, to make I vanish, and another
of the conditions has to hold for ‘—’, to make I~ vanish. I™ and I~ cannot vanish simultaneously
within one of the three conditions, since this would lead to a restriction on the allowed orbital
phase advance (). Canceling one integral by condition 3 turns out to be incompatible with
canceling the other integral by condition 1 or 2. When canceling It by condition 1 and I~
by condition 2, the requirements are compatible and lead to ¢ = ¢3 = 7 + (v + Q)/4 and
b = (v —3Q)/4.

The rotation angle ¢4 of the Type Il snake at [y = 0 is chosen in such a way that the spin
tune of the ring is not changed by the snakes: ¢; + ¢ + ¢3 + ¢4 = 0. With X = (v + Q)/4 the

required rotation angles are
= =S4T, =N -Q, ps=%—v. (4)

A change in sign of Q cancels I due to condition 2 and I~ due to condition 1. There are
therefore exactly two possibilities of making a ring with super—period 4 spin transparent by
means of four Type III snakes. These possibilities are shown in figure 2 where the longitudinal
direction of particle motion is chosen to be clockwise. In passing we note that mirror symmetric

Figure 2: The two only ways to spin match a ring with super—period four by four Type III
snakes. The number between 0 and 27 which equals  modulo 27 is written as [z], ¥ = (v4Q)/4,

A=(v—Q)

arcs present no advantages for spin matching a ring by this method.

3 Energy independent spin matching

Spin matching with four Type III snakes has the great disadvantage that the rotation angles
change with the energy dependent spin phase advance v and thus have to be ramped in order
to spin match at each energy. So we now consider what can be achieved with snakes whose
rotation axes lie in the horizontal plane (‘horizontal snakes’).

Siberian Snakes [4] other than Type III rotate all spins by 7 around their horizontal rotation
axes. If the axis is at an angle a/2 with respect to the radial direction in the longitudinal
backward direction, a ‘horizontal” snake is said to have a snake angle of a [2]. Its effect on spins
is equivalent to that of a snake with a radial axis followed immediately by a Type III snake
with a rotation angle a. Therefore also snakes with horizontal axes can be used to manipulate
the spin phase advance between parts of the ring.



We now assume that there are n horizontal snakes in the ring. The snake angle of the j-th
snake is a;. Furthermore we assume that these snakes have been chosen in such a way that 7
on the closed orbit, which is denoted by 7y and is periodic, is aligned along the vertical in all
of the ring and that the spin tune on the closed orbit is 1/2. The positions of these snakes are
denoted by /; and the advance of the spin phase beyond the jth snake is ¥;(1) where ¥;(l;) = 0.

For simplicity we set [y = 0, [,41 = L, and denote the spin phase advance between snake
J and snake 5 + 1 as U;. The orbital phase advance ¥,; between snake j and snake j + 1 is
denoted by W,;. Taking 7y to point initially vertically upwards we then obtain the spin—orbit
coupling integrals [2]
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3.1 Four snake schemes

For a four—fold symmetric ring with a horizontal snake between each arc the spin—orbit coupling
integrals (5) reduce to

[j: _ [it{l + ei(oq—ozg:l:QQ/4)}
i ([?:)*ei[(u:tQ)/M—al]{l + ei(—a2+asﬂ:2Q/4)}_

Spin transparency of the ring is therefore in general only obtained when
ar—a; £2Q/4 = mand —ay+az£2Q/4 =7 . (6)

Choosing the ‘+’ combination for one equation and the ‘—’ combination for the other implies
@ = 0. A synchrotron is never operated with this orbital phase advance. Therefore four
horizontal snakes cannot be used to eliminate all spin—orbit coupling integrals.

In passing we note again that an additional mirror symmetry does not simplify the com-
pensation of the spin—orbit integrals.

3.2 Eight snake schemes

The same procedure can now be repeated with eight snakes. To do that we place four more
horizontal snakes at the locations kL/4 + Aly, k € {0,1,2,3}, i.e. at a distance Alp down-
stream from the four snakes treated above. The complete spin phase advance of the ring
is Z;ZO(—I)j(\I/j + «;) and this should be set to 7 independently of the energy. Therefore
Z;ZO(—I)j\I/j must vanish at all energies so that the Al must be chosen to ensure that
U, = Vg = U, j € {l =7} . From equation (5) and with I§ = o k, el C¥EY)dl and
If = ffl k, el ("*%0)dl  the spin-orbit coupling integrals are
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where most of the spin phases W; = U have canceled. In terms of the difference angles A, =
o — ay, spin matching the ring therefore requires

1 + eI (XQ/4+4012) 4+ eI (£2Q/4+A124+As4)
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These equations have the same structure as the matching conditions of equations (3) and we
can therefore use the relations (4) to obtain the following two ways to satisfy equation (8):
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There are also exactly two ways to solve equation (9),

Agz = Agr = T+Q/4, Ass = -3Q/4, (12)
A2:aéA67é7T—Q/47 A45&3@/4- (13)

There are now four ways to spin match the ring; these are obtained by combining the equations
(10)&(12), (10)&(13), (11)&(12), or (11)&(13), where the last two possibilities result from the
first two by reversing the sign of ().

Since only differences in the snake angles appear, one of the angles can be chosen arbitrarily.
All other snake angles are then fixed. Combining the equations (10) and (12) and choosing
a; = 0 leads to

ay as=as=ar=0, ;m=ag=1+Q/4,

—3Q/4, as=7+Q/4. (14)
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Combining the equations (10) and (13) and choosing oy = —@Q/2 leads to

—2Q/4, m=as=1-Q[4, (15)

as=a; =0, as=-3Q/4, ag=7+3Q/4.
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These snake schemes are shown in figure 3. Advantage has been taken of the fact that the angle
a/2 between the radial direction and the rotation axis only needs to be known modulo 7.

Here it is very important to note that the snake angles are independent of v = 27(Gy and
therefore that a spin match has been achieved for all energies for the chosen Q).

At high energies, for example at 820GeV in HERA-p, the polarization limit B, determined
by the m-axis can be problematically small [5]. In first order the proposed spin matching
increases the polarization limit to 100% since all spins return to the vertical on all betatron
orbits as long as no misalignments and deviations from the four—fold symmetry are present in
the ring.

Note that the set of snake angles depicted in figure 3 is somewhat unconventional. Naturally
this set of snake angles differs from that obtained by filtering as described in [6] but nevertheless
this analysis indicates why filtering will select such exotic sets of snake angles. Of course a
similar kind of analysis could be used to explain why some snake schemes can be particularly

bad.



Figure 3: Two of the four possible ways to spin match a ring with super—period four using eight
horizontal snakes. ¢ is /8 modulo 7 and describes the angle between the radial direction and
the snake axis. The other two ways are obtained by reversing the sign of (). Note that the
snake angles are independent of v and thus of energy.
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