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Preface

This work is dedicated to the analysis of some aspects of long term beam behavior in a storage ring when
random perturbations are present. The techniques discussed are fairly general and can be applied to a
wide range of problems, but here we will concentrate on the study of synchrotron motion of bunched
beams of heavy particles like protons or ions. This study is motivated by the coasting beam production
observed in the HERA proton accelerator, which was found to contribute to background in the detectors.
We study the evolution of the longitudinal bunch distribution under the influence of two kinds of random
perturbations: jump processes and continuous fluctuations. The first type models scattering processes like
the Touschek effect and gas scattering, the second models processes such as RF field noise. The question
we want to answer is which role do these phenomena play in the longitudinal tail buildup and coasting
beam production. The physics of these processes is well understood at present, but, to our knowledge, the
effect of nonlinearity on the tail evolution and on the escape rate has not been fully studied. Appropriate
methods are discussed and simulations are compared to experimental observations at HERA.
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Some frequently used symbols

e electron charge
εx,y vertical and horizontal emittances
βx,y verticcal and horizontal beta functions
β, γ relativistic factors
σx,y,s r.m.s. beam sizes
ωRF frequency of an RF cavity resonator
k(τ) the autocorrelation function
ξt a equivalent to ξ(t)
Sξ(ω) spectral power density of a random process ξ
pi,j transition probabilities of a Markov process
Wt the Wiener process
dWt white noise
H(q, p) the Hamiltonian

v





Chapter 1

Introduction

For modern collider physics experiments, like those installed at HERA, beams of high intensity are needed,
so that the luminosity is high and there are sufficient physics event statistics. HERA is a lepton-proton
storage ring at DESY Hamburg (see figure 1.1) , with the following experiments operating

• The experiments designed to understand proton structure by colliding a proton beam with an electron
beam - H1 and ZEUS

• Nucleon spin study by colliding polarized electrons/positrons with a fixed target of polarized nucleons
- HERMES

• Study of heavy C- and B- quark production and CP violation using a fixed wire target - the HERA-B
experiment.

Table 1.1: Main parameters of the HERA ep collider

circumference 6355m
proton energy 920 GeV
lepton energy 27.5 GeV
number of colliding bunches 174
design p bunch intensity Np 1 · 1011

design e current Ie 60mA
longitudinal e spin polarization 50-70%
design peak luminosity 7 · 1031cm−2s−1

proton envelope function at IP’s βz,x 18cm, 2.45m
typical proton emittances εz,x 5nm
lepton beam size at the IP’s σz,x 30, 114µm
proton bunch length 200mm
lepton bunch length 8mm

For ep bunched beam collisions the luminosity (per collision, Gaussian beams) is

L = R
IeNp

2πe
√

(σ2
x,p + σ2

x,e)(σ
2
z,p + σ2

z,e)
(1.1)
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with R being a reduction factor, which depends on the β function at the interaction point, the p bunch
length 1 and the crossing angle [11]. With nonzero crossing angle and bunched beams high luminosity
is achieved by creating bunches with small transverse and longitudinal dimensions and bringing them
properly into collision. Beams of high intensity can produce high background rates at the detectors, so
that the detector components suffer from radiation damage and data cannot be taken.

High background has been a substantial problem for experiments at HERA. Its potential sources are

• Direct synchrotron radiation

• Backscattered synchrotron radiation

• Bremsstrahlung and lepton background produced by leptons scattered at the residual gas

• Proton halo

• Protons scattered at the desorbed gas in the interaction regions

All these can, in principle, be controlled by beam steering, by putting masks and absorbers in the
critical regions and by providing a good vacuum pressure around the detectors.

In addition a connection between the background and the coasting beam observed at HERA-p has
been suggested. The coasting beam is formed by particles that leave the stable RF buckets and drift in
the longitudinal direction along the ring. The synchrotron radiation losses are no more compensated for
such particles and they constantly lose energy. Due to dispersion they will have a large transverse offset
and form the beam halo. The chromatic tune shift due to large momentum offset also introduces a threat
of hitting a resonance. The beam-beam force has a much stronger impact on off momentum particles (see
[16],[59] for details). Due to all these effects the coasting beam particles are likely to escape the aperture
limitations rather quickly. Although the collimation system is designed to shield the detectors [54], some
portion still ends up there and causes the background. In a superconducting accelerator it is difficult to
collimate off-momentum particles effectively. The collimator system has two stages: the first collimator
deflects a proton which then hits the secondary collimator. In the regions with high dispersion, the arcs,
superconducting magnets are installed and putting a collimator next to one of such magnets may cause
a quench. Thus particles with momentum offset cannot be collimated efficiently. The collimation of the
coasting beam may also be performed by introducing transverse kicker magnets acting in the gap between
the bunches. The timing of the kicks must be very precise. Therefore, it is technically difficult to produce
a short clean rectangular kick since a signal with extremely large bandwidth would be required.

The observation of the coasting beam was first performed at the HERA-B experiment by analyzing
the scattering rates of the proton beam on the target wires [19]. Its existence has also been confirmed
by measuring the difference between the bunched and unbunched currents and the results indicated that
the accumulated coasting current (up to 2mA of approximately 100mA initial total current) must be
considerably reduced to allow the experiments to operate. The coasting beam has also been observed at
other machines such as RHIC [64].

High coasting beam current can have other consequences. For example, the particles filling the abort
gap between the bunch trains can prevent a safe beam dump. This, for example, is expected to play a
role at the LHC.

There could be several possible causes for the production of the coasting beam. These could possibly be
longitudinal particle instabilities arising from the coupling of synchrotron and betatron motion, wake fields,
noise in the radio frequency cavities, parasitic collisions and many others. Since the transverse proton
beam lifetime observed in HERA was satisfactory, we focused on the study of the escape mechanisms from
the stable RF buckets due to the following phenomena: the Touschek effect (or intra-beam scattering) and

1this is the hourglass effect
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Figure 1.1: Schematic overview of the HERA ep collider and its accelerator chain

noise in the radio-frequency system. Both processes may be considered to be small random perturbations.
Deterministic perturbations to synchrotron motion are also taken into consideration to some extent.

The particles in a bunch experience collisions with each other, at high energies collisions may lead to
large momentum jumps, which in turn lead to bunch size growth and to particle loss from the bunch.
This process was recognized by B. Touschek in 1963 on a small e−e+ storage ring [7] and later studied by
many, including A. Piwinski [49], [50]. It is to be taken into account for high intensity beams like those
stored in HERA-p.

Noise is always present in the accelerating RF fields. Since the effect of radiation damping on the proton
motion in stable RF buckets is weak, even extremely small perturbations can accumulate and influence
the motion on large time scales. This influence was observed in all proton machines (such as SPS and
HERA). The question arises: to what extent is the RF noise responsible for producing the coasting beam?

Deterministic perturbations also have a considerable influence on bunch motion. The major source of
such perturbations is assumed to come from the longitudinal impedances arising in beam-cavity interac-
tions. As far as nonlinear single-particle motion is concerned, a deterministic perturbation will cause a
complicated effect, the so-called nonlinear resonance [12]. Under certain conditions it can lead to particle
loss. The interplay of resonance with noise can also lead to interesting phenomena [25].

Synchrotron oscillations in HERA are of quite complicated nature due to the presence of two radio
frequency (RF) systems. The first, at 52 MHz, dominates at the injection energy of 40 GeV while the
second, at 208 MHz, provides shorter bunches and dominates when the beam is stored at 920 GeV. It
is technically complicated to turn off the 52MHz system and the accelerating field seen by the beam is
produced by a two frequency system. For details see Appendix A. A simple analytical treatment of both
the Touschek effect and the RF noise problem is generally not possible for the bunch tail particles which
exhibit nonlinear behavior (which is the case for all RF systems as soon as the bunch size is of the order
of an RF wavelength). This motivated us to study the motion of nonlinear oscillating systems under the
influence of various kinds of random perturbations more carefully, taking into account issues specific to
synchrotron motion in a storage ring and to develop appropriate simulation techniques.

The presentation has the following structure:
In Chapter 2 basic facts from probability theory are briefly given for reference.
In Chapter 3 modeling of the Touschek effect (or intra-beam scattering) is discussed [49], [9], [18]. Here

the nonlinearity of the RF potential introduces a difficulty. The statistical characteristics of a scattering
event are expressed by some averaged functions over the particle trajectory taking into account the bunch
density. For the tail particles it is too complicated to calculate calculating these averages analytically
and computer simulations must be made. The tail distribution is important when the escape problem
is concerned. The approaches to such simulations are discussed and calculations based on the “chain
method” are presented.
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In Chapter 4 issues concerning simulation of the influence of RF noise on the synchrotron oscillations
are presented. So far only the sinusoidal RF voltage has been treated carefully [17], [32]. Obtaining and
solving a Fokker-Planck equation for the case of a double RF system is perhaps principally the same,
but technically more elaborate. The following technical issues are discussed: averaging the Fokker-Planck
equation, calculating the diffusion coefficient by perturbation techniques, solving the equation when the
phase space includes separatrices and estimating the effect of noise coherence.

In Chapter 5 the corresponding observations in HERA-p are presented.
Apparently, the major source of the coasting beam at HERA has been the influence of the RF noise

whereas the contribution of intra-beam scattering appears to be weak.
In the last chapter we indicate other possible applications of the methods discussed as well as bottle-

necks arising in generalizing these techniques and some open questions.



Chapter 2

Probability background

This section shortly summarizes some well-known facts and definitions from the theory of probability and
random processes following [21], [55] and can be skipped by those who are familiar with them. A good
introduction to the theory of random processes and stochastic differential equations may be found in [21],
[24], [55], more rigorous treatment is given in [22], [28], [29], [35].

2.1 Random variables and Markov chains

A random variable ξ(ω) is a measurable function defined on the space of elementary events Ω. The
moments of a random variable are

〈ξ〉 =

∫

Ω

ξ(ω)dω

〈

ξ2
〉

=

∫

Ω

(ξ(ω) − 〈ξ〉)2 dω

. . . (2.1)

The characteristic function is

θ(u) =
〈

eiuξ
〉

(2.2)

The simplest special case of a random process is the Markov chain. A Markov chain is given by the
space of states (say, a subset of integers) and the transition probabilities from state i to state j in time t
pij(t) satisfying

1. 0 ≤ pij(t) ≤ 1

2.
∑

j pij(t) = 1

3. ∀t > 0, s > 0 pij(t+ s) =
∑

k pik(t)pkj(s) (Chapman-Kolmogorov equation)

4. limt↓0 pij(t) = δij (stochastic continuity)

Then it can be shown that the following limits exist

aij = lim
t↓0

pij(t) − δij
t
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If i 6= j then the limits are always bounded. Therefore, the transition probabilities satisfy the Kol-
mogorov system of equations

d

dt
pij(t) =

∑

k

aikpkj(t) (2.3)

The system possesses a unique solution if aij ≥ 0, aii ≤ 0,
∑

aij = 0, sup |aii| < ∞ and the solution
satisfies the initial conditions pik(0) = δik. These conditions are usually met in practice. The matrix aij is
the discrete analogy of an infinitesimal generator of a Markov process and will be called the infinitesimal
generator matrix.

2.2 Continuous random processes

A random process ξ(t) is in general a random function taking values in an appropriate functional space.
Assume that this is the space of all real-valued functions. A random process is defined if for every set
t1, . . . tn the joint probability density of random variables ξ(ti) fn(x1, . . . xn, t1, . . . tn) is given, such that

∫

fn(x1, . . . , xn, t1, . . . tn)dx1 . . . dxn = 1 (2.4)

fn(x1, . . . , xn, t1 . . . tn) ≥ 0 (2.5)

fn(x1, . . . xi . . . xj . . . , xn, t1 . . . ti . . . tj . . . tn) =

fn(x1, . . . xj . . . xi . . . , xn, t1 . . . tj . . . ti . . . tn)

and

fn(x1, . . . xn, t1, . . . tn) =

∫

fn+k(x1, . . . xn+k, t1, . . . tn+k)dxn+1 . . . dxn+k

One also writes ξt instead of ξ(t) and f(xt1 . . . xtn) or f(x1 . . . xn) instead of fn(x1, . . . xn, t1, . . . tn) for
brevity. One defines the moment function of order n

mn(t1, . . . , tn) = 〈ξt1 . . . ξtn〉 (2.6)

with the usual notation ξt = ξ(t). The random process is defined by an infinite series of moment
functions of all orders. The physical significance of a moment function decreases with the increase of
its order. In applications it is often sufficient to know only the first two functions m1(t) and m2(t1, t2).
Equivalent to the knowledge of moment functions is the knowledge of the correlation functions

kn(t1 . . . tn) = K[ξ(t1) . . . ξ(tn)]

where K is the correlation between random variables. The second order correlation is

K[ξ1ξ2] = 〈ξ1ξ2〉 − 〈ξ1〉 〈ξ2〉 (2.7)

and the correlation of arbitrary order is given by

K[ξ1 . . . ξn] =
1

in
∂ ln Θ(u1 . . . un)

∂u1 . . . ∂un
|u1=...un=0 (2.8)

where
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Θ(u1 . . . un) = 〈exp{i(u1ξ1 + . . . unξn)}〉 (2.9)

The process is called stationary (strict sense) if the moment functions (or correlation functions) are
invariant under time shifts

k1(t) = m1(t) = m

k2(t1, t2) = k2(0, t2 − t1) = k(t2 − t1)

. . .

and so on. For a stationary process one defines the correlation time and the process intensity

τcor =
1

k(0)

∫ ∞

0

|k(τ)| dτ

K =

∫ ∞

−∞
k(τ)dτ

The spectral density of a stationary process is

Sξ(ω) = 2

∫ ∞

−∞
eiωτ 〈ξtξt+τ 〉 dτ = 4

∫ ∞

0

cos(ωτ) 〈ξtξt+τ 〉 dτ (2.10)

for a process with zero mean

Sξ(ω) = 2

∫ ∞

−∞
eiωτk(τ)dτ (2.11)

for a process with mean 〈ξ〉 = m

Sξ(ω) = 2

∫ ∞

−∞
eiωτk(τ)dτ + 4πm2δ(ω) (2.12)

for instance (see also figure 2.1)

k(τ) = e−γτ ⇒ S(ω) =
4γ

ω2 + γ2

k(τ) = e−γτ cos(ω0τ) ⇒ S(ω) = 4γ
4ω2 + ω2

0 + γ2

(ω2 − ω2
0 − γ2)2 + 4γ2ω2

(2.13)

For a multidimensional process (ξ1(t), ξ2(t)) one defines cross-correlation function

k12(t1, t2) = K[ξ1(t1), ξ2(t2)]

and cross-spectral density

Sξ1ξ2(ω) = 2

∫ ∞

−∞
eiωτ < ξ1,tξ2,t+τ > dτ

The spectral density has to be distinguished from the random spectrum of the random process which
is a Fourier transform of a particular process sample

Y (ω) =
1√
2π

∫ ∞

−∞
e−iωtξ(t)dt (2.14)
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Figure 2.1: Sample spectral densities

ω0 

(a) Spectral density of a process with
k(τ) = e−γ|τ |

ω

S

(b) Spectral density of a process
with k(τ) = e−γ|τ | cos(ω0τ)

This integral diverges for stationary random processes and has to be understood as a generalized
function. The spectral density has a meaning of the averaged noise spectrum. It has a meaning only if
we consider the noise signal passed through a narrow band filter with ∆ω ∼ |ω − ω0| instead of a random
spectrum.

Y (ω0, t0) =

∫ ∞

−∞
G(t0 − t)ξ(t)dt (2.15)

G(t0 − t) =
1√
2π

∫ ∞

−∞
eiω(t0−t)g(ω)dω (2.16)

with g(ω) a pulse located in the interval ∆ω around ω0 and

∫ ∞

−∞
g(ω)dω = 1 (2.17)

the connection between so filtered signal and the spectral density is

〈

(Y (ω0, t0)
2)
〉

=
1

2
Sξ(ω0)

∫ ∞

−∞
|g(ω)|2 dω (2.18)

As has been mentioned, the first two moments already contain the most significant information about
the random process and the higher order moments are mostly responsible for extremal behavior. It is then
natural to consider a class of stationary processes with only the first two moments different from zero.
Such processes are called second order processes. Their statistical properties are completely defined by
the correlation function K(τ).

A random process with K(τ) = Kδ(τ) is called a delta-correlated process or white noise with intensity
K. It is an abstraction of a physical process with negligible correlation time. It has the advantage that it
is a Markov process (see below), but it has infinite intensity and cannot be physically realized. A random
process with arbitrary K(τ) is also known as colored noise.

An important role is played by Markov random processes, or processes without after-effect. Let ξ(t) be a
random process and tn > tn1

> . . . > t1. The conditional probability density of ξ(tn) with ξ(tn−1) . . . ξ(t1)
given is

f(xn|xn−1 . . . x1) =
fn(xn . . . x1)

fn−1(x1 . . . xn−1)
(2.19)
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A process ξ(t) is called Markov if the conditional probability 2.19 depends on xn−1 only, i.e.

f(xn|xn−1 . . . x1) = ptn−1tn(xn−1, xn) (2.20)

pt1t2(ξ1ξ2) is called the transition probability of the Markov process. Markov processes possess a
remarkable property, namely their transition probabilities satisfy the Chapman-Kolmogorov equation

pt1t3(x1, x3) =

∫

pt1t2(x1, x2)pt2t3(x2, x3)dx2 (2.21)

The Chapman-Kolmogorov equation is what makes Markov processes so significant. It provides a
method of calculating the evolution of probability density in time. For more general classes of random
processes such methods do not normally exist and they are usually treated by approximating them with
an appropriate Markov process. The probability density f(x, t) describes the probability of finding the
random process at point x at time t and, in case of a Markov process, satisfies

f(x1, t1) =

∫

pt1t2(x1, x2)f(x2, t2)dx2 (2.22)

which is proved by integrating 2.21 over x3. Equation 2.21 can be reduced to a differential equation.

ḟ(x) =

∞
∑

n=1

(−1)n

n!

(

∂

∂x

)n

[Kn(x)f(x)] (2.23)

with

Kn(x) = lim
τ→0

〈(xτ − x)n〉
τ

(2.24)

If the series 2.23 can be truncated at the second term then we get the Fokker-Planck or diffusion
equation

ḟ(x) = − ∂

∂x
[K1(x)f(x)] +

1

2

∂2

∂x2
[K2(x)f(x)] (2.25)

This possibility is equivalent to some regularity requirements on the paths of the random process (like
continuity). The coefficients K1 and K2 are called the drift and diffusion coefficients. The Wiener process

or standard Brownian motion is a diffusion process with zero drift and unit diffusion. The trajectory of
a Wiener process is continuous but nowhere differentiable. One can however define the derivative of the
Wiener process dWt which happens to be the white noise process.

In applications physical processes are often given as solutions of differential equations. To be able
to treat equations with r.h.s. containing random processes one has to take advantage of the theory of
Brownian motion and stochastic differential equations. Suppose we are given a differential equation with
a random r.h.s.

ẋ = g(x, t, ω)

then it is natural to say that a solution is a function x(t) satisfying the integral equation

x(t) = x(0) +

∫ t

0

g(x(s), s, ω)ds (2.26)

But for many important random processes (like white noise) this integral does not exist in the usual
Riemann-Steltjes sense. The theory of stochastic differential equations based on special integral definition
was developed by Ito and Stratanovich. One starts with equations with white noise in the r.h.s
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dx

dt
= a(x) + b(x)

dWt

dt

which is usually written in the form

dx = a(x)dt+ b(x)dWt

The solution is formally a random process satisfying the corresponding integral equation

x(t) = x(0) +

∫ t

0

a(x(s))ds +

∫ t

0

b(x(s))dWs (2.27)

The first integral is understood in the usual sense. The second one is an integral over a path of a
Wiener process and doesn’t exist in the usual sense [29]. It is defined in the following way. Let Π be a
partition of interval [a, b] with points {si}i=1,n and ‖Π‖ = maxi=1,n−1 |si+1 − si|, then

∫ b

a

g(W )dWs = lim
‖Π‖→0

∑

[

εg(Wsi
) + (1 − ε)g(Wsi+1

)
] [

Wsi+1
−Wsi

]

(2.28)

Such an integral is called the stochastic integral. It exists for a large class of integrands and 2.27
admits a solution. For different ε this defines different random processes. When ε = 0 the integral is
in Ito’s sense, when ε = 0.5 Stratanovich’s. When a stochastic differential equation has a solution in
Stratanovich’s sense, then there exists a corresponding equation having the same solution in Ito’s sense.
Ito’s integral could be defined for a somewhat broader class of integrands. Some important properties of
stochastic integrals are shown below

Ito Stratanovich

〈∫ τ

0 dWs

〉

= 0
〈∫ τ

0 dWs

〉

= 0
〈

(∫ τ

0
dWs

)2
〉

= τ
〈

(∫ τ

0
dWs

)2
〉

= τ
〈∫ τ

0
WsdWs

〉

= 1
2W

2
τ + τ

〈∫ τ

0
WsdWs

〉

= 1
2W

2
τ

f(Wt) = f(W0) +
∫ t

0
f ′(Ws)ds+ 1

2

∫ t

0
f ′′(Ws)dWs f(Wt) = f(W0) +

∫ t

0
f ′(Ws)ds

The last relation is known as the Ito’s rule. The multidimensional system

dx = a(x)dt+ b(x)dWt (2.29)

with a(x), b(x) ∈ Rn×n x ∈ Rn and W (t) ∈ Rn being n independent Wiener processes is treated
in complete analogy. Under a stochastic differential equation we will understand equations of type 2.29.
Equations of general form are usually treated by reducing them to certain systems of (Ito or Stratanovich)
stochastic equations [22] [28] [37].

One may pose various questions about solutions of the equations in question, such as first exit time
from a domain etc. We are interested mainly in the evolution of the probability distribution supposing
the initial distribution is given. Solutions of stochastic differential equations are Markov processes and
thus must satisfy a Chapman-Kolmogorov equation 2.21. One calculates its coefficients by substituting
2.27 into 2.24 and exploiting the properties of stochastic integrals. For the Ito’s integral one gets

K1(x) = lim
τ→0

〈xτ − x〉
τ

=

lim
τ→0

1

τ

〈∫ τ

0

a(x(s))ds +

∫ τ

0

b(x(s))dWs

〉

= a(x)
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K2(x) = lim
τ→0

〈

(xτ − x)2
〉

τ
=

lim
τ→0

1

τ

〈

(∫ τ

0

a(x(s))ds +

∫ τ

0

b(x(s))dWs

)2
〉

= b2(x)

and the coefficients of order n ≥ 2 vanish. With the definition of Stratanovich the coefficients are

K1(x) = a(x) + b(x)b′(x) (2.30)

K2(x) = b2(x) (2.31)

and the higher order coefficients also vanish. Thus in both cases we arrive at the Fokker-Planck
equation for the distribution function. Employing Ito’s or Stratanovich’s definition of the integral yields
different Fokker-Planck equations. The convenience of Ito’s variant is that the coefficients in the Fokker-
Planck equation and in the stochastic equation coincide. But the Stratanovich’s variant gives the right
physical picture (a gradient in the diffusion coefficient will produce convection). Denoting

G(x) = K1(x)f(x) − 1

2

∂

∂x
[K2(x)f(x)]

the Fokker-Planck equation takes the form

ḟ(x) +
∂G(x)

∂x
= 0 (2.32)

which represents the conservation of probability. G(x) is called the probability current or probability
flux. For the Fokker-Planck equation to have a unique solution one normally needs to specify some
additional conditions. They may include absorption or reflection conditions as well as sinks and sources
of probability.

If a random process trajectory terminates (a particle is absorbed) at point a, then one requires that
f(a) = 0. If at point a a reflection occurs, then no probability flux is present at this point and G(a) = 0.
One could also specify an arbitrary law of behavior at the boundary. For instance, if at a boundary point
a approached by a random process trajectory from the left a reflection occurs with probability α and
absorption with probability 1 − α then the boundary condition reads

αG(a) = (1 − α)f(a) (2.33)

If one imposes complex additional conditions, then the existence and uniqueness of the solution of
the Fokker-Planck equations are by no means guaranteed. However, if it describes a well-defined Markov
process then its solution is expected at least to exist. Uniqueness, existence and stability of the solutions
of the Fokker-Planck equations arising in this work are expected from their physical origin and are not
studied.
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Chapter 3

Discrete random perturbations and
the Touschek effect

In this section we discuss random perturbations which have a jump character.1 Such perturbations usually
arise as a consequence of collision processes. These processes have kinetic nature and are described
by certain kinetic equations. The latter normally have great complexity and do not allow an accurate
analytical treatment. We discuss possible approximations and computational methods for these equations
and propose to treat them with the method of ”self-consistent chains” which is a slight modification of the
usual notion of a Markov chain when the dependency of the transition probabilities on the distribution
function is taken into account. It forms the basis of a quite simple computation procedure.

The methods developed are applied to the study of the Touschek effect and of the intra-beam scattering
[49], [9], [18], [50]. Both processes are essentially of the same nature and represent the density change
caused by Coulomb scattering of particles inside the bunch. We will call them both the Touschek effect. It
has a considerable influence on the bunch dynamics for high intensity beams. An analytical treatment of
such phenomena is complicated and is possible under a priori assumptions about the solution sought. Such
assumption is the bunch distribution form which is assumed Gaussian. This approach gives reasonable
estimates of emittance growth and instant loss rates, but does not necessarily give the right description
of the density evolution and especially the distribution of the bunch tails. This is especially the case for
nonlinear systems when the motion of tail particles strongly deviates from the average across the bunch.
It seems misleading for the study of escape from the stable Rf bucket since such escape is most likely to
happen for a tail particle. In interplay with noise the tail buildup due to the scattering processes can
make a considerable effect on the coasting beam production which motivates the use of the method.

The discussed approach may be applied to other problems which are of the same nature: gas scattering,
stochastic effects in beam-beam interactions and so on. At HERA they are not suspected to have a direct
influence on the coasting beam accumulation.

3.1 The Touschek effect and the intra-beam scattering

Particles in a bunch are subject to Coulomb interactions. These interactions become weak at high energies.
However, microscopic incoherent interactions, or collisions, still have a rather strong effect and cannot be
neglected. Such collisions lead to random particle momentum change. A transition of momentum from
the transverse to the longitudinal direction is enlarged by the relativistic factor γ and can be so large
that both colliding particles leave the machine acceptance. This effect was recognized by B.Touschek on a

1A random process with discontinuous paths is usually called a jump process
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e+e− storage ring ADA [7] and is called the Touschek effect. The collisions resulting in small momentum
changes do not lead to a particle loss but contribute to an increase in bunch dimensions. In combination
with synchrotron radiation this may lead to a change in the stationary distribution, which can take place
in electron storage rings. The theory of such processes was worked out basically by A.Piwinski [49] and
is usually called the ”intra-beam scattering” or the ”multiple Touschek effect”. We are also interested in
collisions that neither contribute to bunch diffusion nor lead to a particle loss, but result in transitions of
the particles to the bunch tail or to the coasting beam region. We will as well use the expression “single
Touschek effect” for the particle loss, “intra-beam scattering” for effect of small collisions and “Touschek
effect” for the general situation when all kinds of events are taken into account. Here we present basic
theory following [49], [18].

In the center of mass system a collision is characterized by the impact parameter r. A collision of two
particles with initial momenta p1 and p2 results in the rotation of their momenta by a polar angle φ and
an azimuthal angle ψ. Under the assumption that the velocities are not relativistic in the center of mass
system, in the laboratory system this results in

δp1,2 = ±p
2





γχ cosφ sinψ + γξ(cosψ − 1)
1
χ (ζρ sinφ− θξcosφ) sinψ + θ(cosψ − 1)

1
ξ (−θρ sinφ− ζξcosφ) sinψ + ζ(cosψ − 1)



 (3.1)

ξ =
p1 − p2

γp
, θ =

px,1 − px,2
p

, ζ =
pz,1 − pz,2

p

χ2 = θ2 + ζ2, ρ2 = ξ2 + θ2 + ζ2

The relativistic effects in the centre of bunch system have only a small effect for energy range of
interest. For protons or ions the probability of scattering into a solid angle dΩ = sinψdφdψ is given by
the Rutherford cross section

dσ =

(

r0

4β2 sin2 ψ
2

)2

sinψdΩ (3.2)

with the minimum angle ψmin determined by the maximum impact parameter rmax

tan
ψmin

2
=

r0
2βrmax

(3.3)

and r0 = e2Z2

4πε0mc2
, which is the classical proton radius for protons, β is the relative particle velocity.

For electrons one should use the Møller cross section instead [51]. The collision does not lead directly to
a change of the betatron coordinates x and z, but results in the change of the betatron angles and of the
closed orbit as a consequence of the (longitudinal) momentum change

δrβ1,2 =









0
δpx1,2/p

0
δpz1,2/p









−D
δp

p
(3.4)

The synchrotron phase does not change noticeably after a collision as well. The effects of collisions on
beam evolution can be different. For example, in electron storage rings with relatively low energy they
can have a substantial influence on beam lifetime. To estimate the loss rate due to the single Touschek
effect one needs to calculate the total cross section of events leading to particle loss. The loss occurs when
the azimuthal angle exceeds a certain value ψm , so the total cross section of the Touschek loss takes the
form
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σloss =

〈∫ π

ψm

dσ

〉

(3.5)

The loss rate can be calculated assuming that the distribution function is known. One gets the
dependency of the number of stored particles on time

NB(t) =
NB(0)

1 + t
Tl

(3.6)

where Tl is the Touschek lifetime [11]. For high energy proton storage rings the direct losses are
negligible. For example, for HERA a typical transverse momentum being completely transfered to the
longitudinal direction leads to a momentum change ∆p ∼ 10−5 and such particle won’t leave the accep-
tance. Transitions to the coasting beam are possible but still quite rare. Here the Coulomb scattering
mainly leads to small momentum changes. To estimate these changes one studies their averaged influence
on the invariants of motion. These invariants are the transverse emittances εx,z and the synchrotron
invariant H . Analytical treatment of this problem is possible only under some restrictions. One assumes
that the bunch shape is Gaussian in all directions

P (rβ , δp, s) = Ke−(Sx+Sz+Ss) (3.7)

K =

∫

drβdδpdφe
−(Sx+Sz+Ss) (3.8)

Sx =
εx(xβ , xβ

′)

2εx
=

βx
2εx

x′β
2 − β′

x

2εx
x′βxβ +

1 + β′
x
2

2βxεx
xβ

2 (3.9)

Sz =
εz(zβ, zβ

′)

2εz
=

βz
2εz

z′β
2 − β′

z

2εz
z′βzβ +

1 + β′
z
2

2βzεz
zβ

2 (3.10)

Ss =
∆s2

2σ2
s

+
δp2

2σ2
p

(3.11)

The averaged emittances are

εx,z =
σ2
x,z

βx,z
(3.12)

A momentum change ∆p will produce the following changes in the invariants to the first order

∆εx = −β′
x

∆px
p

xβ +
1 + β′

x
2

βx

px∆px
p2

(3.13)

∆εz = −β′
z

∆pz
p
zβ +

1 + β′
z
2

βz

pz∆pz
p2

(3.14)

∆H = 2δp∆p (3.15)

Here only quadratic parts of the invariants are taken into account. If invariants of higher order are
considered then the distribution is no more Gaussian and the calculations become more complicated. The
number of scattering events per unit time is

M = 2βcP0σ/γ
2 (3.16)
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where β, γ are relativistic factors, P0 spatial density in the laboratory system and σ the total cross
section (the factor γ2 comes from the transformations of cross-section and time to the laboratory frame).
Taking in account the relations

x′ =
px
p

(3.17)

z′ =
pz
p

(3.18)

using 3.1 and averaging over all angles and coordinates one can arrive at the averaged emittance change
rates per unit time. One gets instantaneous rates [49]

εx,z = eλx,zε
0
x,zt (3.19)

〈H〉 = eλs〈H〉0t (3.20)

where the rise times are defined as

λs =

〈

A
σ2
h

σ2
p

f(a, b, q)

〉

(3.21)

λx =

〈

A

[

f(
1

a
,
b

a
,
q

a
) +

D2
xσ

2
h

σx2

f(a, b, q)

]〉

(3.22)

λz =

〈

A

[

f(
1

b
,
a

b
,
q

b
) +

D2
zσ

2
h

σz2
f(a, b, q)

]〉

(3.23)

A =
r20cNp

64π2β3γ4εxεzσsσp
(3.24)

1

σ2
h

=
1

σ2
p

+
D2
x

σ2
x

+
D2
z

σ2
z

(3.25)

a =
σhβx
γσx

, b =
σhβz
γσz

, q = σhβ

√

2d

r0
(3.26)

f(a, b, q) = 8π

∫ 1

0

2

(

ln

(

q

2

(

1

P
+

1

Q

))

− 0.577...

)

1 − 3x2

PQ
dx (3.27)

P = a2 + (1 − a2)x2, Q = b2 + (1 − b2)x2 (3.28)

Here d is the smaller of the beam radii. The effect becomes much stronger for ion beams. Say, for Au
ions at RHIC the longitudinal rise time is within one hour, whereas for protons it is tens of hours. The
transverse rise times are usually much smaller than the longitudinal and the intra-beam scattering can
be often considered to be a one-dimensional process. Some example of growth rates calculated for HERA
lattice are shown in figure 3.1. For HERA the transverse rise times are negligible and the longitudinal rise
times are tens of hours, depending on initial bunch intensities and emittances.

For some problems the information about the rates of emittance growth is not sufficient. Such are, for
example, the study of particle escape from the stable RF bucket and the longitudinal tail buildup due to
intra-beam scattering. To treat them one has to follow another approach.
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Figure 3.1: Bunch rise times due to intra-beam scattering for HERA parameters

(a) Rise time τ (sec) vs. relative momentum spread
σp (10−4), protons, γ = 920

(b) Rise time τ (sec) vs. transverse emittance εx,z

(nm), protons, γ = 920

(c) Rise time τ (sec) vs. energy γ, protons, εz,z ∼ 5nm (d) Rise time τ (sec) vs. charge Z

3.2 Kinetic equations

The results from the previous section are applicable for Gaussian beams and harmonic synchrotron and
betatron oscillations. The restriction that the shape is Gaussian is not essential, the calculations can
in principle be performed for other bunch shapes. The major restriction of the theory is that the same
averaged scattering amplitude is taken for all particles. This is a substantial limitation in the case of
nonlinear motion. The synchrotron and betatron oscillations become nonlinear for large amplitudes. It
can happen that then the behavior of particles with such large amplitudes deviates from the average and
the distribution of tails will show a completely different behavior. Such situation is not excluded for the
synchrotron motion. In the bunch tails the synchrotron frequency becomes smaller and the tail particles
experience collisions rarely. Second,a particle may be lost longitudinally by experiencing a series of jumps
of intermediate size. This situation does not correspond to the single Touschek effect or to the intra-
beam scattering. Finally, the scattering amplitude must depend on the bunch distribution. To estimate
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the escape rate one needs to take these facts into consideration. This is accomplished by employing the
Boltzmann equation for the evolution of the distribution function [43]. Without interactions between
particles the evolution of the bunch density f(x) (here x = {rβ , δp, φ} for brevity ) is governed by the
Liouville equation

df

ds
=
∂f

∂s
+
∂f

∂x

∂x

∂s
= 0 (3.29)

If collisions are taken into account then the density evolution can be described by the Boltzmann
equation

df

ds
= C(f, f) (3.30)

with C(f, f) being the collision integral which shows the change of the distribution function due to
collisions per unit time. Let the total cross section of collisions leading to jumps x1, x2 → x′1, x

′
2 be

σ(x1, x2;x
′
1, x

′
2), then the collision integral can be represented as

C(f, f) =

∫

[σ(x1, x2;x, x
′
2)f(x1)f(x2) − σ(x, x2;x1, x

′
2)f(x2)f(x)]dx1dx2dx

′
2 (3.31)

This integral is a nonlinear complex functional of f . Together with the fact that the coefficients in
the Liouville equation are fast oscillating this makes the Boltzmann equation impossible to solve straight-
forwardly. The fast oscillations are eliminated with an averaging procedure (see below). The nonlinear
collision integral must also be simplified. One can approximate it with a linear one, say, a linear integral
operator or a linear differential operator. Approximation with a linear integral operator would correspond
to the physical assumptions that the collision process is a stationary Markov jump process, i.e. that the
distribution function changes do not influence the free path distribution and other kinetic parameters sig-
nificantly. It could also be justified if this assumption does not hold but we are interested in some stable
regime only. Approximation with a partial differential equation of second order corresponds to the further
assumption that the collisions result in small jumps and the process is a diffusion (Brownian motion). It
may happen that the mentioned approximations are not applicable for the time scales of interest but give
good results for relatively small time intervals. Then one can apply a calculation procedure which uses
one of the approximations on a small time step.

3.3 Averaging of the kinetic equations

In the case of intra-beam scattering collisions happen rarely and thus their probabilities do not depend on
the local bunch density, but on the average density along the particle trajectory over a large time interval.
In other words by the value

1

T

∫ T

0

f(gtx)dt = f̂T (x)

for large T or by its limit value

f̂(x) = lim
T→∞

f̂T (x) (3.32)

Here gt is the transformation associated with the motion. Suppose now that our system is Hamiltonian,
i.e. the motion takes place on surfaces of constant energy. Suppose 3.32 holds for all x lying on some
energy surface and the motion on this surface is ergodic (i.e. this surface cannot be decomposed into pieces
that are invariant under the motion). Then various statistical characteristics for a particle moving on this

energy surface (like collision probability) can be derived from the distribution function f̂(x) defined on it.
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Such distribution is called microcanonical. The whole system is then described by a distribution in energy
only. These assumptions hold in the case of one-dimensional Hamiltonian system. For a multidimensional
case the motion on an energy surface does not need to be ergodic. One can encounter following situations

1. The motion on the energy surface is ergodic. Then f̂(x) can be found.

2. The motion is not ergodic. Then the energy surface can be split into invariant components (man-
ifolds). For example, in the case of an integrable system these components are determined by the
remaining invariants of motion. These invariants can be used as variables to describe the kinetic
process.

The case of an arbitrary multidimensional system can be complicated. The motion on the invariant
components can turn to be not ergodic, but of some complicated chaotic nature. The invariant components
can also have some complicated topology. But we encounter the situation where a small change in the
motion does not influence the statistical properties, so we can always deal with a completely integrable
system (which exists close to every Hamiltonian system thanks to the KAM theorem) which is a good
approximation to the original system. Therefore, we assume that this system is a rather simple one and
can be easily treated. In practice, it’s only the fine structure in the synchrotron motion that we are
interested in and we will be dealing with a one-dimensional case. In this situation the microcanonical
distribution can be easily found. Suppose gt is the motion of a Hamiltonian system

q̇ =
∂H

∂p

ṗ = −∂H
∂q

To find the limit

lim
1

T

∫ T

0

f(gt(q, p))dt = f̂(q, p)

note that a Hamiltonian system can be brought to the action-angle form

İ = 0

ϕ̇ = Ω(I)

This can be done in any region that does not contain a separatrix. So the motion is equivalent to a
rotation on a circle. Then

lim
T→∞

1

T

∫ T

0

f(gt(q, p))dt = lim
T→∞

1

T

∫ T

0

f(I, φ)|J |dφ = f̂(I) (3.33)

So, in action-angle variables the microcanonical distribution reduces to a function in action only. Then
in (q, p) coordinates it will have the form f̂(q, p) = |J |f̂(I) with |J | being the Jacobian of the action-angle
transformation. The procedure of finding the latter is outlined in appendix A. It is always assumed that
when restricted to the level curve the microcanonical density is normalized to 1.

An average of a function u(q, p) over the invariant curves with respect to the microcanonical density

f̂ is

〈u〉 |h =

∫

H(q,p)=h

u(q, p)f̂(p, q)dqdp =
1

2π

∫ 2π

0

u(q(I, φ), p(I, φ)) |J | dφ (3.34)
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For example, the averaged momentum for a linear oscillator is

〈p〉 =
1

2π

∫ 2π

0

p(I, φ) |J | dφ =
1

2π

∫ 2π

0

√
2I sinφ |J | dφ = 0

and the averaged squared momentum is

〈

p2
〉

=
1

2π

∫ 2π

0

p2(I, φ) |J | dφ =
1

2π

∫ 2π

0

2I sin2 φ |J | dφ = I

Now we can use the statistical distribution function of the form
∏

f̂i(Ii) where Ii are invariants of
motion. One also has to assume that there are no correlations between these degrees of freedom over the
particle ensemble, in other words the phases of all particles should be independent.

3.4 The diffusion (Fokker-Planck) approximation

Under certain conditions a kinetic equation may be substituted by a Fokker-Planck equation, which is the
crudest approximation. This is possible when the particle motion is approximately a diffusion process.
This process is assumed to be Markovian only locally so that the diffusion coefficient can depend on the
distribution function and the Fokker-Planck equation can be nonlinear. Usually such an assumption is
true when the collisions result in small deflections and the cross section does not change with time or
depends on the distribution function only locally. For example, in plasma physics such representation is
valid for motion of electrons among heavy ions. Another classical example is the Brownian motion. This
approach may also be applied to the study of the intra-beam scattering. Assume that due to collisions the
transverse beam distribution does not change considerably and the synchrotron invariant of each particle
behaves like a diffusion process path. The equation for (longitudinal) density evolution becomes

∂Ps(H)

∂t
= − ∂

∂H
(a(H)Ps(H)) +

1

2

∂2

∂H2

(

b2(H)Ps(H)
)

(3.35)

with drift and diffusion coefficients

a(H) = lim
τ→0

1

τ
〈H(τ) −H(0)〉 (3.36)

b2(H) = lim
τ→0

1

τ

〈

(H(τ) −H(0))2
〉

(3.37)

A collision resulting in momentum change δp changes the synchrotron invariant by

δH = pδp+
δp2

2
(3.38)

denote the random scattering amplitudes from 3.1

A = (p1 − p2)(cosψ − 1) (3.39)

then the synchrotron invariant changes as

δH = Ap+
A2

2
(3.40)

Let the probability of a collision per unit time be Q. Then
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a(H) = lim
τ→0

1

τ
〈δH〉 =

〈

QAp+
Q

2
A2

〉

(3.41)

b2(H) = lim
τ→0

1

τ

〈

(δH)2
〉

=

〈

Q(Ap+
1

2
A2)2

〉

(3.42)

The averaging has to be performed over longitudinal momenta belonging to the constant energy surface
and all other variables independently. Due to symmetry the contribution of odd power of p is zero.
Therefore, the amplitudes A1,2 are assumed to be symmetric so that 〈A1,2〉 = 0. The moments of order
higher than three are also neglected. Averaging over the synchrotron phase we obtain the coefficients

a(H) =

〈

QA2
〉

2
(3.43)

b2(H) =
〈

QA2p2
〉

=
1

2π

∫ 2π

0

〈

2QA2H sin2 ϕ
〉

dϕ =
〈

QA2H
〉

(3.44)

Here the synchrotron oscillations are assumed harmonic for simplicity. Taking into account that A
and Q are slowly varying functions of H and that

a(H) =
∂b2(H)

2∂H
(3.45)

we arrive at the Fokker-Planck equation

∂Ps(H)

∂H
=

∂

∂H

(

b2(H)

2

∂Ps(H)

∂H

)

(3.46)

with the diffusion coefficient

b2(H) = H
β

2γ
c 〈P0(H)σ〉

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ 2π

0

dφ

∫ π

−π
dψ ×

[

p1 − p2

γ
(cosψ − 1) +

√

(px,1 − px,2)2 + (py,1 − py,2)2 sinψ cosφ

]2

×

r20
4β2

1

sin4 ψ
sinψPx(px,1)Px(px,2)Py(py,1)Py(py,1)dpx,1dpx,2dpy,1dpy,2 (3.47)

One sees that the diffusion coefficient is itself a nonlocal function of density and we are dealing not
with a Fokker-Planck equation in the strict sense. Using this method could be useful as soon as 〈P (H)〉
does not change fast. For example, the stationary solution of 3.35 will describe the stationary bunch
density and it does not need to have any shape restrictions. This approach can be used, for example,
for calculating equilibrium distribution of an electron beam when some scattering process together with
synchrotron radiation are present. However, in the problem of proton escape the distribution is not
stationary and such a diffusion method is not effective. One may hope to arrive at a solution assuming
a specific bunch shape. If a Gaussian solution is assumed, it must coincide with the results of previous
section and shouldn’t give any new information. Altogether, the diffusion approximation is a loose one for
scattering problems with nonlocal dependency of the scattering amplitude on the distribution function
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3.5 Reduction to a linear integro-differential equation

The Fokker-Planck approximation described above is equivalent to the assumption that the scattering
process is a white noise with slowly varying intensity given by the scattering amplitude. It employs
only first two moments of the scattering amplitude and neglects the possible jump nature of the process.
There are possible situations where neglecting this information may introduce a noticeable error. Say, for
synchrotron motion the probability of a collision Q(H) and thus the diffusion coefficient goes to zero as
H approaches the separatrix value. The probability flux across the separatrix is thus zero. However, in
reality this flux is not zero and is formeda by particles performing jumps from inside of the bucket. The
diffusion coefficient singularity could be eliminated in such a way that the probability flux is realistic. But
the correct physical behavior is not guaranteed. The diffusion approximation mostly suits to describe the
bunch core evolution, although perhaps with more accuracy than the emittance growths rate calculation.
Therefore, in the intra-beam scattering problem the local nature of the Fokker-Planck equation is spoilt
by the nonlocal character of the diffusion coefficient. A natural approach here would be to abandon the
assumption of small jumps and pass to the integro-differential equation describing a Markov jump process

∂Ps(H)

∂t
=

∫ ∞

−∞
W (H ′, H)Ps(H

′)dH ′ (3.48)

where W (H,H ′) is the transition amplitude. If the differential cross-section for a scattering process as
a function of the scattering angle θ dσ/dΩ is known, then the kernel can be represented in the form [43]

W (H,H ′) = k

〈

dσ(θ − θ′)

dθ
− σtotalδ(θ − θ′)

〉

(3.49)

where k is some factor depending on the collision probability and the expression in the r.h.s. has to
be averaged and expressed as a function of H and H ′. Such a method was applied, for example, in [44]
for a residual gas scattering problem. Here W (H ′, H) can no more be easily calculated analytically and
numerical methods must be employed. The algorithm described in the next section can be used as one of
such methods.

3.6 Solution of the Boltzmann equation (method of self-consistent

chains).

Here the method proposed in [2] is described which can be employed for the solution of the Boltzmann
equation. Its features are studied and it is applied to the problem of particle escape due to intra-beam
scattering. It takes jumps and the dependency of the kinetic parameters on the bunch distribution into
account. The idea of the method is in short to reduce the evolution of the 3D bunch distribution to
that of three one-dimensional distributions of slowly varying quantities, such that the bunch distribution
could be reconstructed form them. Then for small time scales the evolution of these slowly varying
quantities is assumed to be a Markov process and the appropriate techniques are used, the properties
of the Markov process are recalculated after certain time steps. Since we are essentially interested in
jump-like perturbations, the arising Markov process will be of jump type. Since the discretization is to
be done at a certain point (in the numerical solution), we consider the process to be a Markov chain from
the beginning on.

3.6.1 Self-consistent chains

Suppose the perturbation depends on the state of the system, but in such a way, that when we fix the
system state it turns into a Markov process. This is the case for intra-beam scattering - under fixed bunch
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density the scattering can be considered to be a Markov process and the density changes slowly. Then
techniques practically identical with those of Markov processes can be applied. Suppose that we are given
a Markov process of jump type. Then we can either consider it to have a continuous phase space, write
down an appropriate (Chapman-Kolmogorov) integro-differential equation for the density evolution and
then develop a discrete numerical scheme, or first consider the phase space to consist of discrete elements
and then apply corresponding methods. We choose the latter option.

Let the transition probabilities pij(h) have Taylor expansions near 0. Let the probability of leaving a
state after a short time be small, this means that they can be represented in the form

pii(h) = 1 − εbiih+O(h2)

pij(h) = εbijh+O(h2), i 6= j

Then the infinitesimal generator aij of the Markov chain (see Chapter 2) will have elements

aii = −εbii ≤ 0

aij = εbij ≥ 0

denote

x1 = p10, . . . , xn+1 = p1n,

xn+2 = p20, . . . , x2(n+1) = p2n,

. . .

x(n−1)(n+1) = pn1, . . . , xn(n+1) = pnn

then the Kolmogorov equation 2.3 satisfied by the transition probabilities can be written as

ẋ(t) = Ax(t) (3.50)

where

A =





A11 . . . A1n

. . . . . . . . .
An1 . . . Ann



 (3.51)

and Aij = diag{aij} ∈ R
n is a diagonal matrix with diagonal elements all equal.

The Kolmogorov system is a linear system and thus there are numerous ways to solve it, for instance
the solution can be written as

x = exp{At}x(0)

The transition matrix P (τ) = {pij(τ)} is thus found and the probability distribution at time t is
p(t) = pT0 P (t) where p0 is the initial distribution.

Applying this formalism in small steps and recalculating A after each step, we have a tracking procedure
for the distribution. To be able to apply this technique one needs to know how such kind of device behaves
when the step size after which the kinetic parameters are recalculated becomes small and number of states
of the chain large. Therefore, stable behavior of the result depending on the input parameters is to be
assured. The estimates are summarized in Appendix C.

The size of the Kolmogorov system of differential equations growth as the square of the size of the
transition matrix and thus as n2 × n2 where n is the number of states in the chain. Therefore, it is not
symmetric. An application of eigenvalue methods for the solution can thus yield a slow performance. But
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thanks to its special block diagonal structure one may propose a faster method. The solution can be
written (formally) as

x(t) = exp{At}x0 = (E + (At) +
1

2
(At)2 +

1

3!
(At)3 + . . .)x0

If we have two matrices of the form 3.51, then AB = C again has the same form and

cij =
n
∑

k=1

aikbkj

So eAt may be calculated as

eAt =
∞
∑

i=0

Ci

Ci = Ci−1
1

i
(At)

C0 = E

O(n3) operations are required for calculating Ci from Ci−1 and if we keep N(n) terms in the series the
complexity will be O(N(n)n3). N(n) is determined from precision requirements. Suppose ‖(At)‖ ≤ δ and
the norm is understood to be ‖C‖ = maxi,j |cij |. Then ‖Ci‖ ≤ ‖Ci−1‖ nδi . Suppose the series truncation
is controlled by the condition CN < ε. Then N is found from

δNnN

(N + 1)!
< ε

Using Stirling’s formula to approximate the factorial

δNnN√
2πNN+0.5e−N

< ε

For N not small

(δn)N√
2πNN

< ε

δn < Nε1/N

N > δn

One sees that the number N(n) of terms in the series growth linearly with the number of states. This
stays in good correspondence with practice. From the same approximation one can show that the number
of terms grows as the logarithm of precision.

δn < N(ε)ε1/N = N(ε)(1 +
1

N
log ε+O(

1

N2
))

N(ε) > δn− log ε

.
Thus the number of operations required to calculate eAt with precision ε is O(n4). In practice the

number of states of the chain for which the method can be employed is bounded by approximately 1000.
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3.6.2 Computation procedure

The chain method can be applied for numerical simulations of arbitrary kinetic processes. To apply it to
the Touschek effect one needs to define the states of the chain and the infinitesimal generator. We consider
the motion in the three-dimensional space of invariants. The longitudinal invariant is given naturally by
the Hamiltonian of the synchrotron motion. The other invariants are taken to be the Courant-Snyder
invariants. If one wants to take into account the nonlinearity of the transverse motion, one can introduce
invariants of higher order. However, this is not necessary in the case of a proton storage ring. All possible
values of invariants are divided into states {Ωx,z,si }Nx,Nz,Ns

i=1 . For betatron motion (qx,z, px,z) ∈ Ωx,zi if
hx,zi ≤ Ix,y(qx,z, px,z) ≤ hx,zi+1 for some partitions hx,y. States Ωx,zNx,Nz

are absorbing and correspond to
a transversely lost particle. In the longitudinal plane we take the nonlinearity into account and have to
distinguish between various regions of the phase space which may have the same value of the invariant.
So we first divide the phase space into domains not containing separatrices and then enumerate them as
before.

The distributions are then given by three vectors {ρxi }Nx

i=1, {ρzi }Nz

i=1 , {ρsi}Ns

i=1. When a collision occurs
the collided particle either stays in the same state or jumps to another. Transition probabilities px,y,zij,t (τ)
(depending on time) in each chain denote the probability that a particle starting in an arbitrary point lying
in state i lands in state j after time τ . To apply the chain formalism one needs to know the infinitesimal
generators

ax,z,sij,t = lim
τ→0

px,z,sij,t (τ) − δij

τ
(3.52)

It is obtained by inserting some finite time τ into 3.52 for which px,y,zij,t (τ) − δij is still small. This can
be, for example, the time of one turn in the ring, one second or any other time for which the probability
of two or more collisions is negligibly small compared to the probability of just one collision. In practice
this time can be rather large. Then one calculates px,z,sij,t (τ). Let the transition probabilities between
the states resulting in a single collision be given by the matrix T = {Tij}, i.e Tij is the probability of
an arbitrary particle in state i to be scattered into state j. It is a discrete analogue of the differential
cross section for the collision. Let the probabilities of (one) collision averaged over the state i be given by
Q̂i(τ) = Qiτ +O(τ2), then for sufficiently small τ

{pij(τ)} =









T11Q1τ + (1 −Q1τ) T12Q1τ . . . T1nQ1

T12Q2τ T22Q2τ + 1 −Q2τ . . . T2nQ2

. . . . . . . . . . . .
Tn1Qnτ Tn2Qnτ . . . TnnQn + (1 −Qnτ)









+O(τ2) (3.53)

and

{aij} = lim
τ→0

pij − δij
τ

= diag{Qi}(T −E) (3.54)

In each dimension T and Q mean of course values averaged over other dimensions. From 3.1 one sees
that the state to which the particle comes after collision T x,z,sj (q, p, φ, r) is completely defined by coordi-
nates and momenta before the collision, polar angle and impact parameter, φ is assumed to be a random
variable with uniform distribution on [0, 2π],r - with uniform distribution on [0, rmax]. So Tij becomes a
well-defined random function of coordinates. To obtain Tij one has to average Tj(q, p, φ, ψ, r) over φ and
r with respect to uniform distribution and over q, p with respect to the microcanonical distribution for
q, p ∈ Ωi. Q is given by

Q(t) = 2βc 〈P0〉σ/γ2 (3.55)
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where P0 is the spatial density and σ is the total collision cross section. The calculations of all averages
are done numerically with the help of expressions from section 3.2. To obtain transition probabilities in
single collision one needs to get a transition probability between two physical coordinates as a function of
random values - the impact parameter, the polar angle and the momenta and average it over the invariant
curve. Say, V (I, I ′, x) is such transformation, where x is the vector of random parameters, I and I ′ are is
the initial and end invariant values. Suppose the distribution function of x is dµ(x), then the transition
probability

Tij =

∫

I∈Ωi,V (I,I′,x)∈Ωj

dµ(x)dI (3.56)

Calculation of such an integral is complicated and is the most time-consuming operation. It is per-
formed by a Monte-Carlo method.2 Q(t) is calculated easily as soon as the spatial density can be recon-
structed from the distribution of the invariants.

Simulations with the chain method show that for proton and ion storage rings the Touschek effect
indeed normally results in slow bunch diffusion. The growth rate decreases with time. A nonzero stationary
distribution does not exist as long as transition probability between two neighbour states does not vanish
and there exists a probability of loss (to the coasting beam), which is a known fact from the Markov chain
theory [29]. But the relaxation to a distribution with only absorbing state filled can take a very long time.
Usually the distribution changes fast when the initial bunch length is smaller than some critical value.
On reaching this value the evolutions slows down and then slow relaxation to zero is observed. In general,
the bunch dimension growth logarithmically.

An increase in bunch intensity will increase the collision frequency by the same amount and results in
speeding up the time scales by the same number.

The dependency of the bunch dynamics on the bunch intensity is linear, i.e.
The accumulated distribution can have different forms (figure 3.2). The tails are practically Gaussian

when the scattering is weak. When the scattering is strong, non-Gaussian tails appear (figure 3.2 (c)).
The dynamics of loss rates depends on the initial distribution. When starting with a Gaussian beam,

the loss rate normally increases as soon as the tails are accumulated, then the loss rate decreases and
finally relaxes to some asymptotic value. Typical beam length evolution and loss rate are shown in figures
3.3 and 3.4.3 Note that the chain dynamics would be quite different if one applies the method to electron
storage rings. There stationary distributions can exist. Therefore, the calculation procedure should be
altered to take the synchrotron radiation into account.

3.6.3 Results for HERA

We applied the chain method to estimate the coasting beam production in HERA (for parameters see
Appendix A). The simulated distribution evolution is a slow diffusion with rates consistent with the rise
times given by the intra-beam scattering theory (see figure 3.5). The amount of lost particles is shown
in figure 3.6. This value is below that required to accumulate the observed coasting beam. It gives the
value of unavoidable DC current which lies around 0.1 − 0.2mA when 100mA are initially stored with
typical emittances and bunch lengthes. This quantity of course depends on the operating conditions such
as the positions of the collimators. The second RF system has no influence on the dynamics of intra-
beam scattering. The side buckets are extremely unlikely to be populated since collisions do not result in
synchrotron phase shifts in the first approximation. The oscillations across three buckets do not introduce
any layer where the particles can be accumulated.

For high energy protons the influence of intra-beam scattering is weak. But for ions this effect can be
very strong. For example, for gold ions in RHIC the bunch growth due to intra-beam scattering is fast

2This method is used to simplify the algorithm. Of course, more effective numerical methods can be used, but this would
make the calculations somewhat less transparent.

3Here simulations with particle charge Z = 10 are shown to underline the effect
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Figure 3.2: Distribution forms appearing as a consequence of intra-beam scattering. Simulations done for
HERA lattice with different initial bunch intensities and emittances

(a) Intensity loss with preservation of bunch form and
length, Np = 0.5 · 1011, γ = 920, σp = 0.5 · 10−4

(b) Diffusion with growth of bunch length and inten-
sity loss, Np = 1011, γ = 920, σp = 0.5 · 10−4

(c) Diffusion with buildup of Non-Gaussian tails,
Np = 1011 , γ = 920, σp = 0.3 · 10−4

and the amount of accumulated coasting beam is huge. Here the discussed effects can be clearly seen. A
simulation of bunch distribution evolution for particles with Z = 10, A = 10 HERA lattice is shown in
figure 3.7.

3.7 Summary

• Employing averaging and kinetic approximations one can study various scattering processes in non-
linear media.

• The setup of the chain method can be viewed as a particular case of a more general idea. Namely,
one can effectively use the notion of operator exponent for numerical studies of dissipative systems.
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Figure 3.3: Particle loss dynamics. Calculations done for HERA lattice and ions with Z=10

(a) Short time coasting beam accumulation (mA/h) (b) Long time coasting beam accumulation (mA/h)

Figure 3.4: Beam length dynamics

(a) Short time lengthening (ns/h) (b) Long time lengthening (ns/h)

Here the operator is the infinitesimal generator of the chain. One can draw an analogy with the
use of the Lie derivative operator and the associated exponent in numerical studies of Hamiltonian
systems.

• Numerical estimations of escape rate from the RF bucket due to intra-beam scattering indicate that
this effect plays a noticeable role only for high beam intensities. Such intensities are not reached at
HERA (see also Chapter 5).
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Figure 3.5: Bunch evolution in HERA under influence of intra-beam scattering

(a) Initial distribution εx,z = 3nm, N = 1011 (b) Distribution after 10 h, εx,z = 3nm, N = 1011
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Figure 3.6: Proton losses in HERA

(a) Bunch length l (ns) vs. t (h), εx,z = 3nm, N =
1011

(b) Current loss (mA) l vs. t (h), εx,z = 3nm,N =
1011

(c) Bunch length l (ns) vs. t (h), εx,z = 6nm,N =
1011

(d) Current loss l (mA) vs. t (h), εx,z = 6nm,N =
1011
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Figure 3.7: Bunch evolution for ions (Z=10) with the HERA lattice

(a) Initial distribution

(b) Distribution after 12 hours
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Chapter 4

RF noise

In this section we examine some issues related to the behavior of synchrotron oscillations under smooth
random external perturbations. Such perturbations arise from fluctuations in the guiding electromagnetic
fields, namely in the strengthes of the focusing and bending magnets and to a much larger extent from
the noise in the field of the accelerating RF cavities. Here the case of cavity noise is treated, other cases
can be dealed with in complete analogy. It can have its origin in imperfections of the RF feedback loops,
power amplifiers, frequency generators and so on. As the noise model we choose colored Gaussian noise
both in cavity voltage and phase. This model seems general and realistic enough and is common in
engineering practise. Our goal is to simulate the bunch evolution over the longitudinal phase space and to
understand the rate of coasting beam production when the beam is subject to such kind of noise. First,
the equations of synchrotron oscillations in the presence of noise are derived. Since the noise is small
compared to the RF voltage, it will exhibit noticeable influence on time scales much greater compared to
a synchrotron oscillation period. So, one needs to pass to an equation in a slow variable. The solution
of the averaged equation does not need to be a Markov process, but only for Markov processes one is
able to easily analyse the evolution of the probability density. Applying standard averaging techniques
[37], [28], [22] one arrives at a Markov diffusion process in action (or any other slow) variable only that
approximates the solution of the original equation. The probability density evolution of the particle
ensemble is governed by a certain Fokker-Planck equation, supplied with appropriate initial and boundary
conditions. To analyse the solution with respect to the statistical properties of the fluctuations one would
ideally want to have its explicit representation. This is generally not possible except for some simple
cases. If one considers a double RF system and takes into account diffusion across separatrices and into
the side buckets, then numerical calculations need to be employed. Methods of numerical solution of such
a problem are discussed.

For the problem of coasting beam estimation in a double RF system the mechanism of separatrix
crossing is important. This is because the separatrices introduce a kind of branching in the trajectories
of the random particle motion: they can either populate the side buckets or contribute to the coasting
beam. Depending on the ratio between the rates of such events quite different coasting beam currents are
expected.

Finally,the estimates for HERA are presented.

4.1 Randomly perturbed synchrotron oscillations

Consider the synchrotron motion with a double frequency RF system, the voltages being

V1(t) = U1 sin(2πωRF1t+ φ10)
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V2(t) = U2 sin(2πωRF2t+ φ20)

Assume now that in each RF system there are small amplitude and phase fluctuations, then the voltages
become

V1(t) = U1

(

1 + εξ̂1(t)
)

sin(2πωRF1t+ φ10 + εη̂1(t)) (4.1)

V2(t) = U2

(

1 + εξ̂2(t)
)

sin(2πωRF2t+ φ20 + εη̂2(t)) (4.2)

(4.3)

where ξ̂1,2 and η̂1,2 are some random processes and the factor ε means that the magnitude of the
fluctuations is small. Say, the stored particles pass the accelerating gap once per revolution. The energy
shift per turn is

E(tn+1) = E(tn) + qV1(tn) + qV2(tn) − ∆Eγ (4.4)

where ∆Eγ is the synchrotron radiation energy loss. The same is true for the energy difference with
respect to the reference particle

∆E(tn+1) = ∆E(tn) + qV1(tn) + qV2(tn) − ∆Eγ (4.5)

The RF phases are

φ1(tn+1) = 2πωRF1tn+1 + φ10 + εη̂1(tn+1) =

= φ1(tn) + 2πωRF1(tn+1 − tn) + ε(η̂1(tn+1) − η̂1(tn))

φ2(tn+1) = 2πωRF2tn+1 + φ20 + εη̂2(tn+1) =

= φ2(tn) + 2πωRF2(tn+1 − tn) + ε(η̂2(tn+1) − η̂2(tn)) =

= νφ1(tn+1) + φ20 + εη̂2(tn+1) − νφ10 − ενη̂1(tn+1)

here tn and tn+1 are times of consequent passages through the accelerating gap, φ10 and φ20 are the
initial phases. Denoting as usual φn = φ1(tn), ∆En = ∆E(tn) and substituting the formula for the
revolution time dependence on energy

∆T

T
=

(

α− 1

γ2

)

∆E

β2E
(4.6)

with ν = ω2/ω1 the one turn map of synchrotron coordinates becomes

∆En+1 = ∆En + qU1

(

1 + εξ̂1(tn)
)

sin(φn) + qU2

(

1 + εξ̂2(tn)
)

sin(νφn + ε(η̂2(tn+1) − νη̂1(tn+1))) − ∆Eγ

φn+1 = φn + 2πh

(

α− 1

γ2

)

∆En+1

β2E
+ ε(η̂1(tn+1) − η̂1(tn))

(4.7)

using synchrotron coordinates p = ∆E
E and φ, dividing the equations by the reference revolution period

T and passing from difference to differential equations we get

ṗ = −K1 (1 + εξ1(t)) sin(φ) −K2 (1 + εξ2(tn)) sin(νφ+ εξ4(t)) − δpγ

φ̇ = K3p+ εξ3(t)

(4.8)
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Here the reference phases are assumed zero and

K1 = −qU1

TE

K2 = −qU2

TE

K3 =
2πh

β2T

(

α− 1

γ2

)

the radiation loss rate δpγ (approximately 10 eV/turn for HERA) can be neglected in the stable
RF buckets and the random processes entering the equations stand in the following relations to voltage
fluctuations.

ξ1(t) = ξ̂1(t)

ξ2(t) = ξ̂2(t)

ξ3(t) =
η̂1(t+ T ) − η̂1(t)

T
ξ4(t) = η̂2(t) − νη̂1(t)

The random voltage fluctuations are assumed to be well modeled by second order random processes.
Since the cavity voltage fluctuations are sampled with the frequency of particle revolution along the ring,
fluctuations with correlation times less than the revolution period do not play any role (more precisely,
they have the same influence as white noise). Therefore, the mean values of all random processes are
assumed to be zero. Indeed, a nonzero mean of amplitude fluctuations is just a small voltage correction
and has no noticeable effect on the bunch diffusion. A nonzero mean phase error has an effect of a shift
in the RF bucket position.

Figure 4.1: An exaggerated example of the decoherence effect in the longitudinal phase space

p/φ

(a) First the bunch is coherently displaced

p/φ

(b) After some time the excitation decoheres

A fundamental question is if the evolution of the beam density in a random potential is the same as
the evolution of the probability density of the corresponding random process. The latter is the statistical
distribution of all end points of the process paths under different noise realisations assuming the starting
point is also statistically distributed. This means that for trajectories starting at different points different
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noise realisations are taken into account. But in reality all particles from the bunch are subject to the
same realization of the perturbation.

First consider the phase noise which acts like a random phase shift. If the bunch moved as a rigid body,
then the observed bunch density would not change (with respect to bunch centre), but the probability
density obtained from the random process would exhibit diffusive behavior. Its meaning would be the
mean coordinate of a particle in a region of the phase space when the motion is observed a large number of
times. The problem of a coherently perturbed motion of a particle ensemble may sometimes be reduced to
treating it as an evolution of a distribution function for a random process for systems exhibiting nonlinear
behavior. For oscillating systems an example of such behavior is presented by the decoherence effect. The
synchrotron frequency depends on the amplitude and, after some time, two particles having even small
amplitude difference will have an arbitrary phase difference. Coherent excitations will be diluted (see
figure 4.1). This is true if the excitation is not ”faster” than the decoherence time, so this effect will take
place if roughly

1

τdec
& fpert (4.9)

where fpert is the perturbation frequency and τdec the decoherence time. Consider oscillations with
frequency depending on the amplitude ω(H) on some interval [H0, H1] and suppose that in the region of
interest this dependency is almost linear, i.e. ω′′(H) � 1 . Then the phase shift between particles with
amplitudes H0 and H1 after a time t is (ω(H1) − ω(H0))t. The decoherence time is the time for which
this phase shift becomes large

(ω(H1) − ω(H0))τdec � 2π (4.10)

(to be correct, one should speak of the order of the decoherence time). Under specified conditions this
leads to

∂ω(H)

∂H
∆H � ν (4.11)

So, perturbation of frequency higher than ∂ω(H)
∂H ∆H are expected to introduce coherent bunch excita-

tions which will result in small fluctuations of the bunch dipole moment. However, the situation cannot
be so simply described in the case of small random perturbations. First, they are irregular and don’t have
any specific frequency. Second, they are small and their influence is seen on long time scales which are
usually larger than the decoherence time. It is not obvious whether the coherent motion is destroyed or
it builds up over this time scale.

For the amplitude noise decoherence effect also justifies the probabilistic treatment, but here effects
can be seen even if 4.9 does not hold. This happens because for the amplitude noise the value of the
perturbation also depends on the phase. Even in the absence of decoherence the volume of the phase
space occupied by particles may explode. But the motion within this phase space is coherent. An example
is given in figure 4.2. It shows the density evolution of a linear oscillator

ṗ = (1 + ξ(t))q

q̇ = p

when all particles experience the same realisation of a certain (delta-correlated in the simulation)
process ξ(t) starting from a circle distribution. The effect of the noise is that the density is randomly
stretched along the p axis. The resulting distribution is a random ellipse centered at zero, but no diffusion
occurs.

Our argumentation shows that the frequency spread determines to which extent the effect of a random
coherent perturbation will be diffusive. If this spread vanishes then no diffusion can occur. But even if
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Figure 4.2: Effect of coherent noise
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the condition 4.9 holds it does not mean that the system possesses sufficient mixing. Obvious examples
can be constructed. Computer simulations show that such systems can exhibit complicated behavior (see
examples in figure 4.3) and it is not excluded that some correlations are introduced.

Figure 4.3: With a nonlinear frequency/amplitude dependency the effect of the perturbation can be
complicated. The shown patterns are formed by perturbed rotation of a circle with frequency dependency
of the form 1 + sin(H) for different parameters
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An evidence that the process of decoherence does not need to result in the loss of correlation is presented
by echo effects. Such effects were observed in plasma physics (plasma echo after Landau damping), solid
state physics (spin echo) as well as in high energy beams [56], [1]. The longitudinal beam echoes in a
proton machine are produced by introducing an excitation of the bunch dipole moment by shifting the RF
phase. After this excitation decoheres one is able to recover it by introducing an amplitude perturbation
(see figure 4.4). Such experiments demonstrate that even the presence of decoherence is not sufficient
to guarantee that the random perturbations of synchrotron motion will result in bunch diffusion but not
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in collective oscillating modes. The fundamental reason behind the possibility of observation of beam
echo is that the synchrotron motion does not possess any mixing properties and is not even ergodic [14].
Physically this means that the system is not dissipative.

Figure 4.4: Bunched beam echo

For weak noise the situation becomes much easier. Here the large time scales over which the diffusion
proceeds guarantee that even weak nonlinearity introduces a loss of correlation. In this case the effect of
coherence becomes weak and can be estimated. The presentation of such estimates follows conceptionally
the derivation of the Fokker-Planck equation and is given in section 4.3 1 .

4.2 The averaged Fokker-Planck equation

The equations derived in the previous section cannot be studied directly due to fast oscillations in the
r.h.s. compared to the time scales at which the fluctuations are expected to influence the dynamics.
Therefore, such equations do not correspond to a diffusion process unless the entering random processes
are white noise Thus there is normally no Fokker-Planck equation associated with the stochastic differential
equation. It is natural to study the behavior of some invariant of motion of the unperturbed system first
bringing the equation to a standard action-angle form. Then if the random perturbations satisfy the
law of large numbers due to their fast oscillations, this stochastic equation is approximated by a certain
diffusion which we now can associate with a Fokker-Planck equation. In [17] such averaging was applied
to harmonic cavity voltages, i.e. with V (t) = U sin(ωt). In such case the transformation to action-angle
variables can be explicitly written in terms of elliptic integrals. This is however not possible in a general
situation where the cavity voltage is an arbitrary periodic function. Such situation is encountered, for
instance, in HERA with the double RF system. It can be amended by using perturbation techniques.
Here an alternative approach is shown in which the action-angle variables are not used. The diffusion
equation is derived for the unperturbed synchrotron invariant as the slow variable provided the Fourier
spectrum of the solution depending on this variable can be found. First, it allows to obtain the diffusion
coefficient when the system is not Hamiltonian. Second, it is also convenient in situations when the
system is Hamiltonian, but the potential is of complicated form and the transformation to action-angle
variables takes a large amount of computations. Then the numerical calculation of the spectrum and thus
of the diffusion coefficient appears to be simpler. The averaging procedure in action-angle variables is also

1The results are apparently at the physical level of rigor (under the physical level of rigor the level of rigor usual for a
physics textbook is understood). We were not able to give any presentation from the point of view of the mathematical
theory of dynamical systems.
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outlined. This variables are convenient when treating the effect of noise coherence and the interaction of
noise with nonlinear resonance. Therefore, a slightly more rigorous justification of the averaging procedure
is presented from which it follows, for example, that the stochastic averaging may fail for some random
processes even in the presence of fast oscillations if the noise magnitude is not sufficiently small. Then
the calculations according to the Fokker-Planck equation may introduce a noticeable error.

Now we turn to equation 4.8 from section 4.1. To the second order in ε it reads

ṗ = −K1 (1 + εξ1(t)) sin(φ) −K2 (1 + εξ2(t)) sin(νφ) −

εK2ξ4(t) cos(νφ) +
1

2
ε2K2ξ

2
4(t) sin(νφ) − ε2K2ξ2(t)ξ4(t) cos(νφ)

φ̇ = K3p+ εξ3(t) (4.12)

One can choose, for example, the Hamiltonian of the unperturbed system as the slow variable.

H = K3
p2

2
+K1(1 − cos(φ)) +

K2

ν
(1 − cos(νφ)) (4.13)

Then its time derivative is

∂H

∂t
=
∂H

∂p

∂p

∂t
+
∂H

∂φ

∂φ

∂t
(4.14)

which after substituting 4.8 gives

∂H

∂t
= εK3p [−K1ξ1(t) sin(φ) −K2ξ2(t) sin(νφ) −K2ξ4(t) cos(νφ)] + (4.15)

εξ3(t) [K1 sin(φ) +K2 sin(νφ)] + ε2K2K3p

[

1

2
ξ24(t) sin(νφ) − ξ2(t)ξ4(t) cos(νφ)

]

We want to average out the fast oscillations in the r.h.s. of 4.15 by eliminating fast variables p, φ and
obtain a stochastic equation for H only. Since the diffusion rate is generally proportional to the square of
fluctuation (see 2.24) we should expect a noticeable influence of the random perturbations on time scales
of ε2 [38]. Substitute τ = ε2t and rewrite this equation in integral form

H(τ) = H(0) +
1

ε

∫ τ

0

gε(p(ε
−2s), φ(ε−2s), ε−2s)ds+

∫ τ

0

fε(p(ε
−2s), φ(ε−2s), ε−2s)ds (4.16)

where we denoted for convenience

gε(p, φ, t) = K3p [−K1ξ1(t) sin(φ) −K2ξ2(t) sin(νφ) −K2ξ4(t) cos(νφ)] +

ξ3(t) [K1 sin(φ) +K2 sin(νφ)]

fε(p, φ, t) = K2K3p
[

1
2ξ

2
4(t) sin(νφ) − ξ2(t)ξ4(t) cos(νφ)

]

(4.17)

Proposition 1 On a bounded interval [0, T ] equation 4.16 can be approximated by an Ito stochastic dif-

ferential equation

dH(t) = a(H)dt+ b(H)dWt (4.18)

where
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a(H) = lim
T→∞

1

T

∫ T

0

〈fε(p, φ, s)〉 ds+ lim
T→∞

1

T

∫ T

0

ds

∫ s

−T

〈

∂gε
∂H

(p, φ, s)gε(p, φ, t)

〉

dt (4.19)

b2(H) = lim
T→∞

1

T

∫ T

0

∫ T

0

〈gε(p, φ, s)gε(p, φ, t)〉 dsdt (4.20)

and the integrals taken along the surface H(p, φ) = H = const.

From this proposition it follows that on a time scale of ε−2 a random perturbation of order ε2 has
a deterministic effect given by its average value. Fluctuations are introduced by perturbations of order
ε. For sketch of the proof see Appendix B. The coefficients on the original time scale is obtained by
multiplying 4.19 and 4.20 by ε2. Now let us look how this coefficients can be obtained in practice.

The functions gε and gε are given as linear combinations of some random processes (see section 4.1).
So, they can be represented as Fourier series

gε(t) =
∑

j

ζj(t)
∞
∑

k=−∞
gjke

iωkt (4.21)

fε(t) =
∑

j

χj(t)

∞
∑

k=−∞
fjke

iνkt (4.22)

where the expansion coefficients depend on H and χj(t) and ζj(t) are some random processes. Then
the contribution to the drift from the ε2 order terms fε becomes

lim
T→∞

1

T

∫ T

0

〈fε(p, φ, s)〉 ds = lim
T→∞

1

T

∫ T

0

∑

j

〈χj(s)〉
∑

k

fjke
iνksds (4.23)

The last expression equals
∑

j

fj0 〈χj(s)〉 (4.24)

with fj0 the coefficients of the zero frequency ν0 = 0. The contribution to the diffusion of gε is

lim
T→∞

1

T

∫ T

0

∫ T

0

〈gε(p, φ, s)gε(p, φ, t)〉 dsdt =

lim
T→∞

1

T

∫ T

0

∑

j,l,k,m

∫ T

0

〈ζj(s)ζl(t)〉 gjkglmeiωkseiωmtdsdt =

lim
T→∞

1

T

∫ T

0

∑

j,l,k,m

eiωksds

∫ T−s

−s
〈ζj(s)ζl(s+ τ)〉 gjkglmeiωm(s+τ)dτ =

lim
T→∞

1

T

∫ T

0

∑

j,l,k,m

ei(ωk+ωm)sds

∫ ∞

−∞
〈ζj(s)ζl(s+ τ)〉 gjkglmeiωmτdτ =

lim
T→∞

1

2T

∫ T

0

∑

j,k,l,m

ei(ωk+ωm)sgjkglmSjl(ωm)ds (4.25)

(4.26)
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here only the ”resonant terms” (with ωk + ωm 6= 0) make contribution and finally

b2(H) =
1

2

∑

j,l

∑

ωk+ωm=0

gjkglmSjl(ωk) (4.27)

where Sij(ω) is the cross-spectral density of the processes ζi(t) and ζj(t) (see chapter 2). Next we
show that the contribution to the drift coefficient arising from the gradient in gε is related to the diffusion
coefficient as

lim
T→∞

1

T

∫ T

0

ds

∫ s

−T

〈

∂gε
∂H

(p, φ, s)gε(p, φ, t)

〉

dt =

1

2

∂

∂H
lim
T→∞

1

T

∫ T

0

∫ T

0

〈gε(p, φ, s)gε(p, φ, t)〉 dsdt (4.28)

This can be shown, for example, in the following way. Let the function gε(H, t) be represented as a
Fourier integral

gε(H, t) =

∫ ∞

−∞
G(H,ω)eiωtdω (4.29)

Then

lim
T→∞

1

T

∫ T

0

∫ s

−T

〈

∂gε(p, φ, s)

∂H
gε(p, φ, t)

〉

dsdt =

lim
T→∞

1

T

∫ T

0

∫ s

−T

∫ ∞

−∞

∫ ∞

−∞
dω1dω2

〈

∂G(H,ω1)

∂H
G(H,ω2)

〉

eiω1seiω2tdsdt =

1

2

∂

∂H
lim
T→∞

1

T

∫ ∞

−∞

∫ ∞

−∞
dω1dω2

∫ T

0

∫ T+s

0

〈G(H,ω1)G(H,ω2)〉 eiω1seiω2tdsdt =

1

2

∂

∂H
lim
T→∞

1

T

∫ T

0

∫ s

−T
〈gε(H, s)gε(H, t)〉 dsdt =

1

4

∂

∂H
lim
T→∞

1

T

∫ T

0

∫ ∞

−∞
〈gε(H, s)gε(H, t)〉 dsdt =

1

2

∂

∂H
lim
T→∞

1

T

∫ T

0

∫ T

0

〈gε(H, s)gε(H, t)〉 dsdt =
1

2

∂

∂H
b2(H)

(4.30)

Here we used the fact that 〈gε(H, s)gε(H, t)〉 → 0 as |s− t| → ∞ and is symmetric with respect to
s− t.

Now we need to obtain the Fourier representations of gε and fε. Expanding gε and fε in Taylor series
one gets

gε(p, φ, t) = −ξ1(t)K1K3p

(

φ− 1

3!
φ3 +

1

5!
φ5 − . . .

)

−ξ2(t)K2K3p

(

νφ− 1

3!
ν3φ3 +

1

5!
ν5φ5 − . . .

)

+

ξ3(t)([K1 +K2ν] φ− 1

3!

[

K1 +K2ν
3
]

φ3 +
1

5!

[

K1 +K2ν
5
]

φ5 − · · ·)
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−ξ4(t)K2K3p

(

1 − 1

2!
ν2φ2 +

1

4!
ν4φ4 − · · ·

)

fε(p, φ, t) =
1

2
ξ24(t)K2K3p(νφ− 1

3!
ν3φ3 +

1

5!
ν5φ5 − . . .)

−ξ2(t)ξ4(t)K2K3p(1 − 1

2!
ν2φ2 +

1

4!
ν4φ4 − . . .)

Obtaining Fourier series for φ and p and inserting it into the last expression solves the problem.
Suppose

φ(t) =
∑

k

φke
iωkt (4.31)

p(t) =
∑

k

pke
iωkt

Then

gε(p, φ, t) = ξ1(t)K1K3

∞
∑

n=1

(−1)2n−1

(2n− 1)!

∑

|k|=2n−1

∑

m

φk1 . . . φk2n−1
pme

i(k1ωk1
+...+k2n−1ωk2n−1

+ωm)t +

ξ2(t)K2K3

∞
∑

n=1

(−1ν)2n−1

(2n− 1)!

∑

|k|=2n−1

∑

m

φk1 . . . φk2n−1
pme

i(k1ωk1
+...+k2n−1ωk2n−1

+ωm)t +

ξ3(t)
∞
∑

n=1

(−1ν)2n

(2n− 1)!

∑

|k|=2n−1

φki1
[K1 +K2ν

k1 ] . . . φk2n−1
[K1 +K2ν

k2n−1 ]ei(k1ω+...+k2n−1)t +

ξ4(t)K2K3

∞
∑

n=1

(−1ν)2n−1

(2n)!

∑

|k|=2n

∑

m

φk1 . . . φk2n
pme

i(k1ωk1
+...+k2nωk2n

+ωm)t

and

fε(p, φ, t) = ξ24(t)
1

2
K2K3

∞
∑

n=1

(−1ν)2n

(2n− 1)!

∑

|k|=2n−1

∑

m

φk1 . . . φk2n−1
pme

i(k1ω1+...+k2n−1ω2n−1+ωm)t +

ξ4(t)ξ2(t)K2K3

∞
∑

n=1

(−1ν)2n−1

(2n)!

∑

|k|=2n

∑

m

φk1 . . . φk2n
pme

i(k1ω1+...+k2nω2n+ωm)t −

One sees that for any periodic solution infinitely many ”resonance” conditions are met. In a general
situation the resonances will form a dense set and the entire spectrum will influence the diffusion coefficient.
We would have arrived at the same situation using action-angle variables. The impact of a resonance
however goes to zero with increasing order. Taking this into account and noticing also that the physically
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Figure 4.5: Domain decomposition

realizable part of spectrum is always bounded, one ends up with only finite number of terms. Combining
4.27 and 4.31 one can obtain the diffusion coefficient for arbitrary potentials and arbitrary noise spectra.

Now we need to obtain the Fourier representation of the solution 4.31. This can be generally done by
means of a perturbation technique in each of the domains Di that do not contain separatrices (see figure
4.5). We now demonstrate the Lindstedt’s method [27] of frequency adjustment to do this 2. In domains
D1, D2 and D3 the solution is sought as a perturbations to a harmonic oscillator.

Write the unperturbed equation of synchrotron motion as a second order equation and expand the
r.h.s in power series around the stable phase φ = 0

φ̈ = −λ1φ+ λ3φ
3 − λ5φ

5 + . . . (4.32)

where

λ1 = K1 +K1ν, λ3 = K1
1

3!
+K2

ν3

3!
, (4.33)

and so on (i.e. the equation 4.8 with all ξi set to 0). Introduce φ =
√
ηx. Then 4.32 becomes

ẍ = −λ1x+ ηλ3x
3 − η2λ5x

5 − . . . (4.34)

Consider η to be a small parameter. For η = 0 the solution is

x(t) = A sin(
√

λ1t+ α) (4.35)

One seeks for the solution as a series in η

x(t) = x0(t) + ηy1(t) + η2y2(t) + . . . (4.36)

As x0(t) one takes

x0(t) = A sin(ωt) (4.37)

2This method is somewhat two hundred years old. Perturbation methods exploiting the Hamiltonian structure of the
system are of course more usual now. An example is shown in Appendix A. The advantage there is the rate of convergence
which solves the problem of ”small denominators”. This small denominators appear in the Linstedt’s method. However,
for our system they are of no great advantage and result in an equivalently cumbersome solution as far as only low order
approximations are concerned.
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where ω itself is sought as a perturbation series to the zeroth order frequency
√
λ1. The initial phase

is dropped because it does not play a role when averaging is performed.

ω2 = λ1 + ηω1 + η2ω2 + . . . (4.38)

Then

ẍ+ ω2x = x(ηω1 + η2ω2 + . . .) + ηλ3x
3 − η2λ5x

5 − . . . (4.39)

Equating the coefficients before powers of η

ÿ1 + ω2y1 = ω1x0 + λ3x
3
0

ÿ2 + ω2y2 = ω1y1 + ω2x0 + 3λ3x
2
0y1 − λ5x

5
0

· · · · · ·

The first order in η:

ÿ1 + ω2y1 = ω1A sin(ωt) + λ3A
3 1

4
(3 sin(ωt) − sin(3ωt)) (4.40)

This equation admits periodic solution if we eliminate resonant terms by choosing ω1 = − 3
4λ3A

2

ÿ1 + ω2y1 = −1

4
λ3A

3 sin(3ωt) (4.41)

and the solution is

y1(t) = B sin(ωt+ β) +
λ3A

3

32ω2
sin(3ωt) (4.42)

where B and β are found from the condition

y1(0) = ẏ1(0) = 0 (4.43)

which gives

β = 0, B = −3λ3A
3

32ω2
(4.44)

and one gets the asymptotic expansion to the first order in η

x = A sin(ωt) + η

(

−3λ3A
3

32ω2
sin(ωt) +

λ3A
3

32ω2
sin(3ωt)

)

ẋ = ωA cos(ωt) + η

(

−3λ3A
3

32ω
cos(ωt) +

3λ3A
3

32ω
cos(3ωt)

)

where

ω2 = λ1 −
3

4
ηλ3A

2

With the same method one arrives at the expansion for y2.
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ÿ2 + ω2y2 = sin(3ωt)
A5

16

[

5λ5 +
λ2

3

λ1 − η 3
4λ3A2

]

+

sin(5ωt)
−A5

16

[

λ5 +
3

8

λ2
3

λ1 − η 3
4λ3A2

]

y2 =

(

A5

8 · 16ω2

5

3

[

λ5 +
3

8

λ2
3

λ1 − η 3
4λ3A2

]

− 3

[

5λ5 +
λ2

3

λ1 − η 3
4λ3A2

])

sin(ωt)

(

A5

8 · 16

[

5λ5 +
λ2

3

λ1 − η 3
4λ3A2

])

sin(3ωt)

( −A5

24 · 16

[

λ5 +
3

8

λ2
3

λ1 − η 3
4λ3A2

])

sin(5ωt) (4.45)

ω2 = − 27λ2
3A

4

128(λ1 + ηω1)
+

5

8
λ5A

4 (4.46)

Now one can put η = 1 , express A from the initial condition and obtain the desired asymptotic.

In domain D4 the motion becomes more complicated, there higher order harmonics in the expansion
must be included. An example is shown in figure 4.8. It turns out that to approximate the double
RF potential in this region quite many terms in the power series are required and even with a ”fast”
perturbation technique one would end up with a lengthy procedure. One could obtain the spectrum
by numerical integration instead. It appears that this spectrum is rather regular and contains three
considerable harmonics - first, third and fifth harmonics of the base frequency.

In domain D5 the motion is not oscillatory. It is not difficult to perform the same procedure for that
case using asymptotic expansion in φ(t) = αt+βφ̂(ωt). However, the motion in that region is not related
to the escape problem. Putting the aforesaid together, one represents the motion as

φ(t) = φ1 sin(ωt) + φ3 sin(3ωt) + φ5 sin(5ωt) + . . . (4.47)

p(t) = p1 cos(ωt) + p3 cos(3ωt) + p5 cos(5ωt) + . . . (4.48)

where the coefficients and the frequency are obtained either by the asymptotic expansion or by nu-
merical integration.

Finally, we write down the Fokker-Planck equation. Since the drift and diffusion coefficients satisfy

a(H) =
1

2

∂[b2(H)]

∂H
(4.49)

the Fokker-Planck equation for the density evolution takes the form

∂f(H)

∂t
=

∂

∂H

(

b2(H)

2

∂f(H)

∂H

)

(4.50)

Some cases are shown below

1. Amplitude noise, ξ1(t) 6= 0, ξ2,3,4 = 0.
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Figure 4.6: Motion close to the separatrix

t

(a) Phase

t

(b) Momentum

gε = −K1K3ξ1(t) ×

{ i
4

[

ei2ωt − e−i2ωt
]

[−φ1p1 + φ1p3 − φ3p1 + φ3p5 − φ5p3 + . . .] +

i

4

[

ei4ωt − e−i4ωt
]

[−φ1p3 + φ1p5 − φ3p1 − φ5p1 + . . .] +

i

4

[

ei6ωt − e−i6ωt
]

[−φ1p5 − φ3p3 + φ5p1 + . . .] +

i

4

[

ei8ωt − e−i8ωt
]

[−φ3p5 − φ5p3 + . . .] +

i

4

[

ei10ωt − e−i10ωt
]

[−φ5p5 + . . .] + . . .}
(4.51)

the diffusion coefficient becomes

b2(H) =
1

32
K2

1K
2
3

∑

n

G2
2nS11(2nω(H)) (4.52)

where G2n is the coefficient appearing before e±i2nωt in 4.51. If one employs the asymptotic expan-
sion then pj and qj are polynomials of degree j

2 in H and one gets

b2(H) = b2H
2 + b2H

3 + b3H
4 + . . . . . . (4.53)

b2H
2 =

1

32
K2

1K
2
3

[

φ2
1p

2
1

]

S11(2ω(H)) + . . . (4.54)

b3H
3 =

1

32
K2

1K
2
3 [−φ1p1φ1p3 + φ1p1φ3p1]S11(2ω(H)) + . . . (4.55)

b4H
4 =

1

32
K2

1K
2
3

[

(φ2
1p

2
3 + φ2

3p
2
1)S11(2ω(H)) + (φ2

1p
2
3 + φ2

3p
2
1)S11(4ω(H)

]

+ . . . (4.56)
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Figure 4.7: Comparison of first order solutions obtained with method of frequency adjustment to numerical
integration

t

(a) Phase, small amplitude

t

(b) Momentum, small amplitude

t

(c) Phase, large amplitude

t

(d) Momentum , large amplitude

and the omitted terms are small. The stronger the nonlinearity the more terms should be taken in
account. The 2n−th harmonic of the synchrotron frequency in the spectral density has a contribution
of order H2n because the spectrum of the asymptotic expansion decays as H (2n−1)/2.

2. Phase noise, ξ3(t) 6= 0, ξ1,2,4 = 0. To the second order

gε = −K1ξ3(t) × { i
2

[

eiωt − e−iωt
]

[

φ1 −
1

3!

(

φ3
1 + φ2

3

)

+

]

+

i

2

[

ei3ωt − e−i3ωt
]

[φ3−] +

i

2

[

ei5ωt − e−i5ωt
]

[φ5−] + . . .}
(4.57)

b2(H) =
1

8
K2

1

∑

n

G2
nS33(nω(H)) (4.58)
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Figure 4.8: Motion in the gap created by two RF systems

t

(a) Phase

t

(b) Momentum

t

(c) First order perturbation
∼ pφ

b2(H) = b1H + b2H + b3H
3 + . . . (4.59)

b1H =
1

8
K2

1 (φ2
1)S33(ω(H)) = (4.60)

The expressions were derived in the absence of the second RF system voltage K2 = 0. It is easy to
see that it does not introduce any qualitative (and quantitative) difference as far as first few terms in the
expansion are concerned and just contributes additively some portion to the diffusion coefficient. To this
end it can be neglected.

The asymptotic solutions can fail on approaching the separatrix. Moreover there the averaging pro-
cedure is also not applicable. So the meaning of the diffusion coefficient in the separatrix vicinity is
somewhat undefined. We propose that the motion near the separatrix be rather related to the boundary
conditions imposed on the Fokker-Planck equation by determining the distribution of exit domains. This
issue is discussed in more detail in section 4.4.3.

A similar procedure can be applied to arrive at the Fokker-Planck equation in action-angle variables.
Suppose the Hamiltonian is expressed as

H(J, ϕ) = H0(J) + V (J, ϕ)ξ(t) (4.61)

Then the averaging with respect to the random perturbation ξ(t) will also lead to the Fokker-Planck
equation with the drift and diffusion coefficients expressed through the spectral density. Here we write
down the equation for the case of white noise ξ(t) = dWt (J and ϕ subscripts indicate differentiation and
the superscript indices mean indices, ω(J) = ∂H0

∂J )

ft = −
(

AJf
)

J
− (Aϕf)ϕ +

1

2

(

DJJf
)

JJ
+

1

2
(Dϕϕf)ϕϕ +

(

DJϕf
)

Jϕ
(4.62)

The coefficients are derived according to the usual rule

AJ (J0) = lim
t→0

〈J(t) − J0〉
t

= lim
t→0

1

t

〈∫ t

0

−Vϕ(J(s), ϕ(s))dWs

〉

=

lim
t→0

1

t

∫ t

0

〈

dWs

∫ s

0

−
[

Vϕ(J0, ϕ0) − VJϕ(J0, ϕ0)

∫ s

0

Vϕ(J, ϕ)dWτ + Vϕϕ(J0, ϕ0)

∫ s

0

VJ (J, ϕ)dWτ

]〉

=
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lim
t→0

1

t

∫ t

0

〈− [Vϕ(J0, ϕ0)dWs − VJϕ(J0, ϕ0)Vϕ(J0, ϕ0)Ws + Vϕϕ(J0, ϕ0)VJ (J0, ϕ0)Ws]〉 =

−1

2
(VϕϕVJ − VJϕVφ)

DJJ(J0) = lim
t→0

〈

(J − J0)
2
〉

t
=

lim
t→0

1

t

∫ t

0

〈

[Vϕ(J0, ϕ0)dWs − VJϕ(J0, ϕ0)Vϕ(J0, ϕ0)Ws + Vϕϕ(J0, ϕ0)VJ (J0, ϕ0)Ws]
2
〉

=

V 2
ϕϕ

Here properties of the stochastic integral were used (see Chapter 2). The other coefficients are obtained
in the same fashion.So

AJ = −1

2
(VϕϕVJ − VJϕVϕ)

Aϕ =
1

2
(VJϕVJ − VJJVϕ) + ω(J)

DJJ = V 2
ϕ

Dϕϕ = V 2
J

DJϕ = −VJVϕ

one can average out the angle variable in case of fast oscillations. With the Hamiltonian

H(J, ϕ) = H0(J) +
∑

n

Vn(J)eiωnϕξ(t) (4.63)

the Fokker-Planck equation reduces to

ft = (D(J)fJ)J (4.64)

with

D(J) =
1

2

∑

n

V 2
n (J)ω2

n (4.65)

In action-angle variables the diffusion coefficient has a simpler dependency on the perturbation V , but
the latter is obtained by a series of canonical transformations of the original perturbation and normally
has complex dependency on the angle variable.

4.3 Effect of coherence

Now we are in a position to come back to the problem of the coherent nature of noise. With techniques
similar to those used in the sketch of the proof of the limit theorem in Appendix B it can be shown that
in the limit of weak noise this effect is expected to disappear as soon as the system possesses a finite
frequency spread.

To arrive at more useful estimates one considers the distribution function itself to be a random quantity.
Consider a Hamiltonian system with random potential of the form
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H(q, p) =
p2

2
+ U(q) + V (q, p)ξ(t) (4.66)

The distribution function satisfies the Liouville equation with random coefficients

∂f

∂t
+

(

p+
∂V

∂p
ξ(t)

)

∂f

∂q
−
(

∂U

∂q
+
∂V

∂q
ξ(t)

)

∂f

∂p
= 0 (4.67)

To fully describe the statistical properties of the density one would need to define the probability
measure in the appropriate functional space, or the density functional. It is equivalent to assigning
probabilities to all possible configurations in the particle phase space. One can argue that this complete
statistical information can be roughly reduced to the knowledge of some averaged quantities. To the
second order these are the mean and the space correlation of the distribution function

f̄(q, p, t) = 〈f(q, p, t)〉ξ (4.68)

K(q, p, q′, p′, t) =
〈[

f(q, p, t) − f̄(q, p, t)
] [

f(q′, p′, t) − f̄(q′, p′, t)
]〉

ξ
(4.69)

The averages are taken over all possible realisations of the random process. The correlation describes
the fluctuations of the average density. Higher order space and time correlations can be defined as well
and give statistical information of less significance.

Here we sketch how to calculate the evolution of the correlator for an oscillating system with frequency
spread subject to white noise. For colored noise the equations can be obtained with averaging techniques
similar to those applied in section 4.2 and no principal difficulty is introduced at least in the weak noise
limit. Unlike for the case of the averaged Fokker-Planck equation, in this problem the fast oscillations in
the phase space cannot be directly averaged. The average is taken with respect to the random perturbation
only. It is convenient to consider the problem in action-angle variables. Let the Hamiltonian be

H(J, ϕ) = H0(J) + V (J, ϕ)ξ(t) (4.70)

It can be argued that the mean density is given by the same Fokker-Planck equation as the probability
density of individual trajectories in the incoherent case. This is possible as soon as the time scale of
interest is much greater than any correlation time of the random perturbation. The increment of the
distribution function on time interval ∆t is

∆f(J, ϕ) = fJ∆J + fϕ∆ϕ+
1

2
fJJ(∆J)2 +

1

2
fϕϕ(∆ϕ)2 + fJϕ(∆J)(∆ϕ) (4.71)

where the increments of the averages determine the usual drift and diffusion coefficient in the Fokker-
Planck equation,i.e.

〈∆J〉 = AJ , 〈∆ϕ〉 = Aϕ,
〈

(∆J)2
〉

= DJJ,
〈

(∆ϕ)2
〉

= Dϕϕ, 〈(∆J∆ϕ)〉 = DJϕ, (4.72)

One can obtain the partial differential equation for the correlator by considering its increment, ex-
panding it to the second order and then tending the time increment to zero. With the prime denoting
the function argument to be primed coordinates and the subscripts denoting partial differentiation, this
equation reads

Kt =
1

2
[VJϕVJ − VJJVϕ + ω(J)]Kϕ +

1

2
[VJ′ϕVJ′ − VJ′J′Vϕ′ + ω(J ′)]Kϕ′ −

1

2
[VϕϕVJ − VJϕVϕ]KJ − 1

2
[Vϕ′ϕ′VJ′ − VJ′ϕ′Vϕ′ ]KJ′ +

1

2
V 2
JKφφ +

1

2
V 2
J′Kφ′φ′ +
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1

2
V 2
ϕKJJ +

1

2
V 2
ϕ′KJ′J′ − VϕVJKJϕ − Vϕ′VJ′KJ′ϕ′ +

VϕVϕ′KJJ′ − VϕVJ′KJϕ′ − Vϕ′VJKJ′ϕ + VJVJ′Kϕϕ′ +

VϕVϕ′ f̂JfJ′ − VϕVJ′ f̄J f̄ϕ′ − VJVϕ′ f̂ϕf̄J′ + VJVJ′ f̄ϕf̄ϕ′

Taking in account the smallness of noise compared to the oscillation period one arrives at the averaged
equation in which only the difference between the angle variables ϕ and ϕ′ enters

Kt = [ω(J) − ω(J ′)]Kϕ + [D(J)KJ ]J + [D(J ′)KJ′ ]J′ +G1(J, J
′, ϕ)Kϕϕ +G2(J, J

′, ϕ)
[

f̄J f̄J′ +KJJ′

]

(4.73)
with

G1(J, J
′, ϕ) =

1

2

∑

n

[

V 2
n,J + V 2

n,J′

]

+
∑

n

Vn,JV−n,J′eiωnϕ (4.74)

G2(J, J
′, ϕ) =

1

2

∑

n

n2Vn(J)V−n(J ′) (4.75)

An asymptotic solution for the correlation function was found in [26]. One can estimate the value of
the correlation at the same point J = J ′ which shows the intensity of density fluctuations. It turns to be
of order

K(J, J ′) ∼
(

D/
∂ω

∂J

)2/3

. (4.76)

This can be qualitatively explained by the fact that the first term in 4.73 is oscillating and the corre-
lation itself ”decoheres”. The diffusive term in the equation destroys the fine structure produced by this
oscillations and the correlation is finally dissipated.

So for sufficiently weak noise the spatial correlations will be small and the density evolution can be
calculated according to the Fokker-Planck equation. This results were obtained in [26]. For the case of RF
noise the part of the beam where the correlations can persist over the time scale of interest are negligibly
small for the usual parasitic noise levels. An exceptional situation may arise, for example, if the random
perturbation is not stationary. If the system is subject to noise which acts in short ”pulses” but is of
moderate intensity so that its total intensity is still small, then such correlations can appear. This can
happen, for example, when employing noise for various stabilisation purposes (see Chapter 5). There the
beam response may turn to be a collective oscillation rather than a diffusion. In systems which can exhibit
self-excitation (like beam-cavity systems) enhancements of this effect may be observed.

4.4 Solving the Fokker-Planck equation

A diffusion equation may be solved by a variety of methods. An analytical solution is of course more
desirable than a numerical one since it can be easier analysed with respect to parameters. A usual
analytical method is reducing the equation to the eigenvalue problem for the Fokker-Planck operator by
separation of variables. The simplest possible boundary value condition for the probability density is the
absence of flux at H = 0 and loss of particles at some value of H , say, H = 1. Even in this situation many
difficulties arise. The coefficients entering the Fokker-Planck operator are polynomials of H of the form

b1H + b2H
2 + b3H

3 + . . . (4.77)

The first difficulty is that analytical solutions to the eigenvalue problem cannot be generally found
for polynomials of high order. This difficulty is not essential, since the coefficients of higher powers



52 RF noise

appear to be small and perturbation techniques may be employed to evaluate the spectrum. However
such calculations may be extremely cumbersome and lengthy. A more fundamental difficulty is that the
coefficients are ”singular” at H = 0 and the Fokker-Planck operator is not ”strictly elliptic” there. This
means that the spectrum needn’t be discrete. But for a continuous spectrum the eigenvalue analysis is
not convenient.

Later it is shown that more complicated boundary conditions can arise for which the spectral analysis
is even more difficult. In a general situation only a numerical solution is possible.

4.4.1 A two-point boundary value problem

Assume that the particles are lost when they reach some value H = H0 (say, the separatrix). Therefore,
there is a unique diffusion process describing the evolution of the particle ensemble on [0, H0] and since no
particles disappear in the centre of the bunch (H = 0), one requires that there is zero probability flux at
H = 0. Using the variable x instead of H for convenience, the boundary value problem for the diffusion
process becomes

∂u(x, t)

∂t
= LFPOu(x, t)

u(x, t)|x=1 = 0
(

b2(x)u′(x, t)|x=0

)

= 0

u(x, 0) = f(x)

with the Fokker-Planck operator

LFPOu(x, t) =

(

1

2
b2(x)u′(x, t)

)′
(4.78)

Consider the eigenvalue problem, i.e. the problem of finding g and λ such that

LFPOg = −λg (4.79)

and g satisfies the boundary conditions. If the set of eigenfunctions {gi} is a complete countable set
then we may search the solution as

u(x) = −
∑

gi(x)Ti(t) (4.80)

where Ti(t) are arbitrary functions of time. Substituting this representation into 4.78 we get

Ṫi(t) = −λiTi(t)
∑

gk(x)Tk(0) = f(x) (4.81)

If {gi} is also orthonormal set of functions, then multiplying the second of equations 4.81 scholarly by
gi(x) we arrive at

Ṫi(t) = −λiTi(t)
Ti(0) = (f(x), gi(x)) = ci (4.82)

and



4.4 Solving the Fokker-Planck equation 53

u(x) =
∑

cigi(x)e
−λit (4.83)

The spectrum may also be continuous and then

u(x) =

∫

c(λ)gλ(x)e
−λtdλ (4.84)

The eigenvalue problem can be solved explicitly only in rare cases. Sometimes we may calculate the
spectrum approximately with the help of perturbation techniques [36] or with the help of a numerical
method.

Some important special cases can be treated analytically [34]

1.
(aux′)′ = −λu (4.85)

The solution is

u = C1J0

(

2

√

λx

a

)

+ C2Y0

(

2

√

λx

a

)

(4.86)

Where J0 and Y0 are Bessel functions of first and second type. C1,2 and λn are determined from the
boundary condition. Say, if xu(x) → 0 at x → 0 and u(1) = 0 then the eigenvectors are

ui = C1J0

(

2

√

λix

a

)

(4.87)

where λi is the root of

J0

(

2

√

λ

a

)

= 0 (4.88)

2.
([bx2 +Ax]u′)′ = −λu (4.89)

The solution with [bx2 + ax]u′ = 0 at x → 0 is given by

u(x) = CPν

(

1 +
2bx

a

)

, ν =
−
√
b+

√
b− 4λ

2
√
b

(4.90)

where Pν(x) is the Legendre polynomial and ν is the root of

Pν

(

1 +
2b

a

)

= 0 (4.91)

3. If one lets a = 0 in the previous case then

(bx2u′)′ = −λu (4.92)

The solution of this equation is

u(x) = C1x
−

√
b−

√
b−4λ

2
√

b + C2x
−

√
b+

√
b−4λ

2
√

b (4.93)
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The condition u(1) = 0 leads to C1 = C2 = C and x2u(x) → 0 at x→ 0 leads to

0 < 1 − 4
λ

b
< 9 (4.94)

One sees that in the first case the spectrum is discrete whereas in the second and third it is continuous.
Case 1 arises in the averaged Fokker-Planck operator for systems with phase noise, case 2 and 3
when the amplitude noise is present (see section 4.5).

Numerical methods of solving a two-point boundary value problem (Neumann or Dirichlet) for the
Fokker-Planck equation are well known [13] and do not deserve a discussion.

4.4.2 The system of equations with coupled boundary values arising from
averaging of stochastic systems with complicated phase space where
branching can occur

The averaging procedure is applicable to regions of the phase space which do not contain separatrices.
In the vicinity of a separatrix the oscillation period growth infinitely and the averaging does not work.
Therefore, the Hamiltonian cannot be used as the slow variable for domains of phase space containing
separatrices and unstable fixed points since then there will be multiple trajectories corresponding to the
same value of H . (This is the case with center and side RF buckets). One also has to keep in mind that
the synchrotron coordinate map might be no more well approximated by the differential equation in the
vicinity of an unstable fixed point for some parameters. To overcome these difficulties we treat the vicinity
of a separatrix as some layer. After a particle enters this layer it escapes it after a short time in case
the layer is sufficiently thin compared to the magnitude of the random perturbation. The point of escape
belongs to one of the domains Di where the slow variable obeys a certain Fokker-Planck equation. We can
characterize the ”transition layer” by probabilities with which it transports a particle from domain Di to
domains Dj . Then a sort of balancing condition arises that the fluxes at the boundaries of the domains
must satisfy. Taking into consideration the fact that in each domain we have an averaged diffusion process
in only one variable H , this situation may be represented by the following model. Consider a set of N unit
intervals and N diffusion processes on these intervals. Suppose that on each interval a particle reaching
one of the boundary points can disappear, be reflected from this point or jump to some other boundary
point of any of the intervals from the set.

Say, a diffusion process on the i-th interval is governed by the Fokker-Planck equation

∂ui(x, t)

∂t
=

∂

∂x
(Gi(x)) (4.95)

with

Gi(x) =
b2i (x)

2
u′i(x) (4.96)

Suppose the thickness of the ”layers” is sufficiently small compared to the absolute value of the drift and
diffusion coefficients. Then one can assume that a particle reaching the ’layer’ will necessarily cross it and
no reflection occurs (this assumption is reasonable since the variation of the paths of a Brownian motion
is infinite). Therefore, assume that absorption can occur only at the points which are not ’branching’ 3.

Suppose that a particle leaving the left (right) boundary of a certain interval i appears at the left
boundary of interval j with probability TLRij (TRRij , TRLij , TLLij ). Consider a simple case with N = 3 and

TRL12 = α, TRL13 = 1 − α

3with reflections and absorptions allowed at arbitrary points the conditions become more complicated, but this is not
required in our case
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This is a simple model of branching behavior at the unstable fixed point nearest to the bunch center,
where a particle can either go to the side bucket or start to drift in the coasting beam. Then one requires

G2(0+) = αG1(1−)

G3(0+) = (1 − α)G1(1−)

More general cases are treated by imposing the balancing conditions in the same manner.

Figure 4.9: When the phase space is complicated the problem of density evolution can be reduced to a
diffusion on a graph.

2

3

1

We do not touch uniqueness and existence for such kind of boundary value problems. But since the
random process under consideration is a well-defined Markov process with jumps, they are expected.

4.4.3 On the mechanism of separatrix crossing

Now we want to study the ”transport properties” of the ”separatrix layers”. One can introduce a new
coordinate system moving with the particle which travels on one side of the separatrix sufficiently close
to it. Then the problem can be reduced to the problem of exit of a certain random process from a
certain domain. However, the resulting domain and the random process will have complex properties and
such setup seems to be not useful in practice and one would generally need to perform some brute force
simulations.

Figure 4.10: Motion in the vicinity of a saddle point

α

The situation can be simplified in the limit of weak noise ε → 0. Approaching the separatrix, the
trajectory will spend more and more time in the neighbourhood of the fixed point. Then for sufficiently
small perturbations the probability that the trajectory deviates from the unperturbed one outside of such
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neighborhood is small and the whole effect of the perturbation will take place around the fixed point
(see fig. 4.10). There the linear part of the equation dominates and one has a linear stochastic equation
describing the motion sufficiently well. Then from the distribution of exit points from this neighborhood
one will know the transition probabilities between the domains after crossing the separatrix. The diffusion
coefficient of the random process will have some singularity due to divergence of trajectories going on
different sides of the separatrix. This makes the analytical treatment difficult 4. But the numerical study
of the linear system is trivial. Unlike for the nonlinear case, one can with a linear transformation arrive
at a system with no small parameters and easily simulate the distribution of exit points.

Consider the linear system

φ̇ = p+ εξ1(t)

ṗ = λφ(1 + εξ2(t))

which after transformation p̂ = p√
λ
, φ̂ = φ becomes

˙̂
φ =

√
λp̂+ εξ1(t)

˙̂p =
√
λφ̂(1 + εξ2(t))

The sample paths of the system are shown in figure 4.11. One can immediately see the qualitative
influence of the separatrix slope

√
λ on the dynamics of the random motion. The influence of the phase

noise ξ1 increases as λ → 0 and drops as λ → ∞. The amplitude noise ξ2 acts in the same manner, but
the time it has for its action growths as 1√

λ
. The most probable displacement of a random process is along

the drift and against the gradient of the diffusion. The drift is given by the trajectories in figure 4.10, the
diffusion gradient is zero for phase noise and upwards for amplitude. So, by stretching the trajectories
of the unperturbed motion ”vertically” or ”horizontally” one gets the enhancement of the amplitude and
phase noise correspondingly. This is the geometrical meaning of the slope

√
λ. These considerations lead

to the conclusion that the increase of the slope leads to larger escape rate to the domains D1 and D3

under influence of both noise species. Such behavior is a consequence of the fact that it is easier to get
out of the steep potential well.

In practice the particular escape rates can be estimated numerically. An example of the histogram of
exit domain distribution is shown in figure 4.12. This distribution depends weakly on the changes of the
slope. A slight change can be observed when the main voltage is changed considerably, but small changes
like that introduced by the second RF system have no influence.

It has to be understood that the linearized system even when solved precisely would introduce some
small error in the escape rate. But it can give

4.4.4 On numerical solution of the coupled system

As we have seen, analytical methods of solution fail even in the case of a two-point boundary value problem
when the coefficients are sufficiently ”bad”. In case of the system of equations with coupled boundary
values the situation can become only worse. To obtain a solution numerical methods must be employed.
We have tried several methods:

1. Algorithms based on Laplace transform [6]. Let u(t) be a real-valued function, then its Laplace
transform is given by

v(s) = L[u; s] =

∫ ∞

0

e−stu(t)dt (4.97)

4An asymptotic expansion was attempted by the author, but did not give satisfactory results. Further study is required.
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Figure 4.11: Perturbed Motion in the vicinity of a saddle point

(a) Trajectories of escape from the neigh-
bourhood under influence of random ampli-
tude modulations

(b) Trajectories of escape from the neigh-
bourhood under influence of random phase
modulations

Applying the Laplace transform to a Fokker Planck equation and noticing that

L[
∂u(t)

∂t
] = −u(0) + L[u]

one gets with v(s, x) = L[u(x, t); s]

−f(x) + sv(s, x) =

(

b2(x)

2
v′(s, x)

)′
(4.98)

Therefore, v(s, x) satisfies the same boundary conditions as u(x, t) in case they don’t depend on
t. This equation is one-dimensional and sometimes easier to solve than the original one. If we
are able to find the solution of 4.98 v(s, x) for all s then u(x, t) is found by inversion. The use of
Laplace transform is motivated by the fact that the coupling conditions are easier to treat in the
one-dimensional case. However, the inversion of the Laplace transform is not stable and requires
special algorithms involving a priori estimates of the solution. Thus this method could work very
well for special situations, but it is not robust enough.

2. Grid methods [13]. We use a standard finite difference scheme for solution of two-point boundary-
value problems. For the coupled system the boundary values will introduce difficulties and grid
methods are avoided.

3. Monte-Carlo methods. One generates sample paths of the averaged diffusion process and computes
the averaged distribution at times of interest. A Fokker-Planck equation

∂u

∂t
=

∂

∂x

(

b2(x)

2

∂u

∂x

)

(4.99)

governs the density evolution of the process

x(t) = x(0) +

∫ t

0

b′(x(s))b(x(s))ds +

∫ t

0

b(x(s))dWs (4.100)
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Figure 4.12: A sample histogram of distribution of exit domains from the vicinity of a unstable fixed point
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(a) Amplitude noise
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(b) Phase noise

For small h the increment x(t+h)−x(t) is approximately normally distributed with mean b(x(t))b′(x(t))h
and variance b(x(t))h. A straightforward application of this fact together with treating absorptions
and reflections leads to a Monte-Carlo algorithm. Two issues are important for implementation.
First, to obtain a correct treatment of reflections, absorptions and to accurately represent the paths,
one should have

h ∼
∣

∣b2(x)
∣

∣

∣

∣b′2(x)
∣

∣

√
N

(4.101)

Another difficulty is connected with the singularity (vanishing) of the coefficients. The flux through
such singular point is zero, no path can reach it, but this condition does not need to hold for
approximation with 4.100. Such situation is shown in figure 4.13. Here the flux 0.5b2(x)u′(x) at
point 0 (bunch center) is zero,this condition is always satisfied for a bounded density due to vanishing
coefficient b2(0) = 0. The Monte-Carlo algorithm however ”does not know” about the singularity
since the trials are made for some neighbouring points with x 6= 0 , and finds a solution with
vanishing derivative. This solution will have larger escape rate from the vicinity of a singular point
than in reality. The error vanishes as the number of trials is increased, but due to this fact the
convergence of the method for singular coefficients is substantially slower.

One should also take care of the random number generator. Normally one uses simple formulae like

x =
√

−2 log(u) sin(2πv) (4.102)

with u and v uniformly distributed random numbers. Since uniform random variables are generated
with fast recurrent arithmetical methods, this will work rather fast. But the numbers thus generated
have a cutoff. This introduces a small error and makes analysis of extreme paths difficult.

Monte-Carlo methods have poor convergence, but are robust and simple to implement. They are
good for rough estimate of complex system behavior, but are rarely useful when high precision is
required. The estimation of the coasting beam population does not require such precision and with
modern computers the performance is acceptable.
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Figure 4.13: Derivative error at a singular point
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4.5 Impact on synchrotron motion

4.5.1 Bunch diffusion - rough estimates

To estimate the diffusion of particles in the bunch core it is sufficient to take only few terms in the diffusion
coefficient representation. Under assumption that phase and amplitude noise are uncorrelated

b2(H) = b2phase(H) + b2ampl(H) . (4.103)

The first order expansion of the synchrotron oscillations in H gives

φ(t) =
√
H

√

2

K1
sin(ωt)

p(t) =
√
H

√

2ω2

K1K2
3

cos(ωt)

K1 =
qU

ET

K3 =
2πhα

T

ω = K1K3 −
1

4
K3H (4.104)

If we are not interested in the effects produced by the form of the spectral density, we can drop the
synchrotron frequency shift and assume that the perturbation is white noise with intensity ε. Then

b2phase(H) =
1

4
ε2H (4.105)
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b2ampl(H) =
1

8
ε2H2ω2 . (4.106)

The amplitude noise has much more influence on the tails of the bunch than on the core. Some
numerical examples with exponential initial distribution and zero boundary value at some Hmax are shown
in figure 4.14. In practice such a considerable change in the distribution over the time scale of beam storage
can be only possible when the noise is very strong. Usually a much weaker effect is observed.

The first order approximation can be used to describe the bunch core diffusion whereas for tail evolution
and the escape rate problem higher order terms should be employed as well as the proper boundary
conditions imposed.

4.5.2 Escape from the stable bucket

To assess the escape rate and to determine the ratio between loss and halo population more accurate
representation of the diffusion coefficient as well as the calculation of the distribution of escape domains
is required. An example of calculations with exaggerated noise level is shown in figure 4.15 and 4.16.

4.5.3 On effects of noise spectral density

Under the assumption that the noises are second order random processes one arrives at a substantial
dependency of the results on the form of the spectral density. For systems with amplitude dependent
frequencies this may lead to a rather arbitrary behavior, i.e. one can adjust the spectrum so that the dif-
fusion coefficient of the averaged system will have arbitrary form at least to some extent. The synchrotron
oscillations usually lie within a rather narrow bandwidth (f.e. 0-30 Hz for HERA) and the spectrum of
oscillations is rather broad-band, so in reality this possibility is restricted. It can be easily shown that the
derivative of the diffusion coefficient is bounded by the quantity of order ∂ω

∂H
∂S
∂ω where ω is the synchrotron

frequency and S is the spectral density of the random perturbation. But the measured spectral densities
still have a noticeable gradient. A qualitative example of two quite similar spectral densities and diffusion
coefficients derived from them is shown in figure 4.17. If the spectral density is allowed to be more irregular
then even larger divergence can occur. It should illustrate the fact that estimating the diffusion in the
beam tail is a subtle issue unless the spectral density is known quite precisely.

Adding the second RF system does not qualitatively change the behavior inside the buckets. There it
results only in a slight shift of the synchrotron frequency. But for the gap between the inner and outer
buckets (domain D4 in figure 4.5) the motion becomes more irregular (see figure 4.18). The oscillation
spectrum includes more higher order harmonics. This means that the noise spectral density at these higher
harmonics and their multiples will contribute to the diffusion coefficient.

The synchrotron oscillations spectrum in the beam tail D4 coming from the second RF system differs
from the spectrum in the beam tail without the second system, this can influence the tail diffusion and
decide between the formation of bunch tail or the coasting beam. The estimation of this effect is again
restricted by the precision of knowledge of the noise spectral density.

4.5.4 Estimates for HERA

A measurement of the cavity voltage fluctuations is not trivial. An attempt to perform such measurements
for phase noise at HERA was made [33]. It indicates that there is a possibility that the spectral density
is such that the diffusion coefficient at lower synchrotron frequencies is somewhat larger that at the high
(figure 4.19). For such a spectrum shape the peaks turn out to be harmonics of the synchrotron frequency
of some tail particles, but not of the core. However, the relation of the measured noise to the actual
voltage fluctuation during a run is not obvious. The phase noise is usually more likely to appear due to
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the complexity of the phase control system. The amplitude is normally generated with a better precision
and its fluctuations are usually neglected.

We were not aiming at precise estimates of the bunch diffusion. We suspect that the error in the
measurements of the noise spectrum might be considerable enough and definite conclusions cannot be
drawn. Even if it is not so, this problem requires a separate investigation and falls out of the scope of
this work.5 The main goal is to show which impact the double RF system can have on the escape from
the bucket and halo formation. The simulations were performed for noise spectra consistent with the
measurements [33] for the phase noise.

Due to the mentioned difficulties the simulations have a somewhat qualitative nature. They indicate
that under certain circumstances the accumulation of noticeable bunch tails in the side buckets is possible.
It appears that particles can drift into their centers and accumulate there. The coasting beam itself is
also produced with a higher rate, but is then naturally cleaned by the synchrotron radiation mechanism.
The halo corresponding to the ”gap” (domain D4) does not usually build up. For details see figures 4.20
and 4.21.

5More careful measurements and analysis are planned at the moment.
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4.6 Summary

• The synchrotron tune spread is responsible for turning random coherent perturbations into random
incoherent ones. Without synchrotron tune spread it could be possible to reduce the effect of the
RF noise by feedback. But it could hardly have any practical use.

• Both the bunch dilution and the escape rate from the RF bucket can be estimated provided the
spectral density of the noise is known. Its incomplete knowledge introduces a substantial uncertainty
in the expected escape rate as well as in the entire bunch density evolution.

• Noticeable influence on the core may be produced by the phase noise. Amplitude noise has much
more impact on the tails than on the bunch core.

• The second RF voltage introduces a region where a broader region of the noise spectral density
influences the motion, this can lead to diffusion enhancement in the bunch tails or halo formation.

• The RF noise can be well responsible for the coasting beam production by sweeping away the bunch
tails.
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Figure 4.14: Examples of density evolution of the synchrotron invariant under influence of phase and
amplitude noise for some model parameters. Distributions are shown for t = 0h, t = 1h and t = 2h
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Figure 4.15: An exaggerated example of bunch density and halo evolution 1
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Figure 4.16: An exaggerated example of bunch density and halo evolution 2
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Figure 4.17: Two spectral densities and diffusion coefficients obtained from them
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(c) S2, 12/Hz (d) D2

Figure 4.18: Spectrum of the synchrotron oscillations in the gap between inner and outer buckets
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Figure 4.19: A sample spectral power density of RF noise measured at HERA (courtesy S. Ivanov.

(a) 208 MHz system
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Figure 4.20: Example of dynamics for HERA double RF system

(a) Density (b) Side bucket halo

(c) ”gap” halo (d) Loss, % vs. time
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Figure 4.21: Another example with initially somewhat shorter bunches

(a) Density (b) Side bucket halo

(c) ”gap” halo (d) Loss, % vs. time
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Chapter 5

Some experimental observations

In this section we present the observed longitudinal bunch evolution in HERA and its connection to
background rates. Perturbations can not only lead to parasitic losses but can also be employed for various
useful purposes. We shortly discuss how RF voltage modulations can be employed to depopulate bunch
tails and to achieve stabilization of multibunch oscillations.

5.1 Backgrounds and longitudinal bunch evolution

In HERA the longitudinal bunch profile is measured by analysing the current picked up from a resistive
gap monitor. There are two systems. The first one is designed to measure the bunch distribution with
relatively high accuracy. It has a dead-time of around one second and cannot detect fast bunch oscillations.
The second [65] has short dead-time and can measure bunch signal each turn, but the resolution is low
and it is used for analysis of fast bunch dipole oscillation modes and lengthening. A typical bunch profile
evolution is shown in figure 5.1. The current in bunch tails is low and the measurement of its distribution
is not possible due to limited resolution of the monitor. However, the amount of coasting beam can be
assessed by measuring the difference between the bunched and unbunched (DC) current. The amount of
coasting beam was also estimated by measuring the scattering rate at HERA-B target wires that were
moved across the beam [19].

Figure 5.1: Typical longitudinal bunch profile at HERA after the ramp and after a 10 hours run

The proton background is measured with counters installed in the detectors. The background rates
are also correlated with the loss rates measured at the collimators and with values taken from the beam
loss monitors.
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Figure 5.2: ZEUS C5 Counter with high background rates

Figure 5.3: ZEUS C5 Counter with moderate background rates

The background increases during the run which is explained by the proton halo accumulation. By
removing a bad cable connection it was possible to improve the noise level in the RF system which
resulted in a considerable background reduction. In figures 5.2 and 5.3 the rates before and after the
improvement are shown.

The increase of the coasting beam with time under poor noise conditions is shown in figure 5.4, with
better conditions - in figure 5.5.

Figure 5.4: Large coasting beam accumulation

The comparison of the observed coasting beam currents under improved noise conditions with sim-
ulations is shown in figure 5.6. For the intra-beam scattering a slight overestimates is given. For the
noise the rates are show for various possible tail diffusion coefficients. To gain consistence of the bunch
diffusion with escape rate a significant increase of the coefficient towards the tail is to be assumed, which
was suggested in [32].
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Figure 5.5: Moderate coasting beam accumulation

Figure 5.6: Comparison of observed and simulated coasting beam currents

(a) Intra-beam scattering (b) Various levels of RF (phase) noise

5.2 Bunch manipulations with amplitude and phase modulations

By manipulating cavity voltage amplitudes and phases one can control to some extent the longitudinal
beam parameters. Such techniques are widely used to damp the longitudinal instabilities which can occur
during the ramp. By applying specific modulations one can influence particular parts of the beam, for
example depopulate the beam tail. With such technique one can in principle reduce the amount of the
coasting beam.

As was shown in Chapter 4, the diffusion coefficient arising from RF noise depends on its spectral den-
sity. That means that by applying noise with spectral density concentrated in the synchrotron frequency
band of the bunch tail one can destroy the tail without influencing the longitudinal emittance considerably.
The particles swept from the tail will mostly go into the coasting beam and will produce a background
increase within some time. But since after such modulation the loss rate from the bucket should decrease
whichever loss mechanism is present, there would be a decrease in the background afterwards. An alter-
native technique is based on the fact that amplitude noise results in the diffusion coefficient that grows
towards the bunch tails. The amplitude modulation can now be made with a rather broad frequency
band, which will have approximately the same effect. Say, a white noise can be used.

We attempted an experimental confirmation of this facts. Synchrotron frequencies of tail particles
in HERA are around 1 Hz and voltage modulation of this frequencies turned to be technically difficult.
We applied white noise instead. The noise signal with amplitude of 1 kV was applied to the cavity for
10 minutes. The collimator rates were observed. The applied noise resulted in a slight collimator rate
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increase and had no influence on the bunch core. After 1 hour the collimator rates increased significantly.
The time interval corresponds to the time required for the particles pulled out from the tail to drift to the
aperture limitation under influence of synchrotron radiation. After that the backgrounds decreased and
were lower than those which should have been without the perturbation. A usual background evolution
is shown in figure 5.8. The backgrounds observed after the amplitude modulation is shown in figure 5.7.
A decrease in the coasting beam production was also observed (figure 5.9). 1

Figure 5.7: Collimator rates after the amplitude modulation. The modulation was applied at ∆t ≈ 0.7h

Figure 5.8: Usual picture of the collimator rates on the same time scale

Figure 5.9: Coasting beam current after the amplitude modulation. The increase in the accumulation rate
corresponds to the time of the modulation.

1the coasting beam currents have different orders because of the different number of stored bunches. Low beam current
was used for safety reasons.
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Figure 5.10: Usual coasting beam accumulation observed on the same time scale goes linearly.

5.3 Summary

• There is some portion of coasting beam coming from the intra-beam scattering. For a proton ring
like HERA it shouldn’t have a serious background impact.

• Most of the halo seems to be accumulated due to the RF phase noise.

• It is hard to practically reduce further the noise level at HERA.

• Random perturbations can be used for beam control.
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Chapter 6

Epilogue

6.1 Noise in nonlinear systems

The distinction between random and deterministic processes is rather subtle from the modern point of
view. It is long known [14] that complex dynamical systems possess statistical properties. A random
process can be viewed as an output of a chaotic dynamical system. One can consider a perturbation to
be deterministic if it has a regular Fourier spectrum.

Such deterministic perturbations of the synchrotron motion arise as a consequence of wake fields
produced by the bunch train travelling in the ring, higher order harmonics of the RF cavities and so on.
A periodic driving of a linear system can result in resonant behavior and an instability can occur. For a
nonlinear Hamiltonian system where frequency depends on the amplitude another behavior, the so called
nonlinear resonance, is general [12]. A perturbation results in a set of points (or hypersurfaces) in the
phase space where the resonant conditions are met. The perturbation has a strong effect in the vicinity of
these points leaving the motion in all other regions practically unchanged. The region where the impact
is strong is called the resonant band. Since such points generally form a dense set in the phase space,
the effect of intersection of different resonant bands can be rather complicated. For a certain class of
systems - steep Hamiltonian systems - a sufficiently small perturbation does not lead to instability. In
one-dimensional case these systems are just Hamiltonian systems with positively definite Hamiltonian.
Such is, for example, the pendulum representing the synchrotron oscillations. For such Hamiltonians
motion along every resonant line introduces a frequency shift and the perturbation is thus stabilized.
These issues are of great importance for the transverse beam dynamics where all kinds of resonances can
appear due to multidimensionality [62], [59].

A general description of dynamics when nonlinear resonances are present is extremely complicated
[12]. The situation becomes more difficult when a random force is added. Many interesting physical
phenomena arise, especially in systems with multiple stable points or lattice systems - pattern formation,
stochastic resonance, etc. (see for example [67], [23]). For Hamiltonian systems a rich variety of results
can be drawn from simple models, for example from interaction of an isolated resonances with white noise
[25], [57]. Here the phase space topology created by the nonlinearity introduces “channels” which host
circulations of currents driven by noise. This behavior can strongly influence stationary distributions and
various escape rates.

For one dimensional systems the behavior is much simpler. A resonant surface reduces to a point in
the action space with trajectories oscillating around this point, an isolated resonance. An instability can
occur when the isolated resonances intersect each other and this intersection is broad enough to provide
an escape path to the trajectory. This effect is normally small for reasonably weak perturbations arising in
the synchrotron motion which can be suspected to contribute to escape rate from the RF bucket. However,
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it is not completely excluded. Another instability mechanism could come from the possibility of quick
transport of a particle across a resonant band which in interaction with the noise can lead to a diffusion
enhancement.

The discussed effects play much weaker role in the one dimensional case than in multidimensional.
Therefore, it is as usual hard to estimate the perturbations experimentally due to their small magnitudes.
However, this mechanisms are to be kept in mind. Note that the interaction with a resonance is to some
extent already included in the Fokker-Planck equation obtained from the given spectral power density.
Any perturbation acting in a physical device in reality has some bandwidth.A peak measured in the output
of some device can be viewed as the spectral power density at this point. Then the diffusion coefficient
4.20 in the region with corresponding frequency spread will grow as well. The numerical correspondence
of the diffusion rate to the reality is of course not that obvious. The description becomes somewhat loose
as the bandwidth goes to zero and the peak becomes sharper. Then the influence of this peak from the
random process point of view shrinks to a diffusion in a small region whereas in reality there should exist
a certain resonant band with some “quasiregular” motion in it. So, sharp narrow peaks of high intensity
in the noise should be rather considered as deterministic components.

6.2 Conclusion

The loss rates for HERA were estimated when intra-beam scattering and RF noise are present. The
influence of intra-beam scattering turned out to be weak. The RF noise appears to be responsible for
the major portion of the coasting beam. These values were estimated to a precision which is determined
by the error in the measurement of the noise spectral density. The estimates of noise in this work have
mainly of qualitative nature.

The discussed methods can be potentially applied to some other problems concerning random particle
motion and backgrounds which can appear in connection with the coming operation of the LHC and,
possibly, other accelerators.

Substantial complications arise in extending the methods to general multidimensional nonlinear sys-
tems where chaotic behavior can take place. The averaging becomes not trivial, the numerical integration
and Monte-Carlo trials require much more computations.

Another difficulty in the study of random phenomena is the selection of a correct noise model. Conven-
tional models are presented by the second order processes or by white noise. However, there is a variety
of situations when they cannot be used [24].

The problem of escape from the potential well under influence of random perturbations has no general
elegant solution. It has been widely studied in particle accelerator theory and in connection to other
problems. For particular applications one can normally achieve a satisfactory solution by combining
analytical and numerical methods and exploiting the specific properties of the system. The demonstration
of such methods for the problem of escape from the RF potential bucket in a storage ring was attempted
in this work. We hope that at least some ideas have a shade of originality at least for the accelerator
community.
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Particle motion in a storage ring

A.1 Equations of motion

The horizontal and vertical coordinates of a particle are measured in a Cartesian coordinate system moving
along the design orbit

r(s) =









x(s)
x′(s)
z(s)
z′(s)









They are sums of the coordinates of the closed orbit for a given momentum deviation ∆p and the
coordinates of betatron oscillations around the closed orbit

rβ(s) =









xβ(s)
x′β(s)
zβ(s)
z′β(s)









r(s) = rβ(s) +D(s)
∆p

p
(A.1)

The betatron motion can be represented by a certain coordinate map

rβ(s+ L) = M(s+ L, s)rβ(s) (A.2)

When all nonlinear elements are taken into account, M becomes a complex nonlinear map. However,
for applications like intra-beam scattering linear optics approximation is sufficient. Neglecting the coupling
between the transverse planes and nonlinear effects, M becomes a matrix expressed in terms of the optical
functions (linear optics)

M(s+ L, s) =

(

Mx(sL, s) 0
0 My(s+ L, s)

)

Mx,y(s+ L, s) =




√

βx,y(s+L)
βx,y(s) (cos(Ψx,y) + α(s) sin(Ψx,y))

√

βx,y(s+ L)βx,y(s) sin(Ψx,y)

(αx,y(s)−αx,y(s+L)) cos(Ψx,y)−(1+αx,y(s)αx,y(s+L)) sin(Ψx,y)√
βx,y(s)βx,y(s+L)

√

βx,y(s)
βx,y(s+L) (cos(Ψx,y) − αx,y(s) sin(Ψx,y))




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or explicitly

rβ,x,y =
√
ε
√

β (cosΨ cosφ− sin Ψ sinφ)

rβ,x′,y′ = −
√

ε

β
(α cosΨ cosφ− α sin Ψ sinφ+ sin Ψ cosφ+ cosΨ sinφ)

cosφ =
rβ,0
εβ0

sinφ = − 1√
ε

(

rβ,0
√

β0 +
α0rβ,0√
β0

)

(A.3)

Here βx,z is the betatron envelope function, αx,z = −β′
x,z

2 , Ψx,z is the betatron phase.The matrix M
is symplectic and the transformation preserves area in the phase space. Normalized invariant phase space
areas of this transformation are the emittances

εx =
1 + α2

x(s)

βx(s)
x2(s) + 2αx(s)x(s)x

′(s) + βx(s)x
′2(s) (A.4)

εz =
1 + α2

z(s)

βz(s)
z2(s) + 2αz(s)z(s)z

′(s) + βz(s)z
′2(s) (A.5)

Due to phase focusing particles perform slow synchrotron oscillations. Let the reference energy be E,
the energy offset ∆E, the synchrotron phase φ, then the synchrotron one turn map is given by

∆En+1 = ∆En + eZV (φ) − ∆Eγ

φn+1 = φn +
2πh

β2E

(

α− 1

γ2

)

∆E

This map is approximated with a system of differential equations

∆Ė =
eZ

T
V (φ) − ∆Eγ

T

φ̇ =
2πh

β2ET

(

α− 1

γ2

)

∆E

where

α = ∆L
L

p
∆p − the momentum compaction factor,

V (φ) − RF voltage,
β, γ − relativistic factors,
h = ωRF

ωREV
− harmonic number,

E − reference energy,
q = eZ − particle charge,
∆Eγ − energy change from synchrotron radiation,
T − revolution period

Since
E2

c2
= p2 +m2c2 (A.6)
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and for ultrarelativistic particles

δp =
∆p

p
=

∆E

E
(A.7)

the equations of motion can be rewritten

δṗ =
eZ

TE
V (φ) − ∆Eγ

ET

φ̇ =
2πh

β2T

(

α− 1

γ2

)

δp

The spacial longitudinal coordinate with respect to bunch centre is more convenient in kinetic equations
and is related to the phase as

∆s =
cφ

2πωRF
(A.8)

The synchrotron radiation is emitted with mean power

Pγ =
e2c

6πε0

γ4

R2
(A.9)

where ε0 = 8.8× 10−12farad×m−1 is the permittivity in vacuum. The fluctuations of the power due to
quantum nature of the radiation are negligible for proton storage rings. The energy losses per turn are

∆E = c∆p =

∫ T

0

Pγdt ≈
Te2c

6πε0

γ4

R2
(A.10)

In the case of stable synchrotron oscillations the radiation losses are compensated by the Rf system
and the change of δp is given by the difference in the radiation losses with respect to the reference particle

∆Eγ = T
∂Pγ
∂E

∆E =
4

γm0c
Pγ∆E (A.11)

When the motion is not oscillatory the energy losses are not compensated and

∆Eγ = TPγ (A.12)

For example, for protons in HERA the synchrotron oscillation damping rate is of order 1KeV/sec
and the damping time is tens of days. The drift is about 280KeV/sec, the time required to drift from
the bucket to the acceptance limit is about 40min. So, for the time scales involved, one can neglect the
radiation damping for oscillating particles, but the drift in the coasting beam region is substantial and
contributes to particle losses.

The radiation effects and all other perturbations are rather week and can be considered as small
perturbations to the Hamiltonian system with

H(φ, δp) =
q

T
U(φ) +

2πh

β2T

(

α− 1

γ2

)

δp2

2
(A.13)

where −U ′(φ) = V (φ). For the case of sinusoidal RF voltage V (φ) = sin(φ) the Hamiltonian is

H1(φ, δp) =
q

ET
(1 − cos(φ)) +

2πh

β2T

(

α− 1

γ2

)

δp2

2
(A.14)
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For the double RF system one takes the phase with respect to one of the systems (the dominant) as
φ and supposing ωRF2 = η · ωRF1

H2(φ, δp) =
q

ET
(2 − V1 cos(φ) − V2 cos(ηφ)) +

2πh

β2T

(

α− 1

γ2

)

δp2

2
(A.15)

The part of the Hamiltonian depending on φ is called the RF potential. In figures A.2 and A.3 the
RF potentials and phase portraits of systems A.14 and A.15 are shown. System A.14 has fixed points

φ = 0, ±π
2
, ±π

The fixed points of system A.15 can be found to a good accuracy as corrections to single RF fixed
points. To the first order the correction is zero and can be neglected when cavities voltages differ much.

Some parameters for HERA are summarized in table A.1.

Table A.1: Some HERA parameters
First RF system frequency ωRF1 208MHz

Second RF system frequency ωRF2 52MHz
RF voltage U ∼ 500KV

Synchrotron frequency ω ∼ 30Hz
Momentum compaction α = 0.00128

Averaged optical functions 〈βx〉 = 100m, 〈βz〉 = 80m
〈αx〉 = 7.4 × 10−6, 〈αz〉 = 1.7 × 10−4

〈Dx〉 = 1.06m, 〈Dy〉 = 0.002m

The momentum acceptance is the maximum momentum offset that a particle can have without being
lost transversely. For HERA the δp/p acceptance is about 10−3 (at 920 GeV, with U208 = 360KV and
U52 = 14KV ).

A.2 Action-angle variables

To analyze the long term stability of motion one normally looks at the behavior of some slowly varying
quantities or invariants of motion. It is convenient to study weekly perturbed Hamiltonian systems in
terms of action-angle variables of the unperturbed systems. A Hamiltonian can be brought by a canonical
transformation of variables (q, p) → (J, φ) to the form H(J). If the system is integrable (which is always
true for 1d Hamiltonian systems) then such action-angle transformation can always be made. In action-
angle variables the equation of motion takes the form

J̇ = 0

φ̇ = ω(J) = −∂H
∂J

(A.16)

This transformation to action-angle variables sometimes can be found explicitly. For example, for the
pendulum

H(q, p) =
p2

2
+ Ω(1 − cos q) (A.17)

such transformation is given by the Jacobi elliptic functions [5]. However, analytical representations
are exceptional and in practice one has to rely on an asymptotic expansion. A common perturbation
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method to bring a Hamiltonian into action-angle form is the superconvergent method. Here it is shown
for a simple one-dimensional case. For the pendulum (with Ω = 1) the Hamiltonian can be represented
as series

H =
p2

2
+
q2

2
− q4

4!
+
q6

6!
− q8

8!
+ . . . (A.18)

First J = q2

2 + p2

2 , q =
√

2Jcosφ

H(J, φ) = J − 4J2

4!
cos4 φ+

8J3

6!
cos6 φ− 16J4

8!
cos8 φ+ . . . (A.19)

Dividing the Hamiltonian into the mean and oscillating parts

H(J, φ) = J − 4J2

4!

〈

cos4 φ
〉

+
8J3

6!

〈

cos6 φ
〉

− 16J4

8!

〈

cos8 φ
〉

+

4J2

4!
(cos4 φ−

〈

cos4 φ
〉

) +
8J3

6!
(cos6 φ−

〈

cos6 φ
〉

) − 16J4

8!
(cos8 φ−

〈

cos8 φ
〉

) + . . .

one chooses the next transformation to eliminate the oscillating terms of order J 2. One chooses the
generating function

F (J1, φ) = J1φ+ S(J1, φ)

so that

J = J1 + Sφ

φ1 = φ+ SJ1

the desired transformation is obtained with

Sφ =
1

6
J2

1 (cos4(φ) − 3

8
)

Then one needs to change φ → φ1 according to

φ1 = φ+ SJ1
= φ+

∫

Sφ,J1
dφ = φ− 8a4J1

∫

f4(φ)dφ + c(φ)

By the next transformation one can eliminate terms of order J 3 and J4. Up to fourth order this gives
the Hamiltonian

ˆH(J1) = J1 −
J2

1

16
− J3

1

256
− 5J4

1

213
(A.20)

Note that the expression obtained by averaging the Hamiltonian H(J) with respect to phase will differ
from Ĥ(J1)

〈H(J)〉 = J1 −
J2

1

16
− J3

1

288
− 5J4

1

9216
(A.21)

which differs noticeably in terms starting from fourth order. In many problems such averaging is
sufficient and one can use such first order action. Action-angle variables are standard in treating small
perturbations. Suppose that the original system was subject to a perturbation which is a smooth function
in q and p. Then in action-angle variables it is some smooth function of J and periodic in φ. The perturbed
Hamiltonian can be written in the standard form

H(J, φ) = H0(J) + ε
∑

m,n

Vm,ne
iwmφ+iνnt (A.22)

With such a representation averaging and resonance analysis can be now more easily performed.
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Figure A.1: Optical functions at HERA
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Figure A.2: Synchrotron motion with 1 RF system
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Figure A.3: Synchrotron motion with 2 RF systems
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Appendix B

Sketch of the proof of proposition 1

One needs to show that an integral of a random function along a trajectory of the solution of the differential
equation can be under certain conditions approximated on [0, T0] by an Ito’s integral

∫ τ

0

fε(p(ε
−2s), φ(ε−2s), s)ds+

1

ε

∫ τ

0

gε(p(ε
−2s), φ(ε−2s), s)ds ≈

∫ τ

0

a(H(s))ds+

∫ τ

0

b(H(s))dWs

Let p(t) and φ(t) be represented as functions of the invariant H and t, the problem can be restated as

∫ τ

0

fε(H(ε−2s), ε−2s)ds+
1

ε

∫ τ

0

gε(H(ε−2s), ε−2s)ds ≈
∫ τ

0

a(H(s))ds+

∫ τ

0

b(H(s))dWs (B.1)

The idea of the proof is that one can find such ∆ that is much greater than the correlation time of
the random function so that the integral over [0,∆] becomes a sum of some large number of integrals
that are approximately independent random variables, but the change of H on such an interval is small.
Then the increment of the process on this interval becomes approximately a Gaussian random variable.
Its moments define the drift and diffusion coefficients of the diffusion process sought. Such ∆ can always
be found for processes with finite correlation time and sufficiently small ε. Let the partition of [0, T0] on
such intervals be constructed. First consider the term of second order in ε and develop it in power series
to the second order around the starting point

∫ ∆

0

fε(H(ε−2τ), ε−2τ)dτ =
∆

∆ε−2

∫ ∆ε−2

0

fε(H(τ), τ)dτ = (B.2)

∆ lim
T→∞

1

T

∫ T

0

fε(H(0), τ)dτ +O(∆2) (B.3)

The variation of the last integral is of order ∆2 and the first moment of order ∆. This means that its
contribution reduces to drift

lim
T→∞

1

T

∫ T

0

〈fε(H(0), τ)〉 dτ (B.4)

Extending this procedure to the whole interval one arrives at the drift coefficient
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a(H) = lim
T→∞

1

T

∫ T

0

〈fε(H, τ)〉 dτ (B.5)

Now consider the term of order ε

1

ε

∫ 1

0

gε(H(ε−2τ), ε−2τ)dτ =
∆

ε · ε−2

∫ ∆ε−2

0

gε(H(τ), τ)dτ =

∆

ε · ε−2

∫ ∆ε−2

0

[

gε(H(0), τ) +
∂gε
∂H

(H(0), τ)

∫ τ

0

gε(H(0), s)ds

]

dτ +O(∆2)

The first moment of the last integral is

∆

ε
lim
T→∞

1

T

∫ T

0

〈gε(H(0), τ)dτ〉 +
∆

ε
lim
T→∞

1

T

∫ T

0

dτ

∫ τ

0

〈

∂gε
∂H

(H(0), τ)gε(H(0), ε−2s)ds

〉

+O(∆2) (B.6)

The first integral is large and contributes to the drift on faster time scales than ε−2, namely ε−1. To
treat the diffusion on time scale of ε−2 one first needs to transform the equation to variables in which it
vanishes. However in our case (for the synchrotron motion) it turns out to be zero due to fast oscillations
in gε with zero mean and this is not required. So the drift comes from the second term. It can be rewritten
as

∆ lim
T→∞

1

T

∫ T

0

dτ

∫ τ

0

〈

∂gε
∂H

(H(0), τ)gε(H(0), ε−1s)ds

〉

+O(∆2) =

∆ lim
T→∞

1

T

∫ T

0

dτ

∫ τ

0

〈

∂gε
∂H

(H(0), τ)gε(H(0), s)

〉

ds+O(∆2)

When extending the integration procedure to the whole interval in the last expression the correlations
from the past have also to be taken into account. Neglecting terms of order ∆2 the drift becomes

lim
T→∞

1

T

∫ T

0

dτ

∫ τ

−T

〈

∂gε
∂H

(H, τ)gε(H, s)

〉

ds (B.7)

The second variation of B.6 is

〈

∆ · ∆
ε2 · ∆ε−2 · ∆ε−2

∫ ∆ε−2

0

gε(H(0), τ1)dτ1

∫ ∆ε−2

0

gε(H(0), τ2)dτ2

〉

+O(∆2) =

∆

〈

1

∆ε−2

∫ ∆ε−2

0

gε(H(0), τ1)dτ1

∫ ∆ε−2

0

gε(H(0), τ2)dτ2

〉

+O(∆2) =

(B.8)

and the diffusion coefficient

lim
T→∞

1

T

∫ T

0

∫ T

0

〈gε(H, τ1)gε(H, τ2)〉 dτ1dτ2 (B.9)

To complete the proof one needs to show that the correlation between consequent subintervals is
small compared to the first moments of the process and that on each interval the random perturbation
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satisfies the central limit theorem with desired precision. It turns out that one should choose ∆ ∼ ε
√
ε to

satisfy these conditions. The magnitude of ∆ determines the precision of the approximation
√
ε. Precise

conditions under which the procedure is applicable can be found in [37], [28]. These conditions are met
for sufficiently small ε and a random process of second order with finite correlation time.

Note that for moderate noise amplitude it may turn out that such an averaging procedure may give
only a poor approximation due to the square root convergence. In that case the non-Markovian nature of
noise is essential and one has to deal with the system of Ito’s equation in the extended phase space [55].

The behavior of random oscillating systems on long time scales was also studied in [3], [4], [22], [38].
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Appendix C

On the precision of the
’self-consistent chains’ method

The chain dynamics can be represented by a series of mappings (multiplications)

xτ = xT0 P (x0, τ), 0 ≤ τ ≤ h1

xτ = xTh1
P (xh1

, τ), h1 ≤ τ ≤ h2

. . . . . . . . . . . .
xτ = xThi

P (xhi
, τ), hi ≤ τ ≤ hi+1

. . . . . . . . . . . .

(C.1)

where xτ are distribution vectors belonging to R
n, the transition probability matrix P (x, t) is some

function from R
n × R to R

n×n, P (x, 0) = E, and {hi} is a partition of the time interval [0, T ] with the
points representing the moments of time at which the distribution is recalculated.

Let hi = ∆ · i = i
m , the case of an arbitrary partition is analogous. For this partition the system is

truncated at i =
[

1
∆

]

. Here we show some convergence estimates for such dynamical system.

Lemma 2 Let P (x, τ) possess smooth derivatives up to second order and bounded derivatives of higher

orders. Then for distributions xτ and yτ starting at initial distributions x0 and y0 there exists a constant

C not depending on ∆ such that ‖xτ − yτ‖ < Cε on τ ∈ [0, T ] whenever ‖x0 − y0‖ < ε.

Proof

Without loss of generality we may assume T = 1. Consider a partition with ∆ = 1
m . Consider some

interval of the partition [hi, hi+1] and the evolution of the system with distributions at hi equal to xi and
yi.

‖xi+1 − yi+1‖ =

∥

∥

∥

∥

xTi P (xi,
1

m
) − yTi P (yi,

1

m
)

∥

∥

∥

∥

=

=

∥

∥

∥

∥

xTi P (xi,
1

m
) − yTi P (xi,

1

m
) + yTi P (xi,

1

m
) − yTi P (yi,

1

m
)

∥

∥

∥

∥

≤

≤ ‖xi − yi‖
∥

∥

∥

∥

P (xi,
1

m
)

∥

∥

∥

∥

+ ‖yi‖
∥

∥

∥

∥

P (xi,
1

m
) − P (yi,

1

m
)

∥

∥

∥

∥

For all finite dimensional distributions ‖x‖ ≤ 1 (in C or p norm), xTP is again a distribution and thus
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‖P‖ = sup‖x‖=1
‖xTP‖
‖x‖ ≤

∥

∥xTP
∥

∥ ≤ 1. The previous inequality turns now to

‖xi+1 − yi+1‖ ≤ ‖xi − yi‖ +

∥

∥

∥

∥

P (xi,
1

m
) − P (yi,

1

m
)

∥

∥

∥

∥

Develop P (yi, τ) in power series around τ = 0, then

‖P (xi, τ) − P (yi, τ)‖ ‖E + τPτ (xi, 0) +
τ2

2
Pτ2(xi, 0) + . . .−

− (E + τPτ (yi, 0) +
τ2

2
Pτ2(yi, 0) + . . .)‖

(C.2)

If Pτ is Lipschitz-continuous at zero, i.e. when

‖Pτ (x, 0) − Pτ (y, 0)‖ ≤ L ‖x− y‖

the last expression is of order τ ‖x− y‖ and for some bounded L̂

‖xi+1 − yi+1‖ ≤ ‖xi − yi‖
(

1 + L̂
1

m

)

From this follows that

‖xk − yk‖ ≤ ‖x0 − y0‖
(

1 +
L̂

m

)k

≤ ‖x0 − y0‖
(

1 +
L̂

m

)m

≤ ‖x0 − y0‖ eL̂

for all k ≤ m. �

Lemma 3 For fixed n the sequence of functions xτ converges to some limit x?τ , which is a solution of

the system of nonlinear equations

ẋ? = A(x?)

where

A(x) = lim
τ→0

P (x, τ) −E

τ

and ‖x− x?‖ ≤ C
m

Proof. Consider the evolution of xτ over interval [hi, hi+1]

xi+1 = xTi P (xi, τ), τ = hi+1 − hi

then
xi+1 − xi

τ
= xTi

P (xi, τ) −E

τ

and going to the limit
ẋ? = x?TA(x?)

which is equivalent to

x?(t) = x?0 +

∫ t

t0

x?T (τ)A(x?(τ))dτ

xi+1 = xTi P (xi, τ) = xTi (E + Pτ (xi, 0) +O(τ2)) = xTi (E + τA(xi) +O(τ2))
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x?(hi+1) − xi+1 = x?(hi) +

∫ hi+1

hi

x?(τ)P (x?(τ), τ)dτ − xi − τxTi A(xi) +O(τ2)

x(τ) = xi + τ
d

dτ
x(τ)τ=hi

+O(τ2)

A(x(τ)) = A(x?(hi) + τx?(hi)
d

dx
A(x?(hi)) +O(τ2)) = A(xi) + τ ˆA(xi) +O(τ2)

∫ hi+1

hi

x(τ)A(x(τ))dτ = xiA(xi)(hi+1 − hi) +O(hi+1 − hi)
2 +O((hi+1 − hi) ‖xi − x?hi‖)

‖xi+1 − x?(hi+1)‖ ≤ ‖xi − x?(hi)‖ +M1(hi+1 − hi) ‖xi − x?(hi)‖ +M2(hi+1 − hi)
2

or

‖xi+1 − x?(hi+1)‖ ≤ ‖xi − x?(hi)‖ (1 +
M1

m
) +

M2

m2

From this it follows that the upper bound of the error at point hi+1 must satisfy

δi+1 = δi(1 +
M1

m
) +

M2

m2
, i = 1, . . .m

Since δi is an increasing function of i it is sufficient to estimate δm. Obviously δm cannot be smaller than
M2

m . This means that we should expect no better than a linear bound on δm. Choose some M ′ and choose

k so that δk−1 <
M ′

m and δk ≥ M ′

m .Such k exists for all M ′ ≤M . Then M2

m2 ≤ δM2

M ′ and

δi+1 ≤ δi(1 +
M1 +M2/M

′

m
)

for all i > k.

δm ≤ δk+1(1 +
M1 +M2/M

′

m
)m−k−1 ≤ δk+1(1 +

M1 +M2/M
′

m
)m ≤ δk+1e

M1+M2/M
′

Since δk <
M ′

m δk+1 ≤ M ′

m (1 + M2

m ) + M2

m2

δm ≤ M ′

m
(1 +

M2

m
) +

M2

m2
eM1+M2/M

′

The last expression attains a minimum at M ′ = M2. Altogether , the error can be majorated by C1

m + C2

m2

or by C
m . �

We now have to show convergence of xnτ as n → ∞. To do that observe that the probability density
of a Markov jump process having sufficient regularity satisfies a linear integral equation

∂p(x, t)

∂t
=

∫ ∞

−∞
K(x, y)p(y)dy (C.3)

whereK(x, y) tells about the probability of a jump from point y to a neighbourhood of point x.Suppose
there exists a finite or countable set Ω such that both initial distribution and the kernel of the integral
operator are concentrated at these points, then the solution of equation C.3 will be also concentrated in
these points. Then we can search for solutions in the form
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p(x, t) =
∑

ω∈Ω

cω(t)δ(xω) (C.4)

the kernel is of the form
K(x, y) =

∑

ω,ω′∈Ω

aωω′δ(xω) (C.5)

After substituting this into C.3 it splits into a system of ordinary differential equations for the coeffi-
cients cn which is exactly the Kolmogorov system for a corresponding Markov chain.

ċω(t) =
∑

ω′∈Ω

aω,ω′cω′(t) (C.6)

Suppose that the sequence of kernelsKn converges (weakly) to a kernel K̂, which now doesn’t need to be
a combination of delta-functions. Suppose that pn(x, t) and p̂(x, t) are solutions of eq. C.3 corresponding
to kernels Kn and K̂. then they satisfy integral equations

pn(x, t) = pn(x, 0) +

∫ t

0

∫ ∞

−∞
Kn(x, y)pn(y)dydt

and

p̂(x, t) = p̂(x, 0) +

∫ t

0

∫ ∞

−∞
K̂(x, y)p̂(y)dydt

‖pn(x, t) − p̂(x, t)‖ =

=

∥

∥

∥

∥

pn(x, 0) − p̂(x, 0) +

∫ t

0

∫ ∞

−∞
(Kn(x, y)pn(x, τ) − K̂(x, y)p̂(y, τ))dydt

∥

∥

∥

∥

≤

≤ ‖pn(x, 0) − p̂(x, 0)‖ +
∥

∥

∥

∥

∫ t

0

∫ ∞

−∞
(Kn(x, y)pn(x, τ) −Kn(x, y)p̂(y, τ) +Kn(x, y)p̂(y, τ) − K̂(x, y)p̂(y, τ))dydτ

∥

∥

∥

∥

≤

≤ ‖pn(x, 0) − p̂(x, 0)‖ +

∫ t

0

(‖Kn‖ ‖pn(x, τ) − p̂(x, τ)‖ +
∥

∥

∥
Kn − K̂

∥

∥

∥
‖p̂(x, τ‖)dτ (C.7)

‖pn(x, t) − p̂(x, t)‖ ≤ ‖Kn‖
∫ t

0

‖pn(x, τ) − p̂(x, τ‖ dτ + ‖p̂(x, t)‖
∥

∥

∥
Kn − K̂

∥

∥

∥
t+ ‖pn(x, 0) − p̂(x, 0)‖

and noticing that ‖p̂‖ and ‖Kn‖ are bounded by 1

‖pn(x, t) − p̂(x, t)‖ ≤
∫ t

0

‖pn(x, τ) − p̂(x, τ‖ dτ +
∥

∥

∥Kn − K̂
∥

∥

∥ t+ ‖pn(x, 0) − p̂(x, 0)‖

The Gronwall inequality says that whenever z(t) ≥ 0 and satisfies

z(t) ≤ c

∫ t

0

z(τ)dτ + b

then
z(t) ≤ bect

Applying this to the previous estimate with z(t) = ‖pn(x, t) − p̂(x, t)‖ +
∥

∥

∥Kn − K̂
∥

∥

∥ we arrive at
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‖pn(x, t) − p̂(x, t)‖ ≤ ‖pn(x, 0) − p̂(x, 0)‖ et +
∥

∥

∥
Kn − K̂

∥

∥

∥
(et − 1)

the estimate is valid for t < h1 , i.e in the interval when the process is Markov. The same reasoning
can be applied to consequent intervals. For a time partition with ∆ = 1

m the deviation δi between p̂ and
pn at point t = hi will satisfy recurrent relation

δi+1 = δie
1
m +

∥

∥

∥Kn − K̂
∥

∥

∥ (e
1
m

−1)

In analogy with Lemma 2.2 it can be shown that δm = O(
∥

∥

∥Kn − K̂
∥

∥

∥).

So we see that the deviation between our ’piecewise-Markov’ chain and its limiting process, which

should correspond to the true physical situation is O( 1
m ,
∥

∥

∥Kn − K̂
∥

∥

∥). The rate of convergence of the

operator Kn is however hard to estimate analytically, thus the required number of states of the chain
should be understood from the numerical experience.
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