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Abstract. An introduction to some basic concepts central to a modern understanding
of spin motion in storage rings is given.

INTRODUCTION

A proper understanding of spin—orbit resonance structure at high energy in stor-
age rings can only be obtained with a correct definition of the “spin tune”. This in
turn requires establishing a proper coordinate system for “measuring” spin preces-
sion and that, in turn, requires the notion of the “invariant spin field”. This paper
shows how to embark on that approach. More comprehensive treatments can be

found in [1-6].

THE INVARIANT SPIN FIELD

Particle dynamics in storage rings is described in terms of three pairs of
canonical coordinates @ = (qi,p1,q2, P2, Gs,p3) which could, for example, be
(2, ps, Yy, py, At, AE) where x, p,, y, p, describe transverse motion with respect to
the curved periodic orbit and At, AE are the time delay relative to a synchronous
particle and the deviation from the “design” energy. The independent variable is
the distance along the ring s, (“the azimuth”). There is a corresponding classical
Hamiltonian Ao (@;s). In distorted rings @ describes motion w.r.t. the resulting
closed orbit.

We now make the idealisation that the beam can be described in terms of a
smooth continuous density, w(u; s), which is a scalar function of @ and the azimuth
s. It is normalised to unity. In the absence of dissipation and noise (e.g. due
to synchrotron radiation) and ignoring the effect of the tiny Stern—Gerlach forces
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on the orbital motion, w is constant along a phase space trajectory and obeys a
relation of the Liouville type: % + 30y %% + %% = 0 which we write in
terms of a Poisson bracket as dw/ds = {how, w}. If the beam is stable, i.e. if w is
the same from turn to turn, then it is 1-turn periodic in s and we write it as wg
so that we(U; s + C) = wg(u; s), where C' is the ring circumference: wg(1; s) is a
I—turn periodic scalar field on (u,s).

In the absence of spin flip, spin motion for electrons and protons moving in electric
and magnetic fields is described by the T-BMT equation [1] dS/ds = € x § where
S is the rest frame spin expectation value of the particle (“the spin”) and 0 depends
on the electric and magnetic fields, the velocity and the energy so that it depends
on u and s. Having assigned a phase space density to each point in phase space we
now assign a polarisation P(u;s) to each point. P is the average over particles in
an infinitisimal packet of phase space at @ of the normalised spin expectation values
QS/h Since the T-BMT equation is linear in the spin and since the spins at (u, s) all
see the same Q(u s), P(u s) obeys the T-BMT equatlon dP/ds = _‘(_'( );8) X P
also. This can be rewritten as @P/0s = {hom, P} + Q(u s) x P in analogy with
the Liouville equation for w(w;s). It is assumed that P(u s) is differentiable in
all directions in phase space. The polarisation of the whole beam at azimuth s is
ﬁav( ) = [dfu w(; s)ﬁ( i; s). If the spin distribution is stable, i.e. if ]3(12' s) is the
same from turn to turn, then P(u s) not only obeys the T-BMT equatlon but it
is also 1-turn periodic in s and we write it as Pst so that Pst(u s+ C) = Py(u;s).
We denote the unit vector along ﬁst(ﬁ;s) by n(u;s). Thus n(d;s) is a l-turn
periodic vector field on (u,s) obeying the T-BMT equation. We call n(u;s) the
invariant spin field. 1t can be visualised as a field of unit vectors in real space
attached to every u at every s such that each @ and s has its own unique n with
the_property that along particle orbits it obeys the T-BMT equation. For one turn
n(M(u;s);s +C) = (M(u s);s) = R, .(u;s)n(i;s) where M(u s) is the new
phase space vector after one turn starting at « and R, ,(u;s) is the corresponding
spin transfer matrix. On the closed orbit n(u;s) becomes ﬁ(ﬁ, s) which we denote
by 7io(s). Many authors make no clear distinction between n and fig and many
use the symbol n for ng. This causes confusion. Obviously ng(s + C) = ng(s), i.e.
no(s) is the I-turn periodic solution of the T-BMT equation on the closed orbit.
It is given by the real eigenvector of the 1-turn 3 x 3 spin transport matrix on the
closed orbit.

Examples of the invariant spin field at 800 GeV for a HERA proton optic with a
suitable arrangement of Siberian Snakes are shown in figure 1. In these particular
simulations the protons only execute stable linear vertical betatron motion of fixed
amplitude. The particle coordinates are not 1-turn periodic but at fixed azimuth
they lie on a closed elliptical curve at positions depending on their vertical betatron
phases. Likewise a spin at some @ set parallel to n and tracked, is not 1-turn
periodic but on tracking it turn to turn, it lies on the closed curve, parametrised
by the orbital phase, of the field n. Each picture shows the locus, on the surface
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of a sphere, of the tip of the n vector as the betatron phase varies at a point
on the ring where ng is vertical. The parameters are shown in the captions. An
invariant emittance of 4r mm mrad corresponds to “1-¢”. Both curves of figure 1
are invariant when tracked from turn to turn. Clearly, as the amplitude is increased,
the invariant spin field becomes complicated. Near the spin—orbit resonances to be
discussed below, the curves become very convoluted. For motion in one orbital
plane, the loci on the sphere are closed as, for example, in figure 1. For motion
in all three planes, the loci do not close in general although the field 7 is still an
invariant of the 1-turn spin-orbit map. If the spins for an ensemble of particles
distributed uniformly around the phase space ellipses for figure 1, are all set initially
parallel to ng and then tracked, the beam polarisation at that azimuth oscillates.
If they are set parallel to n, the beam polarisation at that azimuth is stationary. In
general the maximum stationary beam polarisation that can be reached is Pim(s) =
||fd®u we(@; s)R(d; s)||. This can be calculated before carrying out simulations of
particle acceleration and can give an impression of whether such a simulation would
be worthwhile. For motion on a vertical betatron ellipse Py, 1s just given by the
average of n over the betatron phase [3]. On the 647 mm mrad ellipse Py, is
much smaller than for the 47 mm mrad ellipse — it pays to devise ways to keep
the spread of 7 small. Note that for @ # 0, the constraint n(u;s + C) = n(u;s)

a: HERA-p / 8 snakes / 4 pi mm mrad / 800 GeV. a: HERA-p /8 snakes / 64 pi mm mrad / 800 GeV
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FIGURE 1. The field 7 in HERA-p calculated with SPRINT on the 47 mm mrad (left) and the
647 mm mrad (right) ellipses at 800 GeV'.

for the invariant spin field is obviously not equivalent to the closure condition
N(u;s) = R, ,(t;s)N(u;s) since in general a spin at « set parallel to n(u; s) is not
a “closed spin solution” but has a new direction after one turn. In general N does
not obey the T-BMT equation everywhere along an orbit since the orbital motion
is not 1-turn periodic. Furthermore, in contrast to the loci in figure 1, the loci of
N(ﬁ; s) are not invariant beyond the first turn. In fact, the calculation of the real
n(u; s) is computationally nontrivial and requires “stroboscopic averaging” using
the code SPRINT [2], or Fourier analysis as in SODOM-II [7].

Although we have concentrated on protons and have introduced n via invari-

ant spin distributions it was first motivated in another way, namely by Derbenev
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and Kondratenko [8,9], as a @ and s dependent semiclassical spin quantisation
axis for calculating radiative spin flip for electrons. That leads to the Derbenev—
Kondratenko-Mane formula for the equilibrium electron polarisation in a storage
ring [9]. That formula needs the vector dn/dd (where d is the fractional electron
energy deviation) at each « at azimuths s inside dipole magnets. So to calculate the
attainable electron polarisation the correct definition of 7 is required. In fact n is
not only central to the understanding of equilibrium spin distributions for noiseless
and dissipationless motion, but it is also an essential starting point for perturbative
calculations of various depolarisation effects [10].

THE AMPLITUDE DEPENDENT SPIN TUNE

Another key quantity in spin dynamics is the “spin tune”. On the closed orbit this
is defined as the number of precessions per turn of an arbitrary spin around rg(s).
We denote it by vg. For particles executing synchrobetatron motion the definition
of spin tune is more subtle. Once the invariant spin field n(u; s) has been set up,
two other unit vectors ny(#; s) and ny(u; s) are attached to all (u, s) such that the
sets (ny,fg,n) form local orthonormal coordinate systems at all points in phase
space at each s. Like 72, 7y and iy are 1-turn periodic in s: n;(u; s + C) = n;(u; s)
for :€{1,2}. But unlike n2 they do not obey the T-BMT equation. If a spin S is
followed along an orbit, the scalar product S-# of S and the local pre-established n
is invariant since both vectors obey the T-BMT precession equation. Thus in the
local pre-established (71,72, 7n) coordinate system the motion of S is a precession
around n. Except for the uninteresting case of running on orbital resonance, the
fields ny(u; s) and n2(w; s) can be chosen so that the rate of precession is constant
and independent of the starting orbital phases [1-6]. The spin tune v is the number
of precessions per turn “measured” in this way. The spin tune depends only on the
orbital amplitudes — a tune depending in some way on phases would hardly be a
useful quantity since it would have to change as the phases advance! On the closed
orbit v reduces to vg as required.

Spin motion is particularly strongly perturbed when the spin precession rate is
near resonance with the orbital tunes: v(.Ji,.Js,JJ3) = ko + k1Q1 + k2Q2 + k3Qs
where the ()’s are the tunes of the orbital modes, the k’s are integers and the J’s
are orbital amplitudes. Note that contrary to common practice we do not use vq
here. Indeed, that is the whole point of having a proper definition of spin tune as
we now illustrate. Figure 2 (left) shows the dependence of the spin tune on orbital
amplitude (= enclosed invariant emittance) for purely vertical betatron motion in
HERA-p at 805 GeV with a suitable arrangement of snakes [3]. On the design
orbit, i.e. at zero amplitude, v is 1/2 as expected. But it deviates from 1/2 as
the amplitude increases and at 277 mm mrad it jumps symmetrically across the
resonant value 2¢),. After increasing further, v then decreases and at an invariant
emittance of 567 mm mrad it jumps back across the resonant value 2¢Q),. So v never
actually hits the resonant value but as one can see P, becomes small around the
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FIGURE 2. The amplitude dependent spin tune v and Py, on phase space ellipses with invari-
ant vertical emittance ¢, as calculated with SPRINT for HERA-p at 805 GeV. Left: vertical tune
Qy = 32.2725, right: @, = 32.2825.

resonant amplitudes owing to the expected opening out of 7. Thus the behaviour of
v and By, are mutually consistent. Figure 2 (right) shows the behaviour of v when
(), 1s increased. The second order resonance can no longer be crossed but 9th order
resonant behaviour occurs instead. These curves illustrate just how complicated
spin motion can be at very high energy. Such phenomena could obviously not
be seen without a properly defined spin tune. For example, a “fake spin tune”
erroneously extracted from the complex eigenvalues of R, , shows no correlation
with dips in Pjy,. That is no surprise since that “tune” depends on the orbital phase
and is therefore unsuitable for describing long term spin—orbit coherence. With the
properly defined v, the changes in orbital tunes needed to avoid resonances can be
properly estimated. Moreover, the size of a resonant jump in v, Av, for a high order
resonance, is a measure of the strength of the resonance and it has been possible
to parametrise polarisation loss, when varying machine parameters dynamically
through such resonances, in terms of a generalised Froissart—Stora formula [5,6,11],
containing Av.

SUMMARY AND CONCLUSION

The invariant spin field and the properly defined spin tune are indispensible for
a clear understanding of spin—orbit resonant behaviour in storage rings. Their
use allows high order resonances to be cleanly identified and their strengths to be
determined. Moreover, misconceptions about depolarisation mechanisms based on
a false understanding of the concept of spin tune can be swept away.
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