

Key R&D Accelerator Issues for a Linac Ring EIC

Georg Hoffstaetter (Cornell University)

Nuclear Physics Requirements

- Energies of up to $E_e \sim 10$ GeV on $E_i \sim 100$ GeV. Higher E_e is possible.
- Luminosity above 10³³cm⁻² sec⁻¹
- Longitudinal polarization of about 90% for both beams in the IR
- Transverse polarization of ions extremely desirable
- Spin-flip of both beams extremely desirable

These could be satisfied by both designs, eRHIC and ELIC

ELIC is focused on p/D/He, eRHIC is focused on Au But both could, with limited effort, focus on both

Advantages of Linac Ring Options

- e-Bunches collide only once, making much larger beam-beam parameters possible
- This allows larger β* and smaller e-beam divergence at the IP
- Reduction of synchrotron radiation load on the detectors
- Spin manipulations are simplified
- Wide range of continuous energy variability
- Feasibility studies were conducted at BNL (based on RHIC) and Jefferson Lab to determine whether the linac-ring option is viable

Conclusions of Linac-Ring Studies

- Luminosities at or greater than 10³³ cm⁻² sec⁻¹ appear attainable with an electron linac-on-proton ring design
- RF power and beam dump considerations require that the electron linac is an Energy Recovering Linac (ERL)
- High intensity polarized electron beams have to be produced, either in a gun or by accumulation
- Electron cooling of the protons is required for luminosity at or above 10³³ cm⁻² sec⁻¹. The e-beam will be provided by an ERL.

Energy Recovery & Linear Coll.

A Possible Apparatus for Electron Clashing-Beam Experiments (*).

M. TIGNER

Laboratory of Nuclear Studies, Cornell University - Ithaca, N. Y.

(ricevuto il 2 Febbraio 1965)

Energy recovery needs continuously fields in the RF structure

- Normal conducting high field cavities get too hot.
- Superconducting cavities used to have too low fields.

ELIC Parameter Table

Parameter	Units	Point Design 1		Point Design 2		Point Design 3	
		e ⁻	Protons	e-	Protons	e-	Protons
Energy	GeV	5	50	5	50	5	50/100
Cooling	_	-	Yes	-	Yes	-	Yes
CR			No		Yes		Yes
Lumi	cm ⁻² sec ⁻¹	1×10^{33}		1×10^{34}		6×10 ³⁴ / 1×10 ³⁵	
N _{bunch}	ppb	1×10 ¹⁰	2.5×10 ¹⁰	2×10¹0	5×10 ⁹	1×10¹0	1×10 ¹⁰
f_c	MHz	150		500		1500	
I _{ave}	Α	0.24	0.6	1.6	0.4	2.5	2.5
σ*	μ m	14	14	6	6	4.5/3.2	4.5/3.2
ϵ_{n}	μ m	10	0.2	10	0.2	10	0.1
β*	cm	20	5	4	1	2/1	1
σ_{z}	cm	0.1	5	0.1	1	0.1	1
ξ _e / ξ _i	-	0.5	0.006	0.1	0.01	0.2	0.01
Δv_{L}	-	-	0.05	-	0.05	-	0.09

LR-eRHIC Parameter Table

Parameter	Units	e	′ p	e/Au	
		e-	Protons	e-	Ions
Energy	GeV	5	250	5	100
Cooling	-	-	At 26GeV	-	always
ν _z	-	-	0.0028	-	0.0026
Lumi	cm ⁻² sec ⁻¹	1 × 10 ³⁴		1 × 10 ³²	
N _{bunch}	ppb	1×10 ¹¹	2×10 ¹¹	1×10 ¹¹	2.5×10 ⁹
f _c	MHz	28		28	
I _{ave}	Α	0.45	0.9	0.45	0.8
ϵ_{n}	μ m	30	0.6	50	0.2
β*	cm	50	26	30	25
σ_{z}	cm	1	20	1	20
ξ _e / ξ _i	-	0.5	0.005	0.5	0.005

At reduced luminosity, parallel running with p-p or Au-Au collisions is possible.

Georg.Hoffstaetter@Cornell.edu

Linac Ring eRHIC Layout

Two accelerating & two decelerating pass through the two main lineas

ELIC / LR-eRHIC Observations

- 1 Many features are similar:
 - E Reliance on electron cooling
 - E Reliance on an Energy Recovery Linac
 - Ł IR design

Comparisons would be simplified by a joined set of assumed parameters

- 1 Some conclusions are different
- Are flat beams (ELIC) or round beams (LR-eRHIC) favorable Comparisons would be simplified by a common choice
- Some technology is different
 - Very high current source with an >1kW FEL (LR-eRHIC)
 - Accumulation of electrons in a 100 turn ring (ELIC)
 - Spin manipulation by an appropriate choice of energies (LR-eRHIC)

CEBAF with Energy Recovery

Install 50 Upgrade CEBAF cryomodules at ~20 MV/m in both linacs

03/16/2004

RHIC with 360 bunches and e-cooling

High Polarization e-gun

- Electrons are produced by photoemission from GaAs
- A Cs layer produces a dipole barrier and negative electron affinity
- Due to the symmetric crystal, degenerate energy levels limit P to 40%.

$$L = 1/2$$

$$L = 3/2$$

$$Lz = -1/2$$

$$-1/2$$

$$1/2$$

$$1/2$$

$$1/2$$

$$3/2$$

- An asymmetry in the crystal can break this degeneracy, P > 80%
 - alternating sections of InGaAs and AlGaAs
 - strain on GaAs by growing a thin layer on GaAs + GaP (GaAsP)

High Current polarized e-gun

The asymmetric crystals based on GaAs have low Quantum Efficiency (QE)

- alternating sections of InGaAs and AlGaAs
 - low QE due to trapped states in potential barriers of sections.
- strain on GaAs by growing a thin layer on GaAs + GaP (GaAsP)
 - low QE due to thin layer
 - → Superlayers: alternating layers of GaAs and GaAsP helps, but also

The Surface Charge Problem

Charge accumulates in the lowered potential at the surface and builds a strong barrier for the emission of electrons.

Remedies:

- 1 Heavily p-doping the boundary section to create enough holes so that the barrier layer of electrons can be depopulated quickly.
- 1 Increase of the surface field

Circulator Ring (currently for ELIC)

Different filling patterns are possible.

Challenge: The beam has to be very stable immediately after injection.

Current operation experience

- The horizontal tune has to be small for good polarization
- Tails of the e-beam on synchro beta resonance leads to proton background
- Core e-tune on synchro beta resonance leads to electron loss

Lasing for the gun at LR-eRHIC

Energy = 17MeV in 3.5m acceleration

FEL : $\lambda = \sim 22 \mu m$ not 840nm as needed

Bunch charge =500pC

Bunch length = \sim 15ps (FWHM)

Bunch rep. = 10.4MHz

Average current = 5.2mA

Georg.Hoffstaetter@Cornell.edu

R&D issues for ELIC and LR-eRHIC

- 1 High intensity polarized and unpolarized electron gun
 - Currently a few mA
 - **L** Up to 450 mA / 16nC
 - Currently a few 100 μA of polarized beam GaAs photo injector at 80% pol.
 - L Up to 450 mA electron current at 80% pol.
 - **Methods to overcome the surface charge limit for 16nC/bunch**
 - **E** Beam emittance control for 16nC/bunch and a large source diameter (14mm)
 - **L** Test and improvement of cathode lifetimes
- Electron Cooling at high energies
 - Currently a frew 100MeV, soon 8.9GeV/c pbar at the FNAL recycler
 - For LR-EIC: Cooling of Au or light ions up to 100GeV, p at 27GeV
 - **New technology: ERL cooling + cooling with bunched e-beam**
 - Limits to the ion emittance with e-cooling (especially vertically) and with all noise processes.
 - **Allowable beam beam parameters for ions, especially with electron cooling**

The Ion Complex of ELIC

Crab Crossing for ELIC

Short bunches make feasible the Crab Crossing

SRF deflectors 1.5 GHz can be used to create a proper bunch tilt

Parasitic collisions are avoided without loss of luminosity

R&D issues for ELIC and LR-eRHIC

- 1 IR design, detector integration, saturation in special magnets, optimization ...
 - **L** Halo development by beam disruption, especially at low electron energies
 - **L** Impact of beam disruption on following IRs
 - **L** lon-beam dynamics with crab cavities
- 1 High current ERLs
 - Currently strong influence of small e-beam oscillations on p-emittance in HERA
 - **Stabilization of the e-beam + influence on the ion beam**
 - **L** Current limits by multi-pass Beam-Breakup instability
 - **E** CW operation of high filed cavities, stabilization, heat loss
 - **L** Influence of HOMs with large frequencis (>2GHz)
 - **E** R/Q and Q agreement with calculations including absorbers

R&D issues for eRHIC – LR option 03/16/2004

- Limits to hadron beam intensity by
 - E electron cloud
 - **L** beam loss heating
 - kink hard head tail instability limits and effectiveness of a feedback system
- FEL for illuminating the cathode
- Electric helical wiggler with variable helicity
- Magnet with pole tips of various sizes
- SRF cavity with 1% tunability

R&D specific to ELIC

- Spin resonances in Figure 8 rings
- Stability of non-vertical polarization in figure 8 rings and in the ERL
- Stable beam in a 100 turn circulator ring
- Crab cavity R&D and crab cavity beam dynamics
- Beam beam resonance enhancement when operating close to the hourglass effect
- Limits to the bunch length, since this limits the beta function

R&D specific to LR-eRHIC

- 1 1kW FEL at 840nm
- 1 Heating of the cathod / problems associated with large spot size (14mm)
- Production of very high polarized e-beam

ERL@CESR being analyzed

