Beam-Beam Experience in HERA

Georg H.Hoffstaetter Cornell University (formerly DESY)

CORNELL

Superconducting HERA-p + HERA-e

03/15/2004				
- Falameters				
Parameter	up to 2000		after the upgrade	
	HERA-e	HERA-p	HERA-e	HERA-p
E(GeV)	27.5	920	27.5	920
I(mA)	50	100	58	140
$N_{ppb}(10^{10})$	3.5	7.3	4.0	10.3
n_{tot}/n_{col}	189/174	180/174	189/174	180/174
$eta_x^\star/eta_y^\star(m)$	0.90/0.60	7.0/0.5	0.63/0.26	2.45/0.18
$\epsilon_x(nm)$	41	$\frac{5000}{\beta\gamma}$	20	$\frac{5000}{\beta\gamma}$
ϵ_y/ϵ_x	10%	1	17%	1
$\sigma_x/\sigma_y(\mu m)$	192/50	189/50	112/30	112/30
$\sigma_z(mm)$	11.2	191	10.3	191
$2\Delta u_x$	0.024	0.0026	0.068	0.0031
$2\Delta u_y$	0.061	0.0007	0.103	0.0009
$\mathcal{L}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	16.9·10 ³⁰		75.7·10 ³⁰	
$\mathcal{L}_{s}(cm^{-2}s^{-1}mA^{-2})$	0.66·10 ³⁰		1.82·10 ³⁰	
Georg.Hoffstaetter@DESY.de				

HERA III

Polarized protons in HERA

- Polarimeters
- Flattening Snakes
- Spin rotators
- At least 4 Siberian Snakes

e-A in HERA

- Deuteron acceleration: with same Linac
- Ion Acceleration requires:
 - a new Linac
 - high energy e-cooling
- Luminosity:

$$L_A = L_p \cdot \frac{1}{A} = 7 \cdot 10^{31} \cdot \frac{1}{A}$$

Early experiences

- At the time of HERAs design (1980) there was no experience with high Energy e/p kollision
- Beam sizes have to be matched to let the proton lifetime be long.
- Beams have to meet head on to about 0.1 sigma to avoid bad electron lifetime.
- Proton and electron tunes have to be controlled to about 0.002.
- Tunes were chosen to avoid resonances Qx=0.293 Qy=0.297
- Crossing angles were avoided.

p lifetime drops with e current

Luminosity for different e currents

Higher p halo production for higher le

Measures agains drop in L_s

- Moving the electron tune away from the beam-beam enhanced resonance $2Q_y+6Q_x=integer$.
- Change phase advance so that the dynamic beta beat of the two collider experiments H1 and Zeus subtracts.
- Reduce proton emittance grows by switching of electron tune controler PLL during collisions.

- The horizontal tune has to be small for good polarization
- Tails of the e-beam on synchro beta resonance leads to proton background
- Core e-tune on synchro beta resonance leads to electron loss

Longitudinal polarization at 3 IRs

Goal: longitudinal polarization at ZEUS (new), H1 (new), and HERMES using the new spin rotators
 Challenges: The experimental solenoid requires longitudinal polarization at ZEUS & H1, otherwise there is no significant buildup.

54%

First polarization at H1 and Zeus

3 Rotator Polarization Studies with Harmonic Bumps May 1, 2003

51% polarization with e/p collisions was possible with Specific luminosities close to the design:

Luminosity at H1, Lsp = 1.7 (su) Luminosity at ZEUS, Lsp = 1.4 (su)

Second e-fills have more polarization

Explanation: The first fill and the refilling procedure have increased the proton emittances and decreased the beam beam force that acts on spins.

Explanation: Runs with more initial lumi (that is at the time of maximum lumi in this run) have a higher beam beam force than runs with lower initial lumi, given that the initial electron current is about the same from run to run.

Simulation of large beam beam forces

03/15/2004

Dipole modes of Gaussian bunches

• Beam beam tune shift for one particle in the $\xi_{ex} = \beta_{ex} \frac{r_e}{2\pi\gamma_e} \frac{N_{ppb}}{\sigma_{px}(\sigma_{px} + \sigma_{py})}$ beam beam field of a Gaussian bunch:

• Shift in the dipole modes oscillation Frequency of a Gaussian bunch:

$$\Delta Q_{ex} = \xi_{ex} \frac{\sigma_{px} (\sigma_{px} + \sigma_{py})}{\Sigma_{px} (\Sigma_{px} + \Sigma_{py})}$$

Assumption: the bunches remain Gaussian

This approximation is justified for a stiff beam hitting a much less stiff beam when the first beam creates a small beam beam kick.

