

Grey College, Durham

12/07/2001

by Georg H. Hoffstaetter

Electron-ion collisions and other options for HERA

Development of the Luminosity for HERA-I

In 2000, design values have been surpassed for:

- specific luminosity
- peak luminosity
- integrated luminosity per year

The HERA Luminosity Upgrade

- Increase of luminosity from $1.5 \cdot 10^{31}$ to $7 \cdot 10^{31}$
- Beam separation by super-conducting magnets in the detectors
- Focusing to ¼ of the old beam cross-section

- Gauss fit
- Gauss for proton emittances 16mum, electron emittances 21nm and 35% coupling
- Gauss for proton emittances 16mum, electron emittances 21nm and 17% coupling

HERA and its Pre-Accelerator Chain

				H1	
	Protons	Electrons			778 m
20 keV	Source	Source	150 keV		
750 keV	RFQ	Linac II	450 MeV	1	HERMES
50 MeV	Linac III	Pia	450 MeV		
8 GeV	DESY III	DESY II	7 GeV		
40 GeV	PETRA	PETRA	12 GeV	HERA-B	HERA
920 GeV	HERA-p	HERA-e	27.5 GeV		
			PE	TRA	ZEUS 6226 m long
					6336 m long

Nominal and Ultimate Parameters

	р	e		р	e
Energy–p/e	920 GeV	27.5 GeV			
Emit. hor/vert	$5/5\pi$ mm mrad	20/3.4 nm		$3.5/3.5\pi$ mm mrad	20/2.7 nm
β^* at IP hor/vert	2.45/0.18 m	0.63/0.26 m		1.7/0.125 m	0.42/0.17 m
Aperture hor/vert	$12/12 \sigma$	$20/20 \sigma$		10/10 σ	$12/12 \sigma$
p per bunch and e-cur.	$1.03 \cdot 10^{11}$	58 mA	L/		
Tune shift hor/vert	0.0016/0.0004	0.034/0.051		0.0017/0.0005	0.047/0.069
Bunch Length	191 mm	10.3 mm			
Luminosity $0.74 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$				$1.3 \cdot 10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	

- The performance goal of HERA is not unrealistic and should not be too hard to achieve.
- A shortfall of beam intensity in the short term can be compensated.

Increasing the Proton Current

HERA III

Polarized protons in HERA

- Polarimeters
- Flattening Snakes
- Spin rotators
- At least 4 Siberian Snakes

- Polarized protons (30MEuro)
- Polarized deuterons
- Electron precooling and cooling
- Ion acceleration (53MEuro)

$$L_A = L_p \cdot \frac{1}{A} = 7 \cdot 10^{31} \cdot \frac{1}{A}$$

- Pulse stretcher for TESLA
- Collisions with TESLA (120ME.) $L_{ep} = 1.6 \cdot 10^{31}$

lons in HERA

Challenges:

- Longer bunch trains needed
- Stronger space charge and IBS
- Strong frequency swing
- Croissing of transition energy needed
- Long ramp cycles $\frac{\Delta f}{f} = 200\% \quad \mathbf{g} > \mathbf{g}_{t} = 6.5 \qquad \mathbf{g} > \mathbf{g}_{t} = 28$ $\frac{\mathsf{DESY III}}{\mathsf{Source}} \quad \mathsf{PETRA} \qquad \mathsf{HERA}$ $\frac{30-45\mathsf{ms}}{\mathsf{Linac III}} \quad \mathsf{8 GeV} \quad 40 \ \mathsf{GeV} \qquad 920 \ \mathsf{GeV}$

Polarized Deuterons

Resonances are 25 times weaker and 25 times rarer for D than for p

Transverse polarization
 could be achieved without
 Siberian Snakes

 Transverse RF dipoles could be used to rotate and stabilize longitudinal polarization

Summary on e – Ion collisions

Deuteron acceleration: Technical solutions seem possible

• Heavy ions:
$$\mathbf{L} \approx \mathbf{L}_p / A$$
 does not seem possible

e – cooling counter balances IBS and leads to the required emittances and therefore

$$\mathbf{L} \approx \mathbf{L}_p \, / \, A$$

e – cooling for HERA and PETRA

- e Ion: balances IBS
- e protons: doubles luminosity
- e polarized protons: reduces emittance to a polarizable size

$$au_{long} \propto rac{A}{Z} \cdot \gamma^4 \cdot \sqrt{\epsilon_p}^2 \cdot rac{1}{Z}$$
 $au_{trans} \propto rac{A}{Z} \cdot \gamma^3 \cdot \sqrt{\epsilon_p}^3 \cdot rac{1}{Z}$

• Cooling in PETRA: $(g \approx 19)$

- $e_{px}: 5 \rightarrow 3.3 \text{ m}n$ $e_{py}: 5 \rightarrow 0.8 \text{ m}n$
- Cooling in HERA: preserve against IBS

$$e_{px}$$
 : 3.8mm
 e_{py} : 0.9mn

