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The transfer functions of spin and orbit motion can be Taylor expanded with respect to their phase space dependence.
An approach for including effects of fringe fields and misalignments on the combined spin—orbit motion in an accelerator
is introduced, where care is taken that the orbit map stays symplectic and the spin transfer matrix stays orthogonal in all
expansion orders. Concerning fringe fields, this article is a continuation of [1] from purely orbital to coupled spin—orbit motion.

I. INTRODUCTION

The automatic computation of derivatives [2] has been
used in accelerator physics since approximately a decade.
To illustrate this method, we consider an algorithm map-
ping a set of numbers Z; onto Z; represented by Z; =
]\Z(EZ) An algorithm which can be evaluated on a com-
puter only requires the evaluation of finitely many el-
ementary operations and elementary functions. Under
conditions which are often satisfied, theorems from the
field of differential algebras (DA) allow the computation
of partial derivatives of such maps M(Z) by manipulation
of power series [3]. This method of automatically com-
puting all partial derivatives of M at some point Z; to
any previously specified order n is often called DA in the
field of accelerator physics. In other words: Given a map
M which is specified by some algorithm on a computer,
then DA allows the automatic computation of the Taylor
expansion of M.

To illustrate how flows of ordinary differential equa-
tions (ODEs) can be Taylor expanded, we now consider
an ODE dZ/dl = f(Z, 5 1) which might depend on a set of
parameters §. If there is a unique solution for initial con-
ditions Z;, then M(Z,4,1) with Z(I) = M(%;,4,1) is called
the flow of the ODE and one can find the solution z/() by
propagating the initial condition Z; from 0 to [/ with some
numerical ODE solver. We typically use a Runge-Kutta
solver of order eight [4]. A program which numerically
solves the given ODE for initial values Z; is itself an algo-
rithm which evaluates the flow by mapping Z; into Z(/).
According to the previous paragraph, evaluating this al-
gorithm with DA leads to a Taylor expansion of the flow
]\Z(E, 5, l) with respect to z and 5. 1f the right hand side
of the ODE does not depend on the independent variable
[ 1e.if fonly depends on z"and (i and is
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origin preserving, so that f(0,0) = 0, then the expo-
nential operator ]\Z(E, g,l) = exp(lf_ng)Z can be evalu-
ated in DA [3]. This method of solving an autonomous
ODE is faster than numerical integration in DA by up to
three orders of magnitude [1,5]. The numerical integra-
tion as well as the fast exponential operator technique
are implemented in the particle optics code COSY IN-
FINITY [6].

In accelerator physics the motion of particles through
a particle optical device is described by a transfer map
]\Z(Z, (f,l). Here [ describes the arc length along the ac-
celerator, Z denotes the phase space coordinates of a par-
ticle, and §is a set of parameters of the particle optical
device. The map M takes initial phase space coordinates
Z; at arc length 0 into 2 = ]\Z(Zi,(i 1) at arc length {. All
information concerning the motion of a particle through
an accelerator is described by the one turn transfer map.
Since the phase space coordinates are usually very small
and the parameters of an accelerator do not vary widely,
it is often justified to examine the Taylor expansion of
the transfer map to some order n with respect to Z and
5. The particles’ trajectories are governed by an equation
of motion in the form of the ODE mentioned above. DA
therefore allows the computation of the nt” order Taylor
expansion ]\Zn(,?, 5: 1), called the Taylor transfer map, of

the corresponding flow M(Z, 5, l).

I1I. SPIN-ORBIT DYNAMICS

The computation of nonlinear Taylor transfer maps of
accelerators by the DA method is well established. Com-
puter codes are available that can readily compute the
Taylor transfer map Mn(i, g, l) of order n corresponding
to an equation of motion [6-9]. When the Jacobian dzf7
of the right hand side is a Hamiltonian matrix, then the
Jacobian 35]\23 of the Taylor transfer map is symplectic
up to order n — 1. For proton storage rings, for the de-



sign of high order spectrographs, and for the correction of
aberrations, the symplectic symmetry i1s very important
and should not be violated during computations.

The effort of simulating not only phase space motion
but also polarization dynamics has increased lately due to
the polarized beam projects at HERA [10] and at RHIC
[11] and at lower energy accelerators. Taylor expan-
sions are only justified for small values of the coordinates.
When a spin vector of unit length is introduced, a prob-
lem occurs since the three spin components are not all
small. One could also represent spins by azimuth and po-
lar angle. But again these do not have to be small. Nev-
ertheless, DA techniques can be applied to polarization
dynamics [12]. One would like to introduce an approach
in which the Taylor expansions are only performed with
respect to the optical phase space coordinates z not with
respect to spin 5.

Such an approach is possible, since the equations of
motion contain the spin only linearly

ds < = . . L2 -
— =Q(2,0,l) x § = §; = A(%,0,1) -5

- (2.1)

with the orthogonal spin transfer matrix A(Z, 5, 1). This
leads to the coupled spin—orbit equation of motion

dz ()

< dAy
dl

dl = Eiklﬂ(k)(z, E,Z)Alj .

(2.2)

The Taylor transfer map corresponding to these equa-
tions of motion can readily be computed with DA [13].
The Taylor expansion A,, to order n of the spin transfer

matrix with respect to z"and 5 is orthogonal up to order
n since A is orthogonal. The orthogonal symmetry pre-
serves the length of the classical spin vector § and should
therefore not be violated.

III. SYMMETRY PRESERVING
APPROXIMATIONS OF FRINGE FIELDS AND
MISALIGNMENTS

It was pointed out above that maps of autonomous
equations of motion can be found much more efficiently
by evaluating an exponential operator than by numerical
integration in DA. In figure ITI the time advantage of the
exponential operator method is illustrated for a dipole
magnet.
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FIG. 1. Time advantage of computing with the exponential
operator technique and with numerical integration for obtain-
ing Taylor maps with expansion orders from 1 to 7

Optical elements are often so long that the map is dom-
inated by their main field region, where the field struc-
ture does not depend on the arc length [, and the equa-
tion of motion becomes autonomous. Nevertheless there
are two mayor cases in which the equation of motion
becomes non-autonomous. In the so called fringe—field
region at the beginning and the end of an element the
fields fall off and obviously depend on /. Also, if an ele-
ment, for example a quadrupole, 1s tilted and the beam
passes through off center, the field structure depends on
the arc length. In accelerator physics the computation
time required for the DA method would be dominated
by computing fringe—field and misalignment effects since
solving non-autonomous equations of motion is slower by
up to three orders of magnitude.

We therefore searched for efficient approximations of
these effects. Due to the importance of the symplectic
symmetry of the map M and the orthogonal structure
of the spin transfer matrix A, the approximation is not
allowed to compromise on these symmetries. For this rea-
son we represent the maps by functions which guarantee
the symplectic and orthogonal symmetry even when we
approximate these functions. To handle this, we repre-
sent the Taylor map M, by its linear part M; and by the
polynomial P,y1(Z,6,l) of order n + 1 which is the Lie
exponent of the nonlinear part of the map. To guarantee
symplecticity of the linear part of the map, it is repre-
sented by a generating function F;, 1 € {1,2,3,4} [14,
p.382ff],

Mo(2,8,1) =p My o (ePnt1 3002y - Fri= My . (3.1)
The index n on the equivalence sign indicates that the
right hand side and the left hand side agree up to order
n. The polynomial of order n on the left hand side is
therefore computed by evaluating the right hand side up



to order n. If now the second order polynomial F; and
the polynomial of order n + 1 in the Lie exponent are
approximated in any way, the Taylor map M, computed
by equation (3.1) does not describe the phase space mo-
tion exactly. However, M,, is still exactly symplectic up
to order n no matter how crude the approximation is.
The orthogonal spin transfer matrix A is represented
by ¥(Z,0,1) = sin(qS/Z)/;" and (2, (f,l) = cos(¢/2) with
the rotation angle ¢ and the rotation axis /3" of the rota-
tion matrix A,
Aij = (K% = 7%)bij + 2vivj — 2K€ijuk - (3.2)
We represent the Taylor expansion A, of the orthogonal
matrix by the Taylor expansions &, and 4, via

— F2)8ij 4 29n,iYn,i — 2Kn€ijkTn b
<+ 7

2

R

Anij =n (s . (3.3)
A,, is now exactly orthogonal up to order n no matter how
crudely k, and ¥, are approximated. The denominator
is necessary since the approximation might violate k2 +

7721 =n 1.

IV. MODES OF APPROXIMATION

The method of symplectic scaling [1,5,15] was im-
plemented to obtain symplectic transfer maps of fringe
fields. It is based on the fact that transfer maps in
geometrical coordinates as they are used in the code
TRANSPORT [16] scale with the geometrical size of the
element and with magnetic and electric rigidity.

Geometric scaling relies on a property of the Lorentz
force equation for particle coordinates z(¢) and momenta

(),

dp  d¥

T =q( x B+ E). (4.1)

dt

If the magnet’s size is scaled by a factor a and the field
strength is scaled by a factor 1/a, then the scaled tra-

jectory X(t) = az(t/a) and ﬁ(t) = p(t/a) solves the
Lorentz equation
dP  dX 1= - 1

The T-BMT equation [17,18] of spin motion is also
linear in the fields,

(4.2)

d_‘ — —
2L [ (1+Gy)BL+(1+G)B

4.
dt my (43)

]. (4.4)

Here G = (g — 2)/2 is the gyromagnetic anomaly and

B, and B” are the magnetlc field components perpen-
dicular and parallel to p. Therefore, if 5(t) describes the

spin motion on the trajectory Z(t), then the spin motion

S(t) = 5(t/a) satisfies the T-BMT equation with scaled
fields

1 Fx 2E(X/a) 5
Yt 49

Geometric scaling can therefore be used simultaneously
for phase space and spin motion in coupled electric and
magnetic fields.

Rigidity scaling relies on the fact that the Lorentz
equation vdp/dl = q¥ x B, when written with the path
length [, leads to the same trajectory through a magnet
whenever the magnet rigidity % is not altered. In elec-

tric fields vdp/dl = qﬁ leads to equivalent trajectories as
long as %% is not altered. In the T-BMT equation no such
scaling exists in a general field arrangement. Including
spin motion, one can therefore only use geometric scaling
to scale a once computed spin—orbit transport map to an
optical element of a different size. It can not be scaled
to other field strength or a different energy.

However, when spin—orbit transfer maps for only a
small range of energies or field strength are needed, which
is for example the case when analyzing spin—orbit motion
in the vicinity of a single resonance [19], then we apply
a different and much simpler method for approximating
a transfer map. We once compute the transfer map at a
given energy and a given intermediate field strength By
and choose the relative change dp = (B—Bg)/ By as a pa-
rameter of the map. DA then yields a Taylor expansion
of the transfer map and also the Taylor expansion of the
symplectic and orthogonal representation with respect to
this parameter. We store these Taylor expansions of Fj,
Puot1, ¥, and & to a file. When the map is later re-
quired for a different field strength, we simply insert the
appropriate dg to obtain an symplectic and orthogonal
approximation by the previously described method.

Misalignments are usually small and we therefore sim-
ilarly approximate the dependence of F;, P,41, ¥, and
% on the misalignments by Taylor expansions which we
compute with DA. These Taylor expansions are stored
to a file and are used to approximate the transfer map
for any specific misalignment needed. In our applications
[19] the Taylor maps of spin—orbit motion have been com-
puted with COSY INFINITY which is written in the foxy
language [4]. The symplectic and orthogonal approxima-
tions have also been programmed in the foxy language.
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