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The problem of stability of weakly nonlinear dynamics originally arose in the perturbative analysis
of planetary motion. Nowadays it is of great importance for the dynamics in storage rings. We use
a method which we call pseudo invariant estimation (PIE). This method is influenced by the basic
concepts of Ljapunov stability theory and Nekhoroshev’s work on exponential estimatesl7 which
was introduced in a slightly different framework to the accelerator field by Warnock2. Tn our case
the pseudo invariants needed for this approach are computed via nonlinear perturbative normal
form theory. Various refinements of the method are analyzed, and several examples yielding
practically relevant results are given. Furthermore, quantities can be computed that lead to novel
criteria for accelerator design and optimization.
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1 INTRODUCTION

The methods by which long term stability in storage rings has traditionally been
analyzed can roughly be divided into two groups; some methods use element—by—
element tracking and others use the one turn map of the ring. The methods which
use the one turn map can also be divided into two groups: some of these meth-
ods 1iterate the one turn map several times to obtain effects of many turns, other
methods use the one turn map only once without iteration to directly extract the
information relevant to the stability question. This situation can be summarized
as follows:

* Supported in part by the National Science Foundation, Grant Number PHY 89-13815, and
the Alfred P. Sloan Foundation
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1. Element—by—element One turn map M
tracking 2. M tracking | 3. One application of M

In principle the one turn transfer map, relating initial phase-space coordinates
Z; to final coordinates after one turn by Zy = M(Z;) contains all information about
the long term motion. This transfer map can also depend on n, parameters d;,

— -

i € {1,...,np} of the physical system involved, leaving Z; = M(%;,5). Sometimes
an appropriate choice of B-spline functions and Fourier series has been applied? to
approximate a transfer map; more commonly the Taylor expansion of the function
is used. In a differential algebra framework the Taylor map can be obtained to
arbitrary order*. There are advantages and disadvantages associated with each of
these approaches, which roughly can be summarized as follows:

1. + Easy to implement. Good for cross checking with other methods.

-Very time consuming if a realistic number of turns should be tracked. Approx-
imations have to be made to speed up programs. Stability of motion can only
be checked for a limited number of particles. Computational inaccuracies can
build up to an intolerable amount.

2. +The transfer maps of individual particle optical elements can be taken into
account accurately. Lumping the influence of many optical elements into a
single map can save time substantially.

-Time considerations restrict calculations to about order twelve®. Applying the
one turn map the required number of turns is very time consuming. The sta-
bility of only a limited number of phase space points can be analyzed. Compu-
tational errors can build up to such an extent that results are not trustworthy.

3. +No build up of computational error. Whole regions in phase space can be
analyzed in their entirety. Computation is not iterative and can thus be easily
parallelized.

- Nontrivial computational environment for map computation and manipulation
1s needed. Predictions of stability times tend to be pessimistic.

The method studied here, which we call pseudo invariant estimation (PTE)? for
reasons soon to become obvious, is of the third type. We will introduce the PIE
method by using pseudo invariants of nonlinear normal form theory. This method
comes close to giving guaranteed lower bounds on the survival time. The method
was implemented in and the examples of this paper were computed with COSY
INFINITY®. In the applications which will be presented, the specific dynamical
system is a particle moving in an accelerator or storage ring. Partial derivatives,
and therefore the Taylor expansions of the transfer maps, can be computed by the
so—called DA method”.

Normal form theory will provide functions f which are invariants of the map M up
to order n+ 1 and thus fo]\Z =n+1 f. For the weakly nonlinear dynamics exhibited
by particle motion close to the central orbit of an accelerator, these functions are
approximate invariants, or pseudo invariants, of the transfer map.
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For the PIE method, a suitable pseudo invariant test function f will be found
which is chosen such that f(Z) is a measure of the distance between a particle with
coordinates z and the central orbit. At this orbit, f(z) = 0 and A = {Z]f(?) < ¢}
is a volume in phase space which contains the origin. In one turn around the ring
the so described distance from the origin changes by df(Z) = f(]\Z(Z)) - f(&).

If the maximum 6 of d; on the phase space volume A can be found, it can be
said with certainty how far a particle can move away from the closed orbit in one
turn. It can also be stated rigorously that particles in the phase space volume O
with O = {Z]f(?) < e — Nd} will not leave the volume A for N applications of the
map. Analyzing the prospects of this approach is the main subject of this paper.

A section about normal form theory provides an overview over our choice of
obtaining pseudo invariants. The importance of resonances and their influence on
estimates of the survival time is discussed. Two refinements will be introduced
which increase the obtainable bounds on long term stability. Furthermore, the
theory is extended to maps which depend on unknown parameters.

1.1 History

The stability of planetary motion has been an important question for over a cen-
tury. After early attempts by Laplace and Lagrange to understand the stability of
the solar system, Poincaré®, Birkhoff®, and Siegel!®!! among others, investigated
the problem in detail. Usually the problem of planetary motion was analyzed by
considering it as a perturbation of a known and solvable Hamiltonian system. Inno-
vative studies of this problem were made by Kolmogorov!2 Arnol’d!3, and Moser!4.
Nekhoroshev formulated a theory which estimates the time of stability of a system
with a perturbation strength proportional to ¢ by an exponential estimate!. He
proves the following theorem: (citation from p. 4) “Suppose that Hy satisfies cer-
tain steepness conditions, .... Then there are positive constants a, b, and ¢y with
the following property. Let 0 < € < €. Then for every solution I(t), ¢(t) of the
system with the Hamiltonian Ho(I) 4+ ¢H (I, ¢), |I(t) — I(0)| < ® for all t € [0, T,
where T' = %exp(}a).”

The proof involves succesive canonical transformations (7, ¢) — (J, ) in order to
minimize the dependence of the Hamiltonian on v as much as possible, thus bringing
the new coordinates J as close to invariants of motion as possible, a technique
referred to as the creation of “almost integrals”P- 21, The exponential estimate is
established by analyzing these canonical transformations, which are performed in
a perturbative way with respect to €, and by finding the optimum order to which a
transformation should be performed.

For certain problems concerned with general Hamiltonians, celestial mechanics,
and also single particle motion in accelerators'®, the Nekhoroshev method of expo-
nential estimates has been used by finding values a and b.

The idea of the proof of the Nekhoroshev estimate has prompted an analysis of
stability of the nonlinear motion in particle accelerators by analyzing it in normal
form space, a space in which the Hamiltonian has little dependence on i to start
with. In this space the change of the “almost integrals” or pseudo invariants is not
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estimated by bounding the series of canonical transformations, but by performing
the canonical transformations on the computer and then evaluating their effect on
the pseudo invariants. This possibility was first mentioned and programmed by R.
L. Warnock for maps obtained by interpolating individual tracking points.

Later it was realized that Hamiltonians are not needed when the one—turn map
or Poincaré map of a storage ring is known'®7. One only has to find the maximum
change ¢ of the nearly invariant function during one application of the transfer
map of the accelerator. This maximum change over the relevant regions of phase
space bounds the change of the pseudo invariant for the entire particle motion
in this region. Several other improvements on the method of pseudo invariants
were made; they include using maps which describe many turns in the accelerator
and different means of finding canonical transformations to the pseudo invariant
coordinates!819,2,

In the following our approach to the PIE method will be described in detail and
applied to several examples, which will demonstrate the applicability and useful-
ness of the method??. This approach can be made completely rigorous by novel
arithmetic allowing automatic result verification®22,

2 PSEUDO INVARIANT ESTIMATION (PIE)

As mentioned in the introduction, the PIE method analyzes the one—turn map
directly without tracking through it several times, which in particular avoids com-
putational inaccuracies. Furthermore this method does not only test single particles
but provides information about all particles in a given region of phase space.

We assume that there is a closed orbit in the ring. Particles with phase space
coordinates sufficiently near the closed orbit will be able to go around the ring
once without collisions with the wall, while particles that are too far away from the
closed orbit will be lost during one revolution. We therefore divide the phase space
P into the allowed region .4 and the forbidden region P\ A.

The question we want to answer is: How many turns does a particle which
originates in a given region of phase space O circle the ring without leaving the
accelerator. We therefore look for the number

Nimax = max{n|M"™(0) C A} (1)

where ]\Z”((’)) = {]\Z”(ZNZE 0}, and ]\Z”(Z) stands for n applications of M. The
different regions are shown in Fig. 1(a). With the following method we will find a
strict lower bound N for Noax.

If we find a real-valued test function f that does not have common values in O
and in P\.A, then successive action of the map must bridge a gap Af as shown
in Fig. 1(b) in order to map a Z € O into P\A. Particles start to bridge this gap
by entering the phase-space region §; = ]\Zf((’))\(’) The gap is bridged when a
particle has reached the region S = J\Z(.A)\.A If S; or 8¢ are empty, particles
in O will never leave A. If they are not empty, the gap goes from f; to fy with
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FIGURE 1: The left figure (a) shows the initial region O and the allowed region A of phase space
P with O C A C P. In the right figure (b) the gap A f that has to be bridged is shown.

fi = max{f(Z)|Z € S;} and fr = min{f(%)|Z € S;}. The function
dy = F(M) — (2)

describes how much f deviates from being an invariant of the map ]\Z; d; is called
deviation function. When a phase space point 2" is mapped through M once, the
gap Af is diminished by d¢ (7). If we assume f; > f;, the step from f; towards f;
is always smaller or equal to

6 = max{d; (97 € (A\0)} . (3)
A particle that starts in O therefore survives at least N turns, where
fr —f;
N:Int[fé ] < Nmax - (4)

We are thus left with four problems:

1. finding a suitable test function f such that N becomes favorable,
2. finding f;, the maximum of f on &;,
3. finding fr, the minimum of f on S,

4. finding J, the maximum of the deviation function in the appropriate region.

To make the desired estimate as large as possible, we should find a function f
which increases between the allowed and the forbidden region and should, at the
same time, be close to an invariant of the one—turn map to make § as small as
possible.

The remaining three problems are concerned with finding maxima. These max-
ima can be found in a mathematically rigorous way in principle by using interval
arithmetic; in practice, the computational effort turns out to be so horrendous that
a totally new method based on the combination of DA and interval approaches
named RDA was necessary to solve the problem?23,
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Firstly one has to choose a suitable pseudo invariant f, and secondly we are
faced with the problem of describing the phase—space regions @ and A in a sensible
way. We will use nonlinear normal form theory on Taylor maps to solve both
problems?420,

3 NORMAL FORM TRANSFORMATIONS AND PSEUDO INVARIANTS

In the context of the PIE method we are only interested in the special case of
stable linear motion, which means that all linear eigenvalues have modulus one.
The phases of the linear eigenvalues Ay;_; are the tunes v; of the system, where j
refers to the different degrees of freedom.

If a map has tunes which are not in resonance to any order m < n, then one
can find a transformation B which performs a nonlinear coordinate transformation
such that the map in the new coordinates is a rotation up to order n. The radii are
then invariants of motion up to order n. The procedure with which B is computed
requires devision by resonance denominators

d
Dl(l;:) = exp(i27y;) — exp(i2w Z kiv;) (5)

i=1

for a vector k of integers with Z?il |ki] < n. At tune resonances, the resonance
denominators below order n + 1 vanish and the normal form transformation can
not be performed. However, it is interesting to note that there is no problem with
resonances when the map M is the Taylor map of a system which has d exact
invariants of motion?°,

To illustrate the normal form transformation, the motion in phase space for 2000
turns in a typical accelerator is shown in Fig. 2(a). For each turn, the horizontal
position z as well as its canonical conjugate momentum a is displayed. The finite
width and the irregular structure of the band is a result of nonlinear effects and of
coupling to the other degree of freedom, the motion in vertical direction. Fig. 2(b)
shows the same motion after transformation by the normal form map.

4 EXAMPLES OF THE USE OF THE METHOD

The six following systems will be used to test the normal form invariants and the
PIE method:

1. The physical pendulum of length one meter. We chose an emittance of ¢ = 10, 000
mm mrad and a tune of v = 0.379.

2. The Henon map for one degree of freedom for a kick strength of 1.1 and an
emittance of 10,000mm mrad for a tune of v = 0.379.
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FIGURE 2: Phase diagram for 2000 turns in an accelerator for four initial conditions. The left
picture shows the motion displayed in standard particle optical coordinates x and a, and the right
picture shows the same motion in normal form coordinates.

3. A Pendulum with an elastic string with a length of one meter, tunes v, = 0.17,
vy = 0.91, and emittances of 3000rmm mrad. The motion of this system is com-
pletely stable for small enough energies, since the energy is a Lyapunov function.

4. As an example for a storage ring, we used the ring at IUCF at Indiana University.
The device is usually used for emittances of 0.37 mm mrad, which are made so
small by electron cooling. Since we want to analyze operation without cooling,
we assumed ¢, = 3.77mm mrad and ¢, = 2.27mm mrad. The linear tunes are
chosen to be v, = 0.7727 and v, = 0.6650.

5. A second example storage ring is the PSR II, which was designed as a possible
upgrade of PSR at LAMPF in Los Alamos. It was analyzed for emittances of
407mm mrad and linear tunes v; = 0.2313 and v, = 0.2705.

6. A custom made ring for demonstration purposes called the DEMO ring. This

is a simple example ring for medium energy nuclear physics. It was analyzed
for emittances of ¢, = 57 mm mrad ¢, = 77 mm mrad The linear tunes are

vy = 0.37 and vy, = 0.67.

5 PARAMETERIZING REGIONS AND CHOOSING THE PSEUDO INVARI-
ANT

Describing the initial O region and the allowed region A is essential to finding S;
and Sy and therefore to finding a function that changes substantially between those
two regions. Accelerators usually have mid—plane symmetry, which implies that the
linear map does not couple the z—p, and y—p, component of motion. The projection
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of the linear motion of beam particles in the x—p,; subspace lies on invariant ellipses.
The area of these ellipses are called the z and y emittances of the beam. Since the
product of two ellipses is topologically a torus, the linear motion is said to lie on an
invariant torus. The allowed region for a beam in a storage ring is typically given
by the acceptance in the z-p; and the y—p, phase space.

The rotations in nonlinear normal form theory correspond to rotations on the
invariant ellipses. It is therefore natural that in a nonlinear theory the allowed
region or nonlinear acceptance A should be given by a nonlinear invariant of the
map, which can be computed by normal form theory. Normal form theory gives
one invariant circle for each of the d degrees of freedom.

The pictures (a) and (b) in Fig. 3 describe the nonlinear invariants which spec-
ify the boundary of the allowed region. Since the linear contribution in the map
dominates, they are close to invariant ellipses of linear motion.

There is a multitude of invariant surfaces which can be constructed from the d
nonlinear invariants 7;. Two obvious choices are

4 = @y ey, ()
Ao = {ﬂmax{iﬁ,ie{l,...,d}}gl}. (7

(3

The corresponding beam shape is displayed in Fig. 3(c) by drawing the largest
allowed z and y coordinates. Elliptic beam shapes correspond to A,, and rectan-
gular beam shapes correspond to .Ag. To keep the notation simple, we describe the
initial region O in a similar way with nonlinear emittances ae;m, where o < 1. The
boundaries are most easily described when a norm is introduced which measures
the distance from the closed orbit according to the invariant torus on which the
particle moves in n** order approximation. If we want to represent the beam by
a round shape, we choose ||Z]|,, while if we want to describe it by a rectangle, we
choose ||Z]|a, where

a

il =3 5 e = max(E 2 e g1,y 0

i=1

K3 K3

A point in normal form space is characterized by the radii I; and phases ¢;. The
surface in normal form space, on which all points have the radii I;, 1s a pseudo
invariant torus. Nonlinear normal form theory leads to the transformation B from
phase space to normal form space. The inverse transformation can be computed
up to order n and is called the order n inverse B=1n. The relevant phase space
regions @ and A can be constructed from tori in normal form space. The order n
inverse transforms these tori in normal form space to areas in phase space.

22

T(@) = {B~1"(2)] ( 2t ) = ﬁ( ;Olf(((f)) ) (b €[0,27],Vie {1,....d}} .
9
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With this notation we can introduce regions in phase space which can describe the
initial region O and the allowed region 4. Let

IA
M=
|~3

F6q) = [T E<Y L <q), (10)
i=1 "
Fal€.Q) = {AFeT@.£< T < Vie(l, ..}, (11)
then the regions of interest are given by
O, =F;(0,a), A, =F,(0,1), se{o,0}. (12)

If B~1™ were an exact inverse of B, then F5(0,1) would be exactly equal to the
regions of equation (6) and (7), which can be described by ||Z]|; < 1. Since B~1" is
an order n inverse of B, F5(0,¢) is approximately the same as ||Z]|; < (. Therefore,
the pseudo invariant ||Z]|s; fluctuates very little on the surfaces of O; and A; as
specified in equation (12). Phase space points in the regions of interest are easily
parameterized by ¢; and ;.

It is worthwhile to note that the first order inverse B~1! is the exact inverse
of the first order of B, and thus B~ transforms circles into invariant ellipses of
linear motion. Therefore, when n = 1 is chosen in equation (9), the conventional
linear definition of the acceptance is obtained. Since the polynomial map B-in
i1s continuous, it maps closed regions of normal form space into closed regions of
phase space. Therefore, this definition of the acceptance is intuitive; particles can
never leave the region of F;(0, () without crossing the surface F, (¢, ().

To make the desired estimate as large as possible, we should find a function f
which tends to increase when ||Z]|s increases and should at the same time be close
to an invariant to make J in equation (3) as small as possible. The appropriate
choice is fo(Z) = ||Z]]o and fa(Z) = ||Z]|a.

There are three reasons which suggest the use of f,. First, for d degrees of
freedom, evaluating fg takes d times longer than evaluating f,, since d pseudo
invariants have to be evaluated, whereas for f,, the polynomials I;/¢; given by
normal form theory can be summed before evaluation. Second, since the beam-
line is generally circular, it seems more appropriate to choose f,, which leads to
elliptic rather than rectangular beam shapes. In the following the quantities with
the circular subscript will be used and the subscript will be dropped.

6 ANALYSIS OF PSEUDO INVARIANTS

The PIE method relies on the choice of the function f, which should change little
under application of the map M. Tn order to show how little the order n+ 1 pseudo
invariants of the normal form transformation change under application of ]\Z, the
six systems described in section 4 were analyzed. In Fig. 4 the deviation function
df = f(J\Z) — f of the pseudo invariant f is plotted. The coordinate axes in the
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FIGURE 3: The motion on nonlinear invariants in the phase space section z—p, is depicted in the
left figure (a) and y—py in the middle figure (b). The allowed and the forbidden region and the
definition of ||Z]| is depicted in the right figure (c).

upper left picture are polar coordinates (1/€, ¢) for the Henon map. The other three
examples are systems for four dimensional phase space. Therefore, the invariant
defect is depicted on a torus 7 (€). The coordinates in the figures are the angles
¢1 and ¢ which parameterize this surface. When comparing the accuracy of the
coupled pendulum to the other systems, 1t should be noted that the emittance of
the pendulum is about 1000 times larger. The accuracy of the pendulums pseudo
invariant is only possible because the physical pendulum has an exact invariant.

Up to tenth order, the resonance denominators D (E) for the two systems with
one degree of freedom are bounded below in magnitude by 0.1. For two degrees
of freedom the resonance denominators up to order ten have absolute values which
exceed 0.001 and are sufficiently large to avoid divisions by dangerously small num-
bers. However, the normal form transformation requires successive divisions by
these denominators, and after multiple divisions, very big and inaccurate coeffi-
cients can occur in the normal form transformation. Any computational errors
therefore may have a negative influence on the quality of the pseudo invariant, but
they have no influence on the rigor of the long term estimate; the estimate only
becomes more pessimistic.

7 INFLUENCE OF RESONANCES

In general a normal form transformation is only possible if no resonance condition
up to order n is satisfied. We therefore have to face the fact that resonances
up to evaluation order have to be avoided in order to perform the normal form
transformations needed for the PIE method.

If the tunes are close to a resonance condition, small denominators Dl(E) occur
in the normal form calculation, the transformation becomes inaccurate and the
quality of the pseudo invariant decreases. This decrease is not only a computational
problem but it has physical reasons, since at resonances good pseudo invariants do

not exist.
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FIGURE 4: From left to right and top to bottom the invariant defect d is shown for: Henon map,
Coupled pendulum, TUCF ring, and PSR 1I ring. The range of the depicted functions is [—2.55 -
1071%,7.36.1071%], [-6.84-1079,6.00-10~7], [-1.76-107?,1.65-1077], and [~ 7.22107?,6.95-1077].
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To analyze this fact, we computed the effect of the tune on the pseudo invariants
and thus on the long term estimates of the PIE method. For the Pendulum and
the Henon map, we scanned the tune in 200 steps from 0 to 1. The variation of the
deviation function is recorded in Fig. 5(a), where a logarithmic scale was used. The
rapidly increased deviation from invariance and thus the rapidly decreased survival
times close to tune resonances can be clearly seen for every single resonance up to
order eight, the evaluation order of the normal form transformation. This figure
suggests the well known fact that it is advisable to keep the tune of storage rings
away from resonances.

For the pendulum, normal form theory can be used to approximate the exact
invariant given by the Hamiltonian. This works even when the resonance denomi-
nators vanish?0.

Fig. 6 shows a corresponding picture for the deviation function of the PSR II
ring and the DEMO ring. Calculations were performed to order 8. The tunes vy
and v, were scanned from 0 to 1 in 100 x 100 steps. In order to obtain comparable
systems the maps were computed and then composed with a linear map to obtain a
symplectic map with the desired tunes. Again the figure 1s shown with a logarithmic
scale. The boundary of the tune space has zero tune and is therefore excluded.

Susceptibility to resonances up to order five can be observed in the case of the
DEMO ring; however, it is also apparent that not all resonances are observed,
which 1s a consequence of the specific design features of the ring. The figures
suggest that such plots of survival time versus tune of this or a similar kind can
be helpful for machine analysis and optimization in the future, and it appears that
more experience with this technique may lead to rather detailed predictions.

8 SYMPLECTIC REPRESENTATIONS

The fact that the normal form method yields invariants hinges critically on the
symplecticity of the map. This fact and also the observation that symplecticity
guarantees area conservation in phase space naturally suggests to impose symplec-
ticity on transfer maps describing accelerators. This can be done in a variety of
ways, the simplest of which is probably an increase in the computation order to
a level where the error in symplecticity is substantially reduced. Another way is
based on computing an order n generating function for the transfer map2%26:27,

While for purposes of tracking based on the repeated application of maps, sym-
plectification usually improves the long-term qualitative accuracy, for the case of
the PIE method which relies entirely on applying the map only once, any symplec-
tification of the map does not appear advantageous ad hoc. To study this issue,
both the method of attaining symplecticity by higher evaluation orders as well as
that based on generating functions were studied for the six sample problems under
consideration.

In all cases symplectification does not offer any advantages over the direct use of
the transfer map, and in most cases, the invariant defect d; of the pseudo invari-
ants is actually larger after symplectification. Tab. 1 shows the invariance defect
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FIGURE 5: Variation of the maximum § of the deviation function d; with tune for a pendulum
and the Henon map. The scale is logarithmic and inverted. Staying away from resonances yields

long survival time predictions with PIE.
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[0,1] x [0, 1]. The range of dy is from 2.2-10710 t0 1.9-1077 (left) and from 1.3-107° to 1.9-10~*

logarithmic and inverted. The whole horizontal and vertical tune space is covered: vy X vy €
(right).

FIGURE 6: Variation of the maximum ¢ of the deviation function d; with tune for the 8" order
map of the PSR II (two pictures left) and of the DEMO ring (two pictures right). The scale is
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of the coupled pendulum for the 9** order polynomial f for symplectification by
evaluating the map to various orders. The quality of the invariants does not change
substantially since the first 9 orders cancel with and without this kind of symplec-
tification.

TABLE 1: Maximum of the deviation function after symplectifying the map by adding higher
orders.

Order Coup. Pend. (10713) TUCF (10=°) PSRII (107°) Demo (10~°)

8 5.858924 5.746786 1.597229 8.808577
9 9.721390 5.717355 1.599737 9.759362
10 9.677259 5.721978 1.599741 9.735593
11 9.744150 5.722880 1.599745 9.137200
12 9.745815 5.722909 1.599745 9.867690

It may be expected that symplectification may have an advantage once the in-
variant defect i1s studied for repeated application of the map. However, for turn
numbers up to 100 studied here, such an effect is not observed, and again the
non-symplectified transfer map yields a more favorable invariant defect as shown
in Tab. 2.

TABLE 2: The maximum of the deviation function for different numbers of turns N when the
map is represented by a generating function F; or by the Taylor map M.

C. Pen. (107'%)  TUCF (10='!)  PSRII (10-!°)  Demo (10~13)

— — — —

N F1 M F1 M F1 M Fl M
10 293 276 881 823 126 115 122581 129261
20 534 508 969 988 232 223 97341 87990

30 723 705 1191 1496 321 310 77279 67182
40 866 840 1091 1396 379 373 21238 36807
50 1002 949 1497 1219 462 449 43855 61792

60 1232 1214 1178 1334 571 561 128 125
70 1476 1444 1427 1028 674 666 162 153
80 1656 1637 1187 934 761 754 172 177
90 1803 1778 859 1134 820 814 194 186

100 1941 1890 1007 721 856 853 209 210
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9 SIMPLIFICATIONS

In section 4 four problems were mentioned. The first problem, finding a suitable
pseudo invariant f, has been discussed. The remaining three problems are con-
nected to finding the minimum of f on S¢, the maximum of f on S;, and the
maximum of d; on A\O. The regions & = M(O)\O and S; = M(A)\A cannot
be represented as clearly as the regions @ and 4. This does not lead to a problem
when phase space regions are used which contain S; and S¢. When the maximum
do of the deviation function on O and the maximum ¢ on A\O is known, it is
sufficient to choose

Si:f(a,a—}—(fo), Sf:}"(l,1+6) (13)

with the phase space domain F (¢, () defined in equation (10).

z
AF(.’L‘) AD(.’L‘) Af/
1r . 1 1+50-10713
[}
i \
. i L 0.5-10=° --'IIII||||HH
[} 1
\ \ 11-43-1071
ol 11z o o 1{>ac
1 1 > >

FIGURE 7: The left figure (a) depicts F(z) and the middle figure (b) shows D(z) in the allowed
region. The variation of the pseudo invariant f on the phase space region F(z, z) is shown in the
right figure (c).

The functions f and d; have some properties which allow sensible simplifications.
Those properties will be demonstrated for the proposed PSR, I1. Here the evaluation
order is 6 and the acceptances are ¢; = 100mm mrad. As shown in Fig. 7(a), the
function F(z) = max{f(Z)|F(z,z)} is typically growing monotonously with z so
that the maximum of f(Z) on &; occurs on the surface F(a + do, @ + do), which
is approximately described by [|Z]| = a + do; and the minimum of f(Z) on &;
occurs on the surface F(1,1) of A, where ||Z]| is approximately 1. The function
D(xz) = max{d;(Z)|F(x,x)} is also typically growing monotonously as shown in
Fig. 7(b). Therefore, the maximum ¢ typically occurs close to the border of the
allowed region, where ||Z]| is approximately 1. Furthermore, Fig. 7(c) shows that
the variation of f(Z) on S; and Sy is much smaller than Af = fr — f; which therefore
is close to 1 — a. We obtain the estimate

1—-a

N= max{d; (%) F(1,1)} ’ (14)
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which involves finding only one maximum on a subspace with nearly constant ||z]|.
The Fig. 4 in section (6) shows the range of the functions d; on the border of the
allowed region A for all the example systems. The functions d;y do not have sharp
maxima so that sampling with 20 steps in each direction gives a good approximation
of the maximum value. Tab. 3 displays N for different systems and for different
evaluation orders for @ = 1/2. Due to energy conservation, the pendulum and the
coupled pendulums are stable for all times. The quality of our estimate is shown
by the large numbers N which we obtain for those cases, in spite of the fact that
the emittances are large and nonlinearities are quite important.

TABLE 3: Minimum number of turns required to move from the initial region to the forbidden
region. The initial emittance was chosen to be half the acceptance. The maps were evaluated in
order eight, whereas the pseudo invariants were computed to the indicated order. Scanning was
performed with 20% points for k € {2,4} relevant dimensions.

Order Pendulum  Henon Map Coupled Pendulums

2 434 6 43
3 434 41 915
4 1,039,578 1,109 85,907
5 1,039,578 7,149 2,577,221
6 455,537,706 27,556 61,418,923
7 455,537,706 176,827 1,535,527,685
8 92,114,163,553 1,474,124 29,750,319,370
9 92,114,163,553 9,133,037 357,584,630,384
Order IUCF PSR II Demo
2 9 806 6
3 321 831 129
4 1,288 252,893 1,220
5 19,995 235,650 25,657
6 370,294 6,977,545 84,087
7 3,265,268 8,255,710 1,320,751
8 11,277,884 65,472,668 4,554,994
9 65,734,218 76,092,850 55,548,695

10  REFINEMENTS AND EXAMPLES

Two methods will be introduced that increase the quality of the bounds on long
term stability. One is connected to separating phase space in appropriate regions,
the other involves multi—turn maps. Furthermore, unknown parameters of the
system will be included in the estimates. The results for the six example maps are
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accumulated in Tab. 5. In this table the guaranteed number of turns is given for
the assumed acceptance em, which is specified in section (4) for each system, and
an initial beam with emittance er/2. For the coupled pendulum and for the TUCF
ring, the emittance for which a beam can be guaranteed to survive 108 turns is also
shown.

10.1 Dividing Phase Space

Because § usually increases rapidly with increasing ||Z]|, it is appropriate to sepa-
rate the regions between ||Z]| = a and ||Z]| = 1 by surfaces F (o, o;), i € {0, ..., k},
where ag = a and a; = 1. With u; = max{f(?)|Z € F(a;,a;)} and [; =
min{f(Z)|Z € F(ai, a;)} alower bound on the number of turns can then be obtained
from

E
N = ZZ:; li —(;i—l with ¢; = max{d;(2)|F (e, ai)} . (15)

The turn numbers obtained from this technique and the transportable emittances
are given in Tab. 5 in the third line. In our experience this separation of phase space
can improve the estimate by up to an order of magnitude.

The potential of this approach can be seen when using

D) = max{d; (2)|/(2) = =} . (16)

We estimate the change that occurs in by & map applications as z(n+k) —z(n) =
D(z(n+ k)) - k and approximate for big turn numbers N as
¢ dr
N = —_— . 17
In Fig. 8 N(z) corresponds to the area under the curve. The PTE method without

dividing phase space, however, only gives the area in the rectangle as guaranteed
survival time.

10.2  FEducated Lumping

The largest change that can be generated by N applications of the map is usually
much smaller than N times the largest growth that can happen during a single turn.
Therefore, it 1s advantageous to consider the maximum growth that can occur when
the map 1s applied several times. One can furthermore carefully choose the proper
number of turns such that the estimates become most favorable.

In order to find the optimum number of map applications the maximum and
minimum of df(Z) over the allowed region A was plotted for many turns. The
Figs. (9a—f) display the variation of d(Z) for our examples. For the improvements
illustrated in Tab. 5, the number of map applications used are displayed in Tab. 4.
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AN o

- 2.26-10°

FIGURE 8: Dividing phase space (left) approximates the area under the displayed curve (right)
by several rectangles to obtain the bound on the survival time. Without this improvement the
PIE method would only give the area of the dashed rectangle.

TABLE 4: Number of map applications used for improving the estimation.

Pend. Henon Coup. Pend. IUCF PSR II DEMO

14 37 6 89 247 100
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FIGURE 9: The figures display the variation of the deviation function d; in the allowed region
for the six examples. From left to right and top to bottom these are (a) Pendulum, (b) Henon
map, (c) Coupled pendulum, (d) IUCF, (e) PSR II, (f) Demo.
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10.3 Parameter Dependences

So far, the normal form method assumes that the one-turn map of the storage
ring in question is well known. Since this is rarely the case, the theory has been
extended to maps which depend on an unknown parameter, which could be the
particle’s energy or some magnet parameters. We computed the map as a function
of a parameter of interest and then scanned not only through the relevant region
of phase space, but also through the range for the parameter.

If the map M is a function of a parameter, then the nonlinear normal form
transformation B also depends on a parameter. Using DA programs allows to
compute the Taylor expansion of this parameter dependent map B. The pseudo
invariant f then also depends on the parameter. Changing the parameter changes
the transfer map and the pseudo invariant simultaneously, such that f stays a good
pseudo invariant for a wide range of the parameter. This is apparent when one
considers that to order n + 1,

foM—f=p410 (18)

also holds to for parameter dependent normal form transformations.

11 OUTLOOK: RIGOROUS PIE WITH INTERVAL ARITHMETIC

Experience shows that the described method usually gives a very reliable lower
bound on the number of stable turns. However, the method can even be extended
to make completely certain statements about bounds in a mathematically rigorous
sense. This requires a rigorous execution of several individual steps; in particular,
it is not sufficient to approximate the maximum of § by scanning.

In practice it turns out that standard methods of interval arithmetic commonly
used for verified global optimization 28 are not suitable for the complicated functions
d; at hand because of the tremendous blow-up caused by the complexity of the
underlying algorithm. A novel combination of DA methods with interval methods
called Remainder Differential Algebra (RDA) allows not only the computation of
Taylor expansions of arbitrary functions, but also a rigorous error bound of the
expansion under consideration®®. A predecessor of the method that can already
successfully solve part of the questions at hand is the so-called Interval Chain
approach20.21, The RDA method for the first time allows to make fully rigorous
statements on the survival times of particles in circular accelerators and other
weakly nonlinear dynamical systems.
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TABLE 5: Lower bounds on the number of turns which particles survive for an initial emittance
of one half the acceptance and lower bounds on the stable emittances for 108 turns obtained by
various variations of the PIE method.

Lower bound for

Pendulum

Henon map

Simplest application

Length and Strength vary by 1%

Divided phase space
Multi—turn maps

92,114,163,553

23,556,300,993
452,868,876,965
388,804,862,856

9,133,037

8,167,533
44,999,781
1,456,171,297

Both 1,895,348,117,634 4,779,711,057
Lower bound for PSR II Demo

Simplest application 76,092,850 55,548,695
Quad field varies by 0.01% 47,166,060 51,963,620
Divided phase space 373,642,327 284,008,517

Multi—turn maps
Both

21,172,838,624
18,731,455,785

1,042,575,616
5,121,716,506

Coup. Pendulum

predicted turns

stable emittance

Simplest application
Length varies by 1%
Divided phase space
Multi-turn maps
Both

357,584,630,384
144,173,434,143
1,765,031,547,898
1,029,815,934,687
5,087,629,041,331

5 x bmm mrad

3.4 x 3.4mm mrad
11.3 x 11.3m/m mrad
6 x 6mm mrad

14.5 x 14.5mm mrad

IUCF ring

predicted turns

stable emittance

Simplest application

Quad field varies by 0.01%
Divided phase space
Multi—turn maps

Both

65,734,218
18,535,102
335,420,083
5,804,832,818
27,745,480,680

3.3 x 2.0mmm mrad
2.9 x 1.77mm mrad
4.8 x 2.97mm mrad
8.1 x 4.8mmm mrad
13 x 7.77mm mrad




METHODS OF BOUNDING LONG TERM STABILITY IN STORAGE RINGS 23

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

N. N. Nekhoroshev. An exponential estimate of the time of stability of nearly—integrable
Hamiltonian systems. Uspekhi Mat. Nauk, 32:6:5-66, 1977. and translation in Russian
Mathematical Surveys 32:6, 1-65 (1977).

R. L. Warnock and R. D. Ruth. Long—term bounds on nonlinear Hamiltonian motion. Physica
D, 56(14):18872157 1992. also SLAC-PUB-5267.

J. S. Berg, R. L. Warnock, R. D. Ruth, and E. Forest. Construction of symplectic maps for
nonlinear motion of particles in accelerators. Technical Report SLAC-PUB-6037, Stanford
Linear Accelerator Center, 1993.

. M. Berz. Differential Algebraic description of beam dynamics to very high orders. Particle

Accelerators, 24:109-124, 1989.

Y. Yan. Success in one—turn maps for dynamic apperture studies — a brief review. In Stability
of Particle Motion in Storage Rings, volume 292 of AIP Conference Proceedings, pages 177—
181. AIP Press, 1994.

. M. Berz. COSY INFINITY version 6 reference manual. Technical Report MSUCL-869,

National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI, 1992.
M. Berz. Automatic differentiation as nonarchimedean analysis. In Computer Arithmetic
and Enclosure Methods, pages 439-450. Elsevier Science Publishers B.V., 1992.

. H. Poincaré. Les méthodes nouvelles de la méchanique céleste. Gauthier—Villars, Paris, 1892,

1893, 1899. three volumes.

G. D. Birkhoff. Dynamical systems. American Mathematical Society Publications, 9, 1927.
C. L. Siegel. Uber die Existenz einer Normalform analytischer Hamiltonscher Differential-
gleichungen in der Nihe einer Gleichgewichtslésung. Math. Ann., 128:144-170, 1952.

C. L. Siegel. Vorlesungen iber Himmelsmechantk. Springer—Verlag, Berlin—Gottingen—
Heidelberg, 1956.

A. N. Kolmogorov. On the conservation of conditionally periodic motions for a small change
in the Hamiltonian. Dokl. Akad. Nauk SSST, 98:527-530, 1954.

V. I. Arnol’d. Proof of a theorem of A. N. Kolmogorov on the invariance of conditionally
periodic motions under small perturbations of the Hamiltonian. Uspekhi Mat. Nauk, 18:5:91—
192, 1963. and translation in Russian Mathematical Surveys 18:6, 85-191 (1963).

J. K. Moser. On invariant curves of area—preserving mappings of an annulus. Nachr. Akad.
Wiss. Géttingen, Math.—Phys. Kl. II, pages 1-20, 1962.

G. Turchetti. Nekhoroshev stability estimates for symplectic maps and physical applications.
In Number Theory and Physics, Springer Proceedings in Physics 47, Berlin, Heidelberg, 1990.
Springer—Verlag.

R. L. Warnock, R. D. Ruth, W. Gabella, and K. Ecklund. Methods of stability analysis
in nonlinear mechanics. Technical Report SLAC-PUB-4846, Stanford Linear Accelerator
Center, 1989.

R. L. Warnock and R. D. Ruth. Bounds on nonlinear motion for a finite time. Technical
Report SLAC-PUB-5020, Stanford Linear Accelerator Center, 1989.

R. L. Warnock and R. D. Ruth. Stability of orbits in nonlinear mechanics for finite but very
long times. In Nonlinear Problems in Future Accelerators, pages 67-76, New York, 1991.
World Scientific. also SLAC-PUB-5304.

R. L. Warnock. Close approximation to invariant tori in nonlinear mechanics. Physical
Review Letters, 66(14):1803-1806, 1991.

G. H. Hoffstatter. Rigorous bounds on survival times in circular accelerators and efficient
computation of fringe—field transfer maps. PhD thesis, Michigan State University, East
Lansing, MI 48824, USA, 1994.

M. Berz and G. Heinz Hoffstatter. Exact bounds on the long term stability of weakly nonlinear
systems applied to the design of large storage rings. Interval Computations, 2:68—-89, 1994.
M. Berz and G. H. Hoffstatter. Rigorous lower bounds on the survival time in particle
accelerators. Particle Accelerators, 54:193-202, 1996.



24

23.

24.

25.

26.

27.

28.

G. H. HOFFSTATTER AND M. BERZ

M. Berz and G. H. Hoffstatter. Computation and application of Taylor polynomials with
interval remainder bounds. Submitted to Interval Computations, 1995.

M. Berz. Differential algebraic formulation of normal form theory. In Proceedings of the 1992
Workshop on Nonlinear Effects in Accelerator Physics, Berlin, 1992.

M. Berz. Differential Algebraic treatment of beam dynamics to very high orders including
applications to spacecharge. ATP Conference Proceedings, 177:275, 1988.

M. Berz. Symplectic tracking through circular accelerators with high order maps. In Non-
linear Problems in Future Accelerators, pages 288-296, New York, 1991. World Scientific.
M. Berz. Arbitrary order description of arbitrary particle optical systems. Nuclear Instru-
ments and Methods, A298:426-440, 1990. also MSU-NSCL-1990/739.

E. Hansen. An Overview of Global Optimization Using Interval Analysis, pages 289-307. R.
E. Moore, Academic Press, New York, 1988.



