NSCL annual report
186-189 (1993)

RIGOROUS STABILITY ESTIMATES

G. H. Hoffstatter and M. Berz

Abstract

The normal form method is used to give completely rigorous lower bounds on the number of turns which
particles survive in a storage ring when the motion is described by a Taylor map. This can be achieved by
computing the necessary invariants of motion with nonlinear normal form theory and performing the required
global optimizations with interval arithmetic. Conventional interval arithmetic optimization turns out to be by
far to inefficient for the complex optimization problems evolving from the normal form method. The concept
of interval chains will be introduced which is faster by many orders of magnitude for the special functions that

have to be optimized.

Introduction

The normal form method of long term estimates was used by several people in the past and is lined out
in the accompanying report [1]. Nonlinear normal form theory yields pseudo invariants of motion f which are
polynomials of order 2n if the Taylor map M has order n. The deviation of being invariant under application of
M is described by the deviation function 6.

FMy=f+5. (1)

The deviation function é has only contributions of orders higher than n. For weakly nonlinear problems and
high expansion orders n, the contribution of 8 is very small and due to (1), f is an approximate invariant of the
map M.

In the region of multidimensional phase space described by
{Hlrmin < f(2) < rmac} (2)

the global maximum § of 6 has to be found. It can then be guaranteed that the number of turns N,,,, which
particles survive in the storage ring is certainly bigger than Ny = (rmar — rmm)/g For the reasoning behind
this statement, please refer to the literature given in [1]. Figure (1a) shows the structure of the function § which
has to be maximized for the PSR II lattice. The optimization has to be performed in a four dimensional space;

we can only depict a two dimensional section.

Interval arithmetic is a means to obtain an interval G(I) which contains all possible values of a function g

on an interval T [2].
G(I) 2 9(1) ={yg(z)|z € I} (3)

The upper bound G of the interval G is then a guaranteed upper bound of the function g on the interval I.

Using interval arithmetic, the global maximum 6 can be rigorously bound to garantie the following estimate:

NmaxSNNSNI:W. (4)



If the interval [ is big, interval arithmetic tents to over—estimate g(I) substantially. Therefore it is often
necessary to divide the interval I into many subintervals I; and find the maximum of all the maxima on the I;.
Figure (1a) shows the function § on a section of four dimensional phase space. The relevant region in phase space
had to be divided into 10'® interval blocks in order to reduce blow-up to a useful amount. Figure (1b) shows
a section of phase space on which the maximum of é is bound by interval arithmetic on many interval blocks.
The substantial interval blow—up that occurs when 6 = f(]\Z) — f is being evaluated is due to cancellation of
the contributions up to order n. Although it is known that these contributions vanish, they still cause blow—up
during their computation. The deviation function & is a polynomial of order 2n?, which typically is around 200.
The blow—up caused by the computations of all orders higher than n is less critical than the low order blow—up,

due to the weakly nonlinear structure of the problem.
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Figure 1: a: The deviation function §. The maximum § of this function has to be found. In this example the
function varies between —0.5- 1076 and 0.5-1076. b: § bounded by intervals on a small part of phase space.

Maximizing the deviation function with interval chains

The concept of interval chains takes advantage of the knowledge that é has no contributions up to order

n. An interval chain I consists of a finite sequence of intervals I;, 1 € {0,...,n + 1}:
J:(JOJJI;J2)"')J7L+1) (5)

where J; is called the ith order of the interval chain. With a special arithmetic [3,4] one can obtain an interval
chain with intervals J;, ¢ < n that contain all contributions to a given polynomial of order ¢. J,41 contains
all contributions to the polynomial of orders higher than n. In the case of the polynomial 8, J,4+1 contains
all function values, whereas the lower orders of the interval chain contain all the blow—up due to low order
cancellation. Thus, the bound of the function value and all blow—up due to lower order computations are strictly
separated.

But even with these simplifications, the resulting objective functions have a tendency to exhibit interval
blow—up because of complexity, while the bounds of the function have to be determined rather tightly in order
to guarantee large numbers of stable turns.

The results in the next section were obtained by choosing 630 intervals for the examples with one degree

of freedom and 1000188 for the example with two degrees of freedom. Without the concept of interval chains



a realization af the described method was virtually impossible. For examples with two degrees of freedom

approximately 10'? times more intervals would have been needed for similar results.

Results

Order of Interval Interval Conventional
Invariant Bounding Chains Rastering
(guaranteed) (guaranteed) (optimistic)

3 11252 743,667 849,195

4 11252 743,667 849,195

5 11306 876,059,284 982,129,435

6 11306 876,059,284 982,129,435

7 11306 432,158,877,713 636,501,641,854

8 11306 432,158,877,713 636,501,641,854

Table 1: Predictions of the number of stable turns as a function of the order of the polynomials describing the
normal form transformation for the physical pendulum d?/dt?¢ + sin(¢) = 0 for a time step of t=1 and an
amplitude of 1/10 rad. Because of energy conservation, the map is known to be permanently stable for any
amplitude.

Using the technique discussed in the previous section, several nonlinear systems were studied using the
interval chain rastering methods to provide upper bounds for the invariant defects. In order to get a feeling for
the quality of these upper bounds, the numbers were compared with approximations for the maximal invariant
defects obtained by a rather tight rastering in real arithmetic. Because of the large number of local maxima, this
method proved to be the most robust noninterval way to estimate the absolute maxima of the functions involved.
Lower bounds on the number of stable turns obtained by conventional intervals are given in the tables 1 to 3
in order to illustrate the usefulness of interval chains. When conventional intervals were used, the deviation
function was simplified as much as possible by accounting for cancellations up to second order analytically. The
number of conventional intervals and the number of interval chains used in the bounding are equivalent. In all
of the examples below, the choice of 7.y 1s given, and i, was chosen half as large.

As the first example to check the method, we used a one—dimensional physical pendulum. This is a
good test case since energy conservation requires the nonlinear motion to be stable. Table 2 shows the results
of the stability analysis for this case. As is to be expected, the number of stable turns predicted increases with
the order and hence accuracy of the approximate invariants. While the approximate scanning method can take
full advantage of this increased accuracy, the interval bounding method shows a saturation at 11306 turns. This
asymptotic behavior is connected to the size of the intervals because of the unavoidable blow—up of intervals.
The blow—up in third order dominates the calculation, causing the higher order improvements to not materialize.
The method of interval chains takes care of all the low order cancellations and consequently the estimate is much
better.

As another example, we chose the Henon map, which is a standard test case for the analysis of nonlinear
motion because it exhibits almost all of the phenomena encountered in Hamiltonian nonlinear dynamics. These
include stable and unstable regions, chaotic motion, and periodic elliptic fixed points. The Henon map can even
serve as a very simplistic model of an accelerator under the presence of sextupoles for chromaticity correction.
The results of these calculations are shown in table 3. Similar to the previous case, the number of predicted
turns increases with order. In the case of interval bounding, the number of periodic turns shows asymptotic

behavior limited by blow—up. Again the superiority of strict bounding with interval chains is obvious.



Order of Interval Interval Conventional
Invariant Bounding Chains Rastering
(guaranteed) (guaranteed) (optimistic)

2 895 891 1,086

3 1736 9,926 11,450

4 1668 54,016 65,667

5 1674 678,725 809,612

6 1670 3,389,641 4,351,679

7 1671 42,640,927 52,474,387

8 1671 192,650,961 263,904,035

Table 2: Predictions of the number of stable turns for the Henon map at tune 0.13, strength parameter k = 1.1,
and starting position of .01 as a function of the order of the polynomials in the normal form transformation.

Order of Interval Interval Conventional
Invariant Bounding Chains Rastering
(guaranteed) (guaranteed) (optimistic)

3 179 16,137 38,385

4 179 18,197 38,857

5 173 309,356 560,309

6 173 347,312 613,135

7 171 925,531 2,184,998

8 171 1,004,387 2,248,621

Table 3: Predictions of the number of stable turns as a function of order of the approximate invariant for the
Los Alamos PSR II storage ring for the motion in a phase space of 100 mm mrad.

In the final example, we study a realistic accelerator, the Los Alamos PSR II. The same data are shown
as for the two previous, more academic examples. To limit the calculation time, the intervals used for the

optimization were 5 times as wide as the intervals used for the previous two tables.
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