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Adiabatic invariance of spin-orbit motion in accelerators
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It has been predicted and found experimentally that the polarization direction of particles on the closed
orbit of a circular accelerator can be manipulated, without a noticeable reduction of polarization, by
means of a slow variation of magnetic fields. This feature has been used to avoid imperfection resonances
where the spin precession frequency is close to a multiple of the circulation frequency. As a first step we
show that this property is related to an adiabatic invariant of spin motion. The proof is relatively simple
since it involves only two frequencies, the spin-rotation frequency and the particle’s rotation frequency on
the closed orbit. The invariant spin field (ISF) describes a periodic polarization state of a beam’s phase-
space distribution. This ISF leads to a very useful parametrization of coupled spin and orbit dynamics. We
prove that this ISF gives rise to an adiabatic invariant of spin-orbit motion. This proof is much more
complicated since the orbital frequencies are involved. Because of this adiabatic invariance, a beam’s spin
field follows slow changes of the accelerator’s ISF that can occur during a slow acceleration cycle. This
feature is essential when high-order spin-orbit resonances are crossed, since it allows polarization that has
been reduced at the resonance condition to be recovered, to a large degree, after the resonances have been
crossed.
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I. INTRODUCTION

In order to maximize the number of collisions of parti-
cles inside experimental detectors of a storage ring system,
one tries to maximize the total number of particles in the
‘‘bunches’’ and minimize the emittances, so that the parti-
cle distribution across phase space is narrow and the phase-
space density is high. In addition, if the beam is spin
polarized, high polarization is needed and it should be
relatively stable over time. But to obtain high polarization
levels at useful energies, particles must first be accelerated
from low energy while retaining most of their initial
polarization. It is for this reason that the concept of adia-
batic invariance is important for spin-orbit motion in
accelerators.

The spin ~S of a particle moving through the magnetic
fields of a circular accelerator rotates according to the
Thomas-BMT equation [1,2] along its phase-space trajec-

tory ~z���; i.e., _~S � ~��~z���; ��� ~S, where ~��~z; �� is 2�
periodic in the azimuth �, and the dot denotes the deriva-
tive with respect to �. After a particle has traveled one turn
along the closed orbit, from �0 to �0 � 2�, the spin rotates
around some unit rotation axis ~n0��0� by a rotation angle
2��0, where �0 is the so-called closed-orbit spin tune. In a
flat accelerator without field errors, the closed orbit is in a
horizontal plane and passes only through vertical fields.
Thus ~n0 is vertical and independent of �0 and �0 � G�
(with anomalous gyromagnetic factor G and relativistic
06=9(1)=014001(13) 01400
factor �), which causes the number of spin rotations to
increase with energy. When �0 is close to an integer, a case
referred to as an imperfection resonance, the rotation ma-
trix is close to the identity and spin directions hardly
change from turn to turn. If field errors are now introduced,
they can dominate the rotation direction and can rotate
spins away from the vertical. Therefore when �0 crosses an
integer value during acceleration, the rotation vector ~n0 can
change significantly. When the spin rotation is much faster
than this rotation vector change, spins which are nearly
parallel to ~n0 are dragged along with the evolving ~n0 [3].
To illustrate this fact, one can imagine that ~n0 changes
away from the spin sometimes and toward the spin at other
times while the spin rotates around the slowly changing ~n0.
Because of this rapid rotation, both cases occur frequently
and the total effect averages out. This causes the spin to
follow the slow change of ~n0, and the projection of spin on
~n0 hardly changes. It has therefore been conjectured that
~S��� � ~n0��� is an adiabatic invariant. In [4,5] a proof of this
statement was discussed under a restrictive assumption
using a two-frequency averaging theorem of Neistadt
(also often spelled Neishtadt). In this paper, we remove
the restriction, give more detailed mathematical argu-
ments, and discuss the underlying physics to which our
results apply.

We now introduce the notion of spin fields in a precise
way. The coupled spin-orbit equations may be written
1-1 © 2006 The American Physical Society
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_~S � A��; ~z� ~S; ~S��0� � ~S0; (1)

_~z � ~F�~z; ��; ~z��0� � ~z0; (2)

where ~z 2 R6 and A is skew-symmetric with A12 � �3,
A13 � ��2, A23 � �1, and A��; ~z� is 2� periodic.
Denoting the general solution of Eq. (2) by the transport

map ~z � ~M��; �0; ~z0� allows us to write Eq. (1) as _~S �
A��; ~M��; �0; ~z0�� ~S. If we let R��; �0; ~z0� be the associated
principal solution matrix, i.e., the matrix solution of

D1R��; �0; ~z0� � A��; ~M��; �0; ~z0��R��; �0; ~z0�; (3)

R ��0; �0; ~z0� � I; (4)

then the solution of the system comprising Eqs. (1) and (2)
may be written

~S��� � R��; �0; z0� ~S0; ~z � ~M��; �0; ~z0�: (5)

We use the notation Dk to denote the derivative with
respect to the kth argument, be it scalar or vector.

A spin field ~f�~z; �� describes the polarization direction
for each phase-space point of a beam and has jj ~fjj � 1.
Now consider ~f�~z0; �0�; this spin vector starts at �0

and becomes R��; �0; ~z0� ~f�~z0; �0� at �, but the particle
is now at ~z � ~M��; �0; ~z0�, so ~f� ~M��; �0; ~z0�; �� �
R��; �0; ~z0� ~f�~z0; �0� and the basic law for the evolution
of spin fields is

~f� ~z; �� � R��; �0; ~M��0; �; ~z�� ~f� ~M��0; �; ~z�; �0�: (6)

If ~f�~z; �� is such that ~f�~z; �� 2�� � ~f�~z; ��, then we call ~f
an invariant spin field (ISF) and denote it by ~n�~z; ��. In a
slight abuse of notation we define ~n�~z� :� ~n�~z; �0�,
~M� ~z0� :� ~M��0 � 2�; �0; ~z0�, and R�~z0� :� R��0 �

2�; �0; ~z0�, so that the basic equation for the ISF at �0 is

~n� ~M�~z�� � R�~z� ~n�~z�: (7)

General conditions on ~M and R for the existence of ~n is an
unsolved and difficult mathematical problem, although
some progress has been made [6,7]. However, there is
good experimental evidence that—at the very least—an
approximate ~n exists in real machines.

The ISF was first introduced by Derbenev and
Kondratenko [8] in the theory of radiative electron polar-
ization and is often called the Derbenev-Kondratenko ~n
axis. Note that ~n�~z� is usually not an eigenvector of the spin
transport matrix R�~z� at a given phase-space point, since a
particle’s spin changes after one turn around the ring but
the eigenvector does not change when it is transported by
R�~z�. Since the spin vector of a particle at phase-space
position ~z is transported by the same rotation matrix, the
angle between ~S and ~n does not change and I� ~S; ~z; �� �
~S � ~n� ~z; �� is an invariant of spin-orbit motion. Therefore
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spins rotate around ~n�~z���; �� while they travel around an
accelerator. Once orthogonal unit vectors ~u1�~z; �� and
~u2�~z; �� that are perpendicular to ~n�~z; �� and 2� periodic
in � have been defined, then the rotation rate around ~n can
be defined. This rate is referred to as the spin tune � and
depends on the amplitude of a particle’s oscillation around
the closed orbit.

The guide fields in storage rings are produced by dipole
and quadrupole magnets. The dipole fields constrain the
particles to almost circular orbits and the quadrupole fields
focus the beam, thus ensuring that particles do not drift too
far from the central orbit. In these fields, spins precess
according to the T-BMT equation.

In horizontally bending dipoles, spins precess only
around the vertical field direction. The quadrupoles have
vertical and horizontal fields which cause the spins to
precess away from the vertical direction. The strength of
the spin precession and the precession axis in machine
magnets depend on the trajectory and the energy of the
particle. Thus in one turn around the ring, the effective
precession axis can deviate from the vertical and can
strongly depend on the initial position of the particle in
the 6-dimensional phase space. From this it is clear that if
an invariant spin field ~n�~z� exists, it can vary across the
orbital phase space.

At very high energy, as, for example, in the Hadron
Electron Ring Accelerator (HERA) proton ring [9–13],
for particles with realistic phase-space amplitudes, ~n�~z�
may deviate by tens of degrees from the beam average
h ~ni at azimuth �0. Thus even if each point in phase space
were 100% polarized parallel to ~n�~z�, the average beam
polarization jh ~nij might be much smaller than 100%. This
was first pointed out in [14] for the Superconducting Super
Collider (SSC) and in [15] for HERA-p. Clearly it is very
important to have accurate and efficient methods for cal-
culating approximate ~n�~z� and for ensuring that the spread
of ~n�~z� is as small as possible.

However, although it is straightforward to define ~n�~z�, it
is not easy to calculate this spin field in general. Much
effort has been expended in this direction [16–23], but
mainly for electrons at energies up to 46 GeV. All algo-
rithms developed before the polarized proton project at
HERA-p rely on perturbation methods at some stage,
and either do not go to high enough order [23–25], or
have problems with convergence at high order and high
proton energies [19,26].

The system in Eq. (2) can be viewed as a Hamiltonian
system, with Hamiltonian Htot� ~�; ~I; �� � H0� ~I� �
"H� ~�; ~I; ��. The generalized positions are the components
of ~� and the generalized momenta are those of ~I, i.e. ~z �
� ~�; ~I�. For " � 0 the Hamiltonian is H0� ~I� and the mo-
menta ~I are invariants of motion or action variables of this
integrable system. For small " the Hamiltonian is said to be
nearly integrable. The perturbation "H� ~�; ~I; �� of the in-
tegrable Hamiltonian is chosen to have zero mean with
1-2
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respect to each component �i, and thus the motion is
roughly quasiperiodic with tunes Qj� ~I� � @IjH0� ~I�. Since
the particles oscillate with the orbital tunes around the
closed orbit, the spin-rotation vector ~�� ~z���; �� is modu-
lated by these frequencies. Therefore the spin motion can
be strongly disturbed when the spin tune � is in approxi-
mate resonance with the orbit tunes, i.e., when

� � j0Ps � j1Q1 � j2Q2 � j3Q3; Ps; jn;2 N; (8)

where Ps is the super period of the ring accelerator. These
conditions are referred to as intrinsic resonances and can be
of very high order [27,28], i.e.

P3
k�1 jjkj 	 1. Therefore

the ISF can change significantly while spin-orbit resonance
conditions are crossed during beam acceleration. Similarly
to ~S � ~n0, it can be conjectured that ~S � ~n�~z; �� is an adia-
batic invariant. In [4] a proof of this conjecture was pre-
sented under a restrictive assumption using a general
theorem of Neistadt. Here we remove the restriction and
give a more complete argument. We are also working on a
more direct proof which we hope will bypass the Neistadt
theorem, give a stronger result, and provide more insight
into the spin dynamics.

For the definition of adiabatic invariants we use [29],
Sec. 8.1.

Definition: adiabatic invariants.—Consider d
d� ~x �

~g� ~x; �� with � � "� and ~x 2 Rn for a small parameter "
so that ~g is a slowly varying vector field. A function ~A� ~x; ��
is said to be an adiabatic invariant of this system if its
variation on the interval � 2 
0; 1="� (i.e., � 2 
0; 1�) is
small together with ", except perhaps for a set of initial
conditions whose (Lebesgue) measure goes to zero with ".
That is, for ‘‘most’’ initial conditions the following limit of
the supremum over the interval 
0; 1="� holds:

lim
"!0

sup�2�0;1="�j ~A� ~x���; "��� ~A� ~x�0�; 0�j � 0: (9)

In this paper we first prove the adiabatic invariance of
~S � ~n0 on the closed orbit. Certain properties of the ISF are
then derived, and finally the adiabatic invariance of ~S �
~n�~z; �� is proved.

It is well known and it will be shown in Sec. IV C that
the action variables of a Hamiltonian are adiabatic invari-
ants. One could therefore try to find a Hamiltonian for spin-
orbit motion for which ~S � ~n0 on the closed orbit is an
action variable, or one for which ~S � ~n�~z; �� is an action
variable. However, there is no compelling need for work-
ing in a Hamiltonian framework. We will rather work with
the equations of spin-orbit motion and try to analyze them
by the most appropriate tools available, and these tools do
not have to be based on a Hamiltonian.
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II. THE ADIABATIC SPIN INVARIANT ON THE
CLOSED ORBIT

A. The equation of spin motion on the closed orbit

As a first step for finding an adiabatic invariant of spin
motion on the closed orbit we bring the equation of spin
motion into an appropriate form.

On the closed orbit ~z��� 2�� � ~z��� and thus A0���: �
A��; ~z���� is 2� periodic, so Eq. (1) becomes

_~S � A0��� ~S � ~�0��� � ~S; (10)

A 0��� 2�� � A0���; AT
0 � �A0; (11)

and by the Floquet theorem there exists a 2�-periodic
solution ~n0���. Physically, a particle which travels along
the closed orbit with its spin initially parallel to ~n0 at �0

satisfies ~S��� � ~n0���. Thus for this particle not only the
orbit but also the spin motion is 2� periodic. The rotation
axis, ~n0���, of the one-turn spin transport matrix is there-
fore sometimes called the spin closed orbit [30]. We note
that rings are often designed so that ~n0 is not everywhere
vertical, for example, in rings where spin rotators are used
to provide longitudinal polarization for experiments.

It was conjectured in Sec. I that spins which are nearly
parallel to ~n0 will follow slow changes of ~n0 at �0 when-
ever a parameter is slowly varied. We will prove this by
showing that ~S��� � ~n0���, the component of an arbitrary
spin vector ~S��� along ~n0���, is an adiabatic invariant. To
do this, it is convenient to introduce a coordinate system
with ~n0��� as one of its coordinate vectors and in which the
spin motion on the closed orbit is as simple as possible.
Two unit vectors ~m0��� and ~l0��� are now chosen which
at �0 make up the right-hand coordinate system
� ~m0��0�; ~l0��0�; ~n0��0�� and propagate around the ring ac-
cording to the T-BMT equation on the closed orbit,

_~m 0 �
~�0��� � ~m0;

_~l0 � ~�0��� � ~l0: (12)

The three unit vectors will always constitute a right-hand
coordinate system, since all three are rotated by the same
precession equation. Whereas ~n0 is periodic around the
ring, the vectors ~m0 and ~l0 rotate around ~n0 by the angle
2��0 after one turn, and the unit vectors are therefore in
general not 2� periodic in �. Here, �0 is the nontrivial
positive Floquet exponent associated with Eq. (10). Now a
2�-periodic coordinate system is defined by rotating ~m0

and ~l0 uniformly by 2��0 during one turn [24,25,31]; thus

~m� i~l :� ei�0�� ~m0 � i~l0�; (13)

and Eq. (12) becomes

_~m � � ~�0 � �0 ~n0� � ~m; _~l � � ~�0 � �0 ~n0� � ~l: (14)

In this coordinate system, the spin is written as
1-3
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~S��� � s1��� ~m��� � s2���~l��� � s3��� ~n0���; (15)

with s2
1 � s

2
2 � s

2
3 � 1. From the equation of spin motion

we have ~�0 � ~S � _~S � _s1 ~m� _s2
~l� _s3 ~n0 � s1�

~�0 �

�0 ~n0� � ~m� s2�
~�0 � �0 ~n0� � ~l� s3

~�0 � ~n0 which
gives _s1 ~m� _s2

~l� _s3 ~n0 � �0� ~n0 � ~S�. Thus we obtain
_s1 � ��0s2; _s2 � ��0s1; _s3 � 0, which can be written
compactly as

_~s � �0J~s; and so ~s��� � exp�J�0��~s�0�: (16)

Here,

J �

0 �1 0

1 0 0

0 0 0

0
BB@

1
CCA;

exp�Jt� �

cost � sint 0

sint cost 0

0 0 1

0
BB@

1
CCA:

(17)

Since s3 is constant, Eq. (15) describes a uniform rotation
around ~n0 and we expect it to be an adiabatic invariant
when parameters of the system are slowly varied.
Equation (15) can be written ~S � U���~s and thus the
solution of Eq. (10) is

~S��� � R0��� ~S�0�; (18)

R 0��� � U��� exp�J�0��U�0�T; R0�0� � I: (19)

Although this equation was derived by a physical argu-
ment, it is also a consequence of the Floquet theorem
which states that the principal solution matrix for
Eq. (10) can be written as in Eq. (19), where U is a
2�-periodic SO(3) matrix. Since _R0 � _UUTR0 �
UJ�0UTR0 � A0R0 implies

_U� �0UJ � A0U; (20)

the Floquet transformation ~S � ~s defined by ~S � U��� ~s

yields _~S � _U ~s�U _~s � �A0U� �0UJ�~s� U _~s � A0U~s,
and so

_~s � �0J~s; (21)

which agrees with Eq. (16).
Now suppose that A0 depends on a slowly varying

quantity, �,

A 0 � A0��; ��; � � "�; (22)

where " is small and positive. For fixed �, we can write
Eq. (19) as

R 0��; �� � U��; �� expfJ�0����gU�0; ��T: (23)

Transforming ~S � ~s via
01400
~S � U��; "��~s (24)

as before, we obtain

_~S � �D1U�D2U"�~s� U _~s

� �A0U� �0�"��UJ�D2U"� ~s� U _~s � A0U~s: (25)

Therefore U _~s � ��0UJ�D2U"� ~s and we obtain

_~s � �0���J~s� "UT��; ��D2U��; �� ~s; _� � ": (26)

To see that UT��; ��D2U��; �� is skew symmetric, we
write UT��; ��U��; �� � 1, which implies �D2U�TU�
UTD2U � 0, so �UTD2U�T � �D2U�TU � �UTD2U.
Thus we define ~���; �� � ��1; �2; �3�

T via

U T��; ��D2U��; �� �:
0 ��3 �2

�3 0 ��1

��2 �1 0

0
@

1
A: (27)

Clearly ~���; �� is 2� periodic in �. The skew symmetry of
the matrix means that the basis � ~m; ~l; ~n0� remains ortho-
normal for all values of � and Eq. (27) can be written

@� ~n0 � ~���; �� � ~n0;

@� ~m � ~���; �� � ~m; @� ~l � ~���; �� � ~l;
(28)

so that the variation of the coordinate vectors with � is a
rotation about ~�. Our basic equations of motion now
become

_s1 � ��0���s2 � "
�3��; ��s2 � �2��; ��s3�;

_s2 � �0���s1 � "
��3��; ��s1 � �1��; ��s3�;

_s3 � "
�2��; ��s1 � �1��; ��s2�; _� � ":

(29)

We now put these in a standard form for averaging of
autonomous systems with three slow variables and two
fast variables.

Let ~y � �s1; s2�
T and ~���; �� � ��1; �2�

T ; then

_~y � 
�0��� � "�3��; ���J2 ~y� "J2
~���; ��s3;

_s3 � " ~�T��; ��J2 ~y; _� � ";

_ � �0��� � "�3��; ��;

(30)

where

J 2 :�
0 �1
1 0

� �
; (31)

and where the equation for  was introduced for conve-
nience. When s3 � 0, the first of the four equations (30)
describes a rotation of ~y by the angle  . Our final trans-
formation eliminates this rotation by ~y � ~x via

~y � exp
�
J2

Z �

0

�0�"�

0� � "�3��
0; "�0��d�0

�
~x; (32)

and our final set of equations becomes
1-4



ADIABATIC INVARIANCE OF SPIN-ORBIT MOTION . . . Phys. Rev. ST Accel. Beams 9, 014001 (2006)
_~x � " exp��J2 �J2
~��~�; ��s3;

_s3 � " ~�T�~�; �� exp�J2 �J2 ~x; _� � ";

_ � �0��� � "�3�~�; ��;
_~� � 1;

(33)

where ~� has been introduced to make the system
autonomous.

B. Averaging for two-frequency systems

Equations (33) are in a standard form for the method of
averaging and we now state the appropriate averaging
theorem. We state a theorem for systems with two fast
variables which allows for crossing of resonances (and we
apply it in the next subsection to spin motion on the closed
orbit). Various multiphase averaging theorems could be
used [29], Chaps. 4–6, [32]; here theorem 3 of [29],
Section 4.1 is used, which is attributed to [33]. The appli-
cation of two-phase averaging to the simple problem of
spin motion on the closed orbit might seem more compli-
cated than necessary, but by going into considerable detail
here while dealing with the closed orbit, the stage is set for
adiabatic invariants in the case of spin motion on a general
trajectory, treated later below.

Theorem.—Consider a system of the form

d
d�

~I � " ~f�~�;  ; ~I; "�; (34)

d
d�
 � �� ~I� � "g�~�;  ; ~I; "�; (35)

d
d�

~� � 1; (36)

where ~I belongs to a regular compact subset of Euclidean
Rm. Each function on the right-hand side is real valued, C1

(first-order differentials exist and are continuous) in ~I and
", periodic with period 2� in  and ~�, and each possesses
an analytic extension for  2 C, with imaginary part
=f g<	 and ~� 2 C, =f~�g<	 for some 	> 0. The
associated (slow) averaged system is

d
d�
~�I � "~�f�~�I�;

~�f�~�I� �
1

�2��2
Z 2�

0

Z 2�

0

~f�~�;  ; ~�I; 0�d d~�;

(37)

with initial condition ~�I�0� � ~I�0�. Let every trajectory of
the exact system for which ~I stays in the range of definition
for � 2 
0; 1="� have a strictly monotonic variation of �� ~I�
with �: j dd� �j> c1" for some c1 2 R�. Then there exists a
positive constant c such that for sufficiently small ", all
trajectories satisfy
01400
sup �2
0;1="�j ~I��� �
~�I���j< c

���
"
p
: (38)

In the absence of resonance, the error estimate in
Eq. (38) may often be improved [in some cases, up to
O�"�]. The O�

���
"
p
� estimate above is however typical of

passage through resonance. At the other extreme, remain-
ing at resonance typically leads to a complete decorrelation
between behavior of the exact and averaged systems [i.e.,
the error estimate deteriorates to O�1�]. We give two
simple but explicit examples to illustrate the latter cases.

A basic model of passage through (a single) resonance is
the system _s3 � " cos� �m�� and _ � m� 1=2� "�
(m an integer), since it begins well away from the
resonance m and reaches it halfway through the interval

0; 1="�. The exact solution is s3��� � s3�0� �
"
R
�
0 cos��"t2 � t�=2�  �0��dt. Using a stationary phase

argument, it is easy to show that this deviates from the
solution of the averaged system �s3��� � s3�0� by O�

���
"
p
� at

O�1="� times.
An example of a closely related system which remains at

resonance is _s3 � " cos� �m�� and _ � �0. The aver-
aged system has the constant solution �s3 � s3�0�, whereas
the solution of the exact system for �0 � m (an integer) is
s3 � s3�0� � "� cos� �0��. The change in s3 for � 2

0; 1="� is clearly O�1�, and s3 is therefore not an adiabatic
invariant.

The last example shows how large changes in the slow
variables can build up at resonances. The simplest way of
avoiding this behavior is to consider only systems in which
resonances are traversed quickly so that capture into reso-
nance is avoided. This is the reason why the averaging
theorem for two-frequency systems requires j dd� �j> c1",
which is often called condition A (the terminology derives
from the Russian literature). This condition excludes sys-
tems where trajectories pass arbitrarily slowly through a
resonance or cross the same resonance several times.

For a detailed proof of the two-phase averaging theorem
used above, see [29], Sec. 4.1, or [33]. We end this sub-
section with a brief discussion of the ingredients in that
proof; we hope this gives an idea of the methods used and
the obstacles to be overcome along the way.

For simplicity we consider the third component of
Eq. (34) [the equation governing s3 in Eq. (33)]. The
right-hand side f3��;  ; ~x; �� is a 2�-periodic function of
� and  , with zero mean:

f 3 �
1

�2��2
Z 2�

0

Z 2�

0
f3��;  ; ~x; ��d d� � 0: (39)

In the usual approach to averaging, one tries to simplify
the equation for s3 by transforming to a coordinate
�s3 � s3 � "u��;  ; ~x; �� where the perturbation "u is
periodic in  and � (as f3 is). Now _�s3 � _s3 �

" d
d� u��;  ; ~x; �� � "�f3��;  ; ~x; �� � D1u��;  ; ~x; �� �

�0���D2u��;  ; ~x; ����O�"2�. One thus chooses u so that
1-5
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f̂ :� D1u� �0D2u� f3 (40)

is as simple as possible. If f̂ can be made to vanish
identically, then _�s3 � O�"2�, from which adiabatic invari-
ance of s3 easily follows.

Making f̂ vanish (or as simple as possible) is a form of
the so-called fundamental (or ‘‘homological’’) equation of
perturbation theory, and it is relatively easy to solve when
there is only a single phase. But when there are two or more
phases (in the present case we have the phases  and �), the
homological equation is much more difficult to solve in
general because of the presence of ‘‘small’’ or ‘‘zero
divisors.’’ We illustrate this difficulty as follows.

We first expand f3 and u in terms of their Fourier series
as

f3 �
X1

k��1

f�k � ~x; ��e
i�k�� � � f�k � ~x; ��e

i�k�� �; (41)

u �
X1

k��1

u�k � ~x; ��e
i�k�� � � u�k � ~x; ��e

i�k�� �; (42)

where we have taken into account the fact that f3 contains
only the terms exp��i � and we have written u in the same
form since we only want to find a particular solution and
not the most general. When these are inserted into the
homological equation f̂ � 0, we get


k� �0����u�k � ~x; �� � if�k � ~x; ��; (43)

and we have a zero divisor problem when �0��� takes
integer values. If �0��� is not an integer, then one can
choose u�k �s3; �� � if�k =
k� �0���� for all k and we ob-
tain _�s3 � O�"2�. It follows that �s3 � O�"2��, and if arbi-
trarily small divisors can be avoided—i.e., if �0��� remains
bounded away from integers (a primitive form of the so-
called Diophantine conditions used in more general situ-
ations below), then u � O�1�, and therefore s3 � O�"� for
0 
 � 
 O�1="�.

On the other hand, if �0��� � m (a positive integer) for
some �, the best we can do is take u��m � u�m � 0, in which
case f̂ � 2Reff�me

i�m�� �g � 2f�m cos�m��  � if f�m is
real. We thus get _�s3 � "2f�m cos�m��  � �O�"2� and
_ � �0��� �O�"�, a system very similar to the basic

model for passage through resonance discussed above
(after the statement of the two-phase averaging theorem).

Despite these difficulties, it turns out that resonant val-
ues of �0��� can be tolerated provided they occur only over
brief time intervals (condition A is of course one way to
ensure this). Once the time intervals spent at (or near)
resonant values are known to be limited, with some effort
it is possible to estimate the cumulative effect of all ‘‘pas-
sages through resonance,’’ and to conclude that the averag-
ing approximation remains valid over the interval 
0; 1="�.
Finally, we note that in the present application, since the
closed-orbit spin tune changes with energy (�0 � G� in a
01400
flat ring), the assumption of condition A is likely to be
physically realistic in situations where the beam energy is
increasing at a minimum rate.

C. Adiabatic invariance of spin motion via two-phase
averaging

We now apply the above theorem to obtain our main
result of this section. For spin motion on the closed orbit,
we take the exact system to be Eq. (33), so that ~x, s3, and �
form the (four) components of ~I in Eq. (34). Since I3��� �
s3���, the averaged system includes the equation d

d�
�I3 �

�f3 � 0 and leads to �I3��� � �I3�0� � s3�0�. If
j dd� �0�"��j> c1", the theorem then guarantees that

lim
"!0

sup�2
0;1="�js3��� � s3�0�j � 0 (44)

which we interpret as adiabatic invariance of s3 according
to our definition at the end of Sec. I.

Several remarks can be made here. We note that the
theorem gives more than adiabatic invariance of s3; it
additionally gives an estimate of the rate of convergence
toward 0 in Eq. (44), so we have some knowledge of how
slowly �must be varied in order to achieve a desired degree
of constancy in s3. The theorem also says that ~x is adiabati-
cally invariant, which, in view of Eq. (32), gives an ap-
proximate evolution equation for ~y � �s1; s2�

T , namely

~y � exp
�
J2

Z �

0

�0�"�

0� � "�3��
0; "�0��d�0

�
~x�0�: (45)

We further note that, although condition A (j@��0���j>
c1) requires the spin tune to change quickly enough to keep
�0 from remaining very long at integer values, this condi-
tion could be dropped altogether if �0��� remains bounded
away from integers (one then applies an averaging theorem
for nonresonant domains; cf. [32], Sec. 1.6).

III. THE AMPLITUDE-DEPENDENT SPIN TUNE
AND THE UNIQUENESS OF ~n� ~z�

The closed-orbit spin tune �0 was introduced as the spin-
rotation angle divided by 2� for particles which travel one
turn around the closed orbit. For particles which oscillate
around the closed orbit, this rotation angle can depend on
the amplitude of their oscillation. For the case where the
orbit motion can be described in terms of action and angle
variables ~J and ~� (as is always the case for stable linear
motion), and where the tunes Qj are not in resonance on
the invariant torus described by ~J, we will now show how
to define a spin-rotation angle which is independent of ~�
on that torus. Assuming that an ~n axis exists at an azimuth
�0, one can introduce two unit vectors ~~u1�~z� and ~~u2�~z� to
create a right-hand coordinate system � ~~u1; ~~u2; ~n�. The vec-
tors ~~u1 and ~~u2 are therefore defined up to a rotation around
the ~n axis by an arbitrary phase-space-dependent angle
��~z�. The spin direction ~S is expressed in terms of this
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coordinate system by the relation ~S � s1
~~u1 � s2

~~u2 � JS ~n.
The coefficient JS is called the spin action and does not
change during the particle motion around the ring, since
the particle transport matrix R�~z� is orthogonal and ensures
that JS � ~S � ~n is invariant. This property can be used to
define the invariant function of spin-orbit motion
JS�~z; ~S� � ~S � ~n�~z�. Using Eq. (7) the invariance is given by

JS�~zf; ~Sf� � JS� ~M�~zi�;R�~zi� ~Si� � �R�~zi� ~Si� � ~n� ~M�~zi��

� �R�~zi� ~Si� � �R�~zi� ~n�~zi�� � ~Si � ~n�~zi�

� JS�~zi; ~Si�: (46)

For one turn, the spin motion in the coordinate system
with � ~~u1; ~~u2; ~n� is a rotation around the ~n axis by a phase-
space-dependent angle 2�~��~z�,

sf1 � isf2 � ei2�~��~z��si1 � isi2�: (47)

By reexpressing this in terms of the complex quantity ŝ �
ei��~z��s1 � is2�, where �� ~z� is the arbitrary angle of ~~u1 and
~~u2, one obtains

e�i�� ~M� ~z��ŝf � ei�2�~�� ~z����~z��ŝi: (48)

The one-turn transport of phase-space motion is described
by ~Jf � ~Ji and ~�f � ~�i � 2� ~Q. Using the symbols

2�~� ~J�
~�� and �~J�

~�� to indicate the spin-rotation angle
and the free phase of the coordinate system for motion
on the invariant torus characterized by ~J, we have

ŝ f � ei�2�~� ~J�
~����~J�

~����~J�
~��2� ~Q��ŝi: (49)

The goal of the subsequent manipulation is to choose
�~J�

~�� so that the spin motion characterized by the expo-
nent is simplified and the rotation angle becomes indepen-
dent of ~�. As with any function of phase space, the rotation

ei2�~�~J�
~�� is 2� periodic in all components �j. Therefore

the rotation angle can have a 2�-periodic contribution and
a contribution linear in the phases

2�~�� ~J�
~�� � ~j � ~�; (50)

for some vector ~j with integer components. We choose the
rotation angle

2�~� ~J�
~�� � 2�~�� ~J�

~�� � ~j � ~�mod2� (51)

which is 2� periodic and can thus be Fourier expanded.

The rotation ei�~J�
~�� is also 2� periodic in all components

�j. Therefore the rotation angle �~J�
~�� can also have a

2�-periodic contribution �� ~J�
~�� and a contribution linear

in the phases

�~J�
~�� � �� ~J�

~�� � ~j � ~�: (52)
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If the orbit tunes ~Q are not in resonance, then�~J�
~�� can

be chosen to eliminate the phase dependence of the ex-
ponent in Eq. (49) completely. This can be seen by Fourier
transforming the periodic functions ~� ~J�

~�� and �� ~J�
~�� to

obtain the following exponent in Eq. (49):

2�~j � ~Q�
X
~k

�2� �� ~J�
~k� � ��� ~J�

~k��1� ei2� ~k� ~Q��ei ~k� ~�:

(53)

By choosing the Fourier coefficients ��� ~J�
~k� so that

��� ~J�
~k� � 2� �� ~J�

~k�=�1� ei2� ~k� ~Q�, one can eliminate all

Fourier coefficients �� ~J�
~k� except those with ~k � 0. For

this special choice of ��~z� the one-turn spin-rotation angle
becomes 2��� ~J� � 2�� �� ~J�0� � ~j � ~Q� and does not de-

pend on ~� but only on the action variables ~J. Therefore
this rotation angle is the same for all particles on one
invariant torus and thus does not change during particle
motion. This spin precession rate �� ~J� is a characteristic of
the torus and allows the degree of coherence between spin
and orbital motion to be quantified. In particular we expect
coherent excitations of spin motion when the amplitude-
dependent spin tune �� ~J� is in resonance with the orbital
tunes as in Eq. (8). Other angles which might be alterna-
tively proposed [34,35] do not correlate with resonance
effects [36–39].

To guarantee the convergence of the Fourier series of
��~z�, we require the orbit tunes to be strongly incommen-
surable with 1 ([32], Sec. 1.5), which implies that they are
strongly non–orbit-resonant, defined as follows using the
distance to the nearest integer 
. . .�d and the 1-norm j ~kj1 �P3
n�1 jknj:
Strongly non–orbit-resonant.—The particle motion is

said to be strongly non–orbit-resonant if C; r 2 R� exist
with � ~k � ~Q� � Cj ~kj�r1 d for all nonzero vectors ~k with
integer components.

This strong incommensurability is a common require-
ment in perturbation theories, and it is known that for r >
dim� ~k� � 1 [here dim� ~k� � 3], the set of ~Q for which there
is no such C has Lebesgue measure 0 ([29], Appendix 4,
[40,41]). In mathematical settings, the infinitely many
inequalities above are called ‘‘Diophantine conditions’’
and may often be reduced to finitely many conditions by
so-called ultraviolet cutoff techniques (see [29], Secs. 7.2,
7.4).

The denominator 1� ei2� ~k� ~Q then decreases accord-
ing to a power law: j1� ei2� ~k� ~Qj � 2j sin�� ~k � ~Q�j � 4� ~k �
~Q� � 4Cj ~kj�r1 d. We further require that the spin-rotation

angle 2�~� ~J�
~�� have an analytic extension and therefore

that its Fourier coefficients fall off exponentially with j ~kj1
[29], Appendix 1.1, so as to counterbalance the denomi-
nator and lead to a convergent Fourier series. Alternatively
1-7
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one could require sufficient differentiability of ~� ~J�
~��,

which would lead to a sufficiently strong power law falloff
for the ��~J�

~k� [29], Appendix 1.2.
The coordinate vectors ~~u1 and ~~u2 for this special choice

of ��~z� are referred to as ~u1 and ~u2. The exponent reduces
to �� ~J� � �� ~J�0� � ~j � ~Q and the spin rotation of Eq. (49)
simplifies to

ŝ f � ei2��� ~J�ŝi: (54)

The goal of constructing a spin rotation depending only on
orbital actions but not on the angle variables ~� has now
been achieved. The function �� ~J� is called the amplitude-
dependent spin tune. It is not unique, since one can add an
integer j0 and a linear combination ~j � ~Q of the orbit tunes
by choosing different integers for ~j in Eq. (53). It is
interesting to note that for action variables ~J where the
integer components of ~j can be chosen so that

�� ~J� � ~j � ~Q � 0 mod1; (55)

one can eliminate the spin rotation completely. These are
the resonances described in Eq. (8). Several of the subse-
quent statements will be restricted to cases where this
resonance condition is not satisfied. Furthermore, when
� ~n�~z� is chosen as the ~n axis for defining the spin tune
on a torus, the spin tune � also changes sign and ���
j0 � ~j � ~Q could alternatively be chosen as the spin tune.
This leads to the following conclusion:

Existence of �� ~J�: Given that an ~n axis exists, that the
system is strongly non–orbit-resonant, and that the above-
mentioned analytic extension of the spin-rotation angle
2�~� exists, then a coordinate system � ~u1; ~u2; ~n� can be
specified which defines an amplitude-dependent spin tune
�� ~J�. This choice is not unique, since��� j0 � ~j � ~Q can
also be chosen as the spin tune.

Usually the integers are chosen so that the limit for small
amplitudes is equal to the closed-orbit spin tune �0, which
is G� for an unperturbed flat ring without solenoids, spin
rotators, or snakes.

It is worth noting that for the single resonance model
(SRM) of spin motion the ~n axis can be computed and �� ~J�
exists even on orbit resonances.

To analyze the uniqueness of the ~n axis, the periodicity
condition (7) is written in the coordinate system � ~u1; ~u2; ~n�,

~n� ~M�~z�� �
cos�2��� � sin�2��� 0
sin�2��� cos�2��� 0

0 0 1

0
@

1
A � ~n�~z�; (56)

with the obvious solution ~n� ~z� � �0; 0; 1�T for all ~z. If
another ~n axis ~n2�~z� exists, then ~n2 � ~n� ~n � ~n2� is nonzero
at least at one phase-space point and on all iterations of this
point which can be reached during particle motion. This
difference vector at these phase-space points is normalized
and written as cos�
�~z�� ~u1 � sin�
� ~z�� ~u2, or as ei
�~z�. In
orbital action-angle variables, the function 
~J�

~�� �
01400

� ~J�
~�� � ~j � ~� has a 2�-periodic contribution and a linear

contribution, and in complex notation, the periodicity con-
dition (56) reads as

ei
~J�
~��2� ~Q� � ei�2��� ~J��
~J�

~���: (57)

This requires that all Fourier coefficients of 
� ~J�
~�� vanish

except �
� ~J�0�. The resulting equation �� ~J� � ~j � ~Q mod1
shows that the periodicity condition (57) for ~n2�~z� can only
be satisfied when a spin-orbit resonance occurs. Otherwise
the ISF is unique. This is summarized as follows:

Uniqueness of ~n�~z�—no spin-orbit resonance—If an ~n
axis and basis vectors ~u1, ~u2 exist and the spin-rotation
angle in one turn is not a linear combination of orbit phase
advances modulo 2�, then the ~n axis is unique up to a sign.

If the orbital tunes are rational, one can also formulate
some statements about the uniqueness of the ~n axis. Given
that the phase-space motion can be described by action-
angle variables and that the orbital tunes on an invariant
torus in the Poincaré section at azimuth �0 are rational
numbers Qj �

nj
mj

, where the smallest possible integer

denominators are used, let N be the smallest common
multiple of these denominators. Then ~MN�~z� is the identity
map, whereas ~Mn�~z� is not the identity map for any n < N,
and the following conclusions can be drawn:

Uniqueness of ~n�~z�—rational tunes.—If for some N 2
N, the N-turn spin transport matrix on an invariant torus is
not the identity matrix but the N-turn orbital transport map
is the identity, then an ~n axis exists on this invariant torus
and is unique up to a sign.

To show this, the spin transport matrix RN� ~z� forN turns
around the ring starting at �0 is used. Since it is not the
identity matrix, it describes a rotation around a vector
~eN�~z� which is unique up to a sign. After N turns, the
phase-space transport map is the identity map and the
periodicity condition (7) for an ~n axis ~nN�~z� of the
N-turn spin-orbit system becomes ~nN� ~z� � RN�~z� ~nN�~z�.
The rotation vector ~eN� ~z� is therefore the ~n axis ~nN�~z�,
unique up to a sign. The rotation vector ~eN� ~M�~z�� of
RN� ~M�~z�� is given by �R�~z� ~eN�~z� since

R N� ~M�~z��R�~z� ~eN�~z� � R� ~MN�~z��RN� ~z� ~eN�~z�

� R�~z� ~eN�~z�; (58)

where the fact that ~MN�~z� is the identity map was used. The
rotation vectors are unique up to a sign and ~eN�~z� satisfies
the periodicity condition (7) of an ~n axis up to a possible
sign change,

~e N� ~M� ~z�� � �R�~z� ~eN� ~z�: (59)

Since ~MN� ~z� is the identity map, a particle with initial
phase-space point ~zi can only reach the N phase-space
points Z�~zi� � f~zj ~M

n�~zi�; n 2 f1; . . . ; Ngg which will be
called the trajectory through ~zi. Given that the sign for
~eN�~zi� has been chosen, the sign of the rotation vectors on
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the trajectory through ~zi is chosen so that the � sign in
Eq. (59) is obtained. This equation is then the periodicity
condition (7) for ~eN�~z� and shows that ~n�~z� � ~eN�~z� is an
ISF which is unique up to a sign for each trajectory.
Assuming sufficient smoothness of RN�~z�, the rotation
vector ~eN�~z� also varies smoothly over phase space and
the signs on each trajectory are chosen so that ~n�~z� � ~eN�~z�
is a smooth function on the invariant torus.

Even though it is straightforward to find an ~n axis for
such a system with rational orbital tunes, it is important to
note that an amplitude-dependent spin tune cannot in gen-
eral be computed for this ~n axis, since the dependence of
the spin-rotation angle 2�~� ~J�

~�� on ~� can only be elimi-
nated in Eq. (53) when there is no resonance for the orbital
tunes. The phase-dependent rotation angle has been com-
puted analytically for some systems with rational tunes in
[42,43].

Nonuniqueness of ~n�~z�.—If for some N 2 N, the N-turn
spin transport matrix on the invariant torus and also the
N-turn orbital transport map are identity maps, then an ~n
axis exists but is not unique.

In such a system all orbital tunes are rational and for
each tune Qj, the smallest possible denominator is denoted

here by mj. Let the angle variables ~�0 � 0 correspond to
the point ~z0 in phase space at some azimuth �0. There is a
number k of turns after which a particle, starting at ~z0,
reaches the phase-space point ~zk with angle variables �j �
2�
mj

. We introduce the set of phase-space points P1 �

f ~zj�j 2 
0;
2�
mj
� for all jg and note that the entire torus is

covered by the sets Pn � f~zj�j � nQj 2 
0;
2�
mj
� for all jg

which are obtained by transporting the phase-space points
of P1 n times through the one-turn transport map ~M. At the
fixed azimuth �0, the trajectory Z� ~zi� through a point ~zi
contains N points, each of which is located in one of
the Pn.

Consider a spin field ~f� ~z� which is arbitrarily chosen for
all ~z 2 P1. For all points ~Mn�~z� 2 Pn�1, it is chosen to
satisfy ~f� ~Mn�~z�� � Rn�~z� ~f�~z� for n 2 f1; . . . ; N � 1g. This
defines the spin field on the entire torus.

According to this definition, the periodicity condition
~f� ~M�~z�� � R� ~z� ~f�~z� is satisfied for all ~z 2 Pn with n 2
f1; . . . ; N � 1g. But due to the assumption that ~MN and RN

are identity maps, it is also satisfied for PN and thus for all
of the torus. Therefore ~f�~z� is an ISF, and since it was
chosen arbitrarily for a set of points on the torus, it is not
unique.

IV. THE ADIABATIC SPIN INVARIANT ON PHASE-
SPACE TRAJECTORIES

A. The equation of spin motion on general orbits

As a first step for finding an adiabatic invariant of spin
motion on phase-space trajectories we bring the equation
of spin motion into an appropriate form.
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In general the ISF on the Poincaré section at �0 changes
when parameters such as the beam energy or quadrupole
settings are changed. In other words, if the variable �
describes one of these parameters, then ~n�~z; �� changes
when � varies from the initial setting �i � 0. Of course it
is assumed that an ~n axis exists for every value this
parameter might take. A beam which is polarized along
the ISF with initial polarization jh ~n�~z; 0�ij will remain
polarized closely parallel to ~n�~z; �� while � is changed,
provided the change is slow enough and no very strong
resonance effects diminish the polarization. For example,
when the beam is accelerated slowly, the beam polarization
may be low while Plim � jh ~nij is small, but when the spins
follow the slow change of ~n�~z; �� with energy parameter �,
the beam may have high polarization later, once the energy
has reached a value where Plim is large.

We will prove in this section that spins follow slow
changes of the invariant spin field by showing that the
product JS � ~S � ~n�~z� is an adiabatic invariant. On the
closed orbit, the ISF ~n�~z� is parallel to the one-turn rotation
vector ~n0. The angle between ~n0��� and the spin ~S��� of a
particle traveling on the closed orbit changes little when
the system changes slowly, and therefore also s3��� �
~S��� � ~n0��� was shown to be an adiabatic invariant. This
proof will now be generalized to show that JS � ~S � ~n�~z; ��
changes little along a particle trajectory while the spin
motion ~S and the phase-space motion ~z are subject to
equations of motion which change slowly with the parame-
ter � � "�,

d
d�

~z � ~v�~z; �; ��;
d
d�

~S � ~��~z; �; �� � ~S: (60)

For Hamiltonian motion generated by Htot �
~QT� ~J; �� ~J� "H��; ~�; ~J; ��, these equations of motion

have the form

_~S � A��; ~�; ~J; �� ~S; _~J � �" ~H���; ~�; ~J; ��;

_~� � ~Q� ~J; �� � " ~HJ��; ~�; ~J; ��; _� � ";
(61)

with H�;i �
@
@�i

H, HJ;i �
@
@Ji
H and A � �AT .

We assume that action-angle variables ~J, ~� and an ISF
~n� ~z; �� exist for each � 2 
0; 1� at some azimuth �0. Since
the ~n axis is a spin field, it is propagated around the ring
like ~S in Eq. (60). Note that therefore ~S � ~n is invariant as
long as � does not change. If � changes with �, then ~S is
still a solution of Eq. (60), but ~n�~z���; ����� is not. Even
though ~S � ~n is not an invariant, we will show that it is an
adiabatic invariant.

We also assume that a coordinate system � ~u1; ~u2; ~n�
exists at �0 for each � 2 
0; 1�. To obtain a 2�-periodic
coordinate system, we propagate ~u1 and ~u2 by
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d
d�

~ui � � ~�� � ~n� � ~ui: (62)

This lets spins rotate uniformly around ~n during one turn,
after which their rotation is described by Eq. (56). This
leads to an amplitude-dependent spin tune �� ~J; ��which in
general depends on �. These are nontrivial assumptions,
since during the analysis of the existence of �� ~J� in Sec. III,
the existence of ~u1 and ~u2 was only guaranteed when the
system is strongly non–orbit-resonant, even though there
are simple models like the SRM where �� ~J� exists for orbit
resonances. We also take into account that the tunes
~Q� ~J; �� of phase-space motion depend on the action vari-

ables and on the parameter � which slowly changes the
system.

Using the phase-space-dependent 2�-periodic coordi-
nate system, the spin of a particle with phase-space
coordinate ~z at azimuth � is described by ~S � s1 ~u1 �
s2 ~u2 � JS ~n.

To make use of this new coordinate system, we assume
for " � 0 (which includes � fixed) the existence of a
uniform invariant frame field

U ��; ~�; ~J; �� � � ~u1; ~u2; ~u3� (63)

with the properties:
P1. ~u3 is an invariant spin field ~n (ISF)
P2. U has an SO�3� matrix representation 2� periodic in

� and all the orbital phases �i.

P3. For " � 0, _~S � A��; ~Q� ~J0; ���� ~�0; ~J0; �0� ~S
which has a principal solution matrix

R��; ~�0; ~J0; �0� � U��; ~Q� ~J0; �0��� ~�0; ~J0; �0�

� exp ��� ~J0; �0�J��UT�0; ~�0; ~J0; �0�

(64)

which is analogous to Eq. (19).
P4. The basic relation analogous to Eq. (20) is

D1U� ~QT� ~J; �� ~D2U � A��; ~�; ~J; ��U� �� ~J; ��UJ:

(65)

Here ~D2 is the gradient operator with respect to the depen-
dence of U��; ~�; ~J; �� on ~�.

This is discussed in detail in [6]. Note that the ISF is 2�
periodic and satisfies D1 ~u3��; ~�� � ~QT ~D2 ~u3��; ~�� �
A��; ~�� ~u3.

Again we use the transformation ~S � ~s via

~S � U�w� ~s; w � ��; ~�; ~J; ��; (66)

_~S � _U�w�~s� U�w� _~s; (67)
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_U � D1U� _~�
T ~D2U� _~J

T ~D3U�D4U"

� D1U� ~QT ~D2U� "� ~HT
J
~D2U� ~HT

�
~D3U�D4U�

� AU� �UJ� "� ~HT
J
~D2U� ~HT

�
~D3U�D4U�:

(68)

Now it follows from Eqs. (61) and (68) that

�AU��UJ�~s�"� ~HT
J
~D2U� ~HT

�
~D3U�D4U� ~s�U _~s�AU~s:

(69)

But now UT�w�U�w� � I and so as before, between
Eqs. (26) and (27), we have

U T� ~HT
J
~D2U� ~HT

�
~D3U�D4U�

�:

0 ��3 �2

�3 0 ��1

��2 �1 0

0
BB@

1
CCA: (70)

This again means that the periodic unit vectors depend on
�, and, when � is changed, their variation with � can only
be a rotation around some vector ~��~z; �; ��,

@� ~n � ~�� ~n; @� ~u1 � ~�� ~u1; @� ~u2 � ~�� ~u2:

(71)

With the following notation,

~��w�� ��1;�2;�3�
T; ~��w�� ��1;�2�

T; ~y��s1;s2�
T

(72)

as before in Eq. (30) we have

_~y � ��� ~J; �� � "�3�w��J2 ~y� "J2
~��w�JS;

_JS � " ~�T�w�J2 ~y;
_~J � �" ~H��w�;

_~� � ~Q� ~J; �� � " ~HJ�w�; _� � ": (73)

The transformation ~y � ~x via

~y � exp
�
J2

Z �

0
��� ~J��0�; "�0� � "�3�w��0���d�0

�
~x (74)

gives as in Eq. (33)

_~x � " exp��J2 �J2
~��w�JS;

_JS � " ~�T�w�J2 exp�J2 � ~x;
_~J � �" ~H��w�;

_� � "; _ � �� ~J; �� � "�3��; ��;

_~� � ~Q� ~J; �� � " ~HJ�w�; _� � 1:

(75)

The perturbations to the motion of the action and angle
variables are due to the variation of the equation of phase-
space motion (60) with the parameter �.
-10
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B. Averaging for n-frequency systems

Equations (75) are in a standard form for the method of
averaging. The average over the angle variable ~� of the
perturbation to ~J vanishes for Hamiltonian systems, since
there h@ ~�H�

~�; ~�; ~J; ��i ~� � 0, where the fact is used that
the derivative of a periodic function has zero mean. The
average over the phase  of the perturbation to ~JS also
vanishes. For accelerators, with 6-dimensional phase
space, this system of ordinary differential equations there-
fore has 7 slowly changing variables (JS, �, and the 5
components of ~x and ~J) and 5 rapidly changing variables
( , �, and the 3 components of ~�), for small ". The system
is in the standard form of n frequency (or ‘‘multiphase’’)
averaging theorems ([29], Chap. 6, [32], Sec. 1.9), which
permit the crossing of resonances between all fast varia-
bles. Here we use theorem 2 of [29], Sec. 6.1 which is
attributed to [44].

Theorem.—Consider a system of the form

d
d�

~I � " ~f� ~�; ~I; "�; (76)

d
d�

~� � ~�� ~I� � "g� ~�; ~I; "�; (77)

where ~I belongs to a regular compact subset of Euclidean
Rm and ~� 2 Rn. Each function on the right-hand side is
real valued, C1 in ~I and ", periodic with period 2� in all
�j, and each possesses an analytic extension for �j 2 C,
=f�jg<	 with 	> 0. The associated averaged system is

d
d�
~�I � "~�f�~�I�; ~�f�~�I� �

1

�2��n
Z 2�

0

~f� ~�; ~�I; 0�d ~�;

(78)

with ~�I�0� � ~I�0�. Let the following nondegeneracy condi-
tion (called Arnold’s condition) be satisfied: Assuming the
frequency �n� ~I� � 0 (with no loss of generality, since in
every region at least one frequency will be nonzero), then
the map ~I � ��1� ~I�; . . . ; �n�1� ~I��=�n� ~I� has maximal rank,
equal to n� 1. Then for every continuous function ��"�
with C1

���
"
p

 ��"� 
 C2, C1; C2 2 R�, the set of allowed

initial conditions V is partitioned as V � V0
"; ��"���S
V00
"; ��"�� for sufficiently small " such that

Sup �2
0;1="�j ~I��� �
~�I���j< ��"� (79)

for � ~I�0�; ~��0�� 2 V 0; i.e., for initial conditions in V 0, the
separation between the exact solution and the solution of
the averaged system is less than ��"�. Moreover, the mea-
sure of V 00
"; ��"�� is smaller than C

���
"
p
=��"� for some

C 2 R�.
We point out that there is a slight error in the proof of

this theorem in [44] [because the equality in Eq. (17) of
that paper does not hold in general]; however, this is easily
repaired, as is done between Eqs. (4.9) and (4.13) of [45].
014001
When the frequencies are in resonance, the slow
variables ~I can accumulate large changes and the solu-
tion of the averaged system may not approximate the
original system very well. In the above theorem,
Arnold’s condition ensures that no slow variable Ij can
change at a resonance without moving the system out of
this resonance. Arnold’s condition also has important geo-
metric consequences: requiring the reduced frequency map
~I � ��1� ~I�; . . . ; �n�1� ~I��=�n� ~I� to be of maximal rank
means that preimages (in I-space) of sets in reduced fre-
quency space are nicely structured; in particular, preimages
of resonances among the frequencies are not ‘‘too large.’’
This is made more precise by the so-called preimage
theorem (see for example [46], Sec. 4).

C. Adiabatic invariance of spin motion via
multiphase averaging

We now apply the averaging theorem for n-frequency
systems to Eq. (75) for spin-orbit motion. The frequency
of the variable ~� is 1 and can therefore be used as �n of
Arnold’s condition. The four frequencies � ~Q� ~J; ��; �� ~J; ���
depend on four of the five slow variables and we
assume that the rank is 4 so that the Jacobian matrix
of the four frequencies has nonvanishing determinant,
det �@� ~J;���

~Q; ��� � 0.

Choosing ��"� � "1=4 one finds, for Hamiltonian sys-

tems where ~�J � ~J�0� since h@ ~�H�
~�; ~�; ~J; ��i ~� � 0, that

the set of initial conditions for which Sup�2
0;1="�j ~J��� �
~J�0�j � "1=4 has measure smaller thanC"1=4. The variation
of the action variables ~J for � 2 
0; 1="� therefore tends to
0 with ", except for initial conditions from a set with
measure that also tends to 0 with ". The action variables
are therefore adiabatic invariants as defined in Sec. I, which
is a well known fact.

In addition we find with hexp�J2 �i � 0 that the set of
initial conditions for which Sup�2
0;1="�jJS��� � JS�0�j �

"1=4 has measure smaller than C"1=4. Therefore JS � ~S �
~n� ~z� is an adiabatic invariant as defined in Sec. I.

It should be noted that, as announced in Sec. I, there is
no need to show that JS is an action variable of a
Hamiltonian to establish it as an adiabatic invariant. We
establish it as such by an analysis of the equations of spin-
orbit motion, which is independent of the existence of a
Hamiltonian for spin-orbit motion.
V. SUMMARY AND CONCLUSION

In our investigations of spin-orbit motion, we have used
mathematical techniques to rigorously demonstrate the
existence of adiabatic invariants, first for the simple case
of motion on the closed orbit (Sec. II), then for the more
complex case of motion on general orbits (Sec. IV). The
-11
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last case entails a discussion of the amplitude-dependent
spin tune � and the ~n axis (Sec. III).

For convenience, we provide here a summary of our
main results on invariance, highlighting the relevant
mathematical restrictions and their physical meanings.

First, consider spin-orbit motion on the closed orbit of a
particle accelerator. In order to study the case where the
spin motion (including the spin tune) depends on a slowly
varying parameter �, we transform the spin-orbit equations
of motion into a standard form for a two-frequency aver-
aging principle. In order to apply the averaging principle,
we need to assume that the �-dependent spin tune spends
only brief time intervals near resonance. Mathematically,
this is ‘‘condition A’’ of Sec. II B, and, as we explain at the
end of that section, this weak assumption corresponds to
reasonable physical conditions in an accelerator where
particles are slowly brought to operating energies. We
therefore apply the two-frequency averaging theorem (be-
ginning of Sec. II B), and conclude that s3���, the projec-
tion of a particle’s spin on the spin-rotation axis ~n0, is an
adiabatic invariant. This is expressed more precisely in
Eq. (44) and the remarks that follow.

Consider now the more general situation in a particle
accelerator where the spin-orbit dynamics depends on a
slowly varying parameter �, with the property that for fixed
�, the orbital dynamics is integrable and an invariant spin
field exists. We assume the existence of a uniform invariant
frame field U��; ~�; ~J; �� � � ~u1; ~u2; ~u3� satisfying the prop-
erties P1–P4 following Eq. (63). Mathematical proof of the
existence of this frame field is a difficult and as-yet-
unresolved issue, however numerical experiments indicate
that real machines have such fields to good approximation.
Assuming its existence, we use this frame field to trans-
form the equations of motion into a standard form for
multiphase averaging. Under relatively mild yet explicit
assumptions, the multiphase averaging theorem of
Sec. IV B applies to the transformed equations. Most im-
portant is the assumption that the motion is strongly non–-
orbit-resonant [following Eq. (53)], which means
physically that the orbit tunes remain away from low-order
resonances. It then follows from the theorem that JS �
~S � ~n� ~z� is an adiabatic invariant of spin-orbit motion. To
reiterate, this means that for all but a small set of ‘‘excep-
tional’’ initial conditions, JS remains close to its initial
value on a time scale of O�1="�. As "! 0, both the
measure of the exceptional set and the nearness to the
initial value also vanish, while the length of the time scale
of nearness grows unboundedly.

We believe that an understanding of the issues discussed
in this paper will be important in the design and operation
of particle accelerators with polarized beams, both present
and future, and, as mentioned at the end of the introduction,
we are continuing this work by investigating a more direct
approach to the existence of adiabatic invariants for spin-
orbit motion.
014001
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