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It has been suggested to build a synchrotron-light fa-
cility based on an Energy-Recovery LINAC (ERL) at
Cornell University. For this purpose, it was investigated
to what extent the CESR facilities could be reused. For
this the LINAC must be segmented in sections that are
connected by bends. While there are unexpected ad-
vantages to this design, we are here analyzing the syn-
chrotron radiation that is produced in these bending
sections and that can heat the surface of the supercon-
ducting cavities of the following linac section. In par-
ticular, we investigate how the synchrotron radiation
load on the superconducting niobium RF cavities can
be reduced.

1 Introduction

In the calculations that study an ERL in Cornell’s
CESR tunnel, the superconducting niobium RF cavi-
ties are placed a few meters after the bending section
[1], as shown in Fig. 1. The synchrotron radiation pro-
duced by high energy electrons propagates outward in
a bending magnet, hitting the surface of the RF cav-
ities. This is not desirable since the accumulation of
radiation would result in high enough temperature to
produce breakdown of superconductivity. Furthermore,
it produces photo-emitted electrons which can be accel-
erated and produce a dark current heat load. In this
paper, we investigate the amount of radiation on the
RF cavities, and analyze how it can be reduced.

2 Synchrotron Radiation

The radiated power created per unit length of a bending
magnet by a beam current I with particles of charge q
and mass m is given by

dPtot
dl

=
q

6πε0

β3

(mc2)4
IE4

ρ2
. (1)

∗Georg.Hoffstaetter@cornell.edu

Figure 1: An ERL in an extended CESR tunnel.

The energy of the particles is E and ρ is the bending
radius in the magnet. In reasonable units, one obtains
[2]

dPtot
dl

[

kW

m

]

= 14.097
kW

m
·
I · E4

ρ2

[

m2

A(GeV)4

]

=
C0
ρ2

,

(2)
where in the following evaluations C0 = 155.0Wm for
a current of 100mA and an energy of 3.238GeV, which
is the energy of the second bend in the linac region of
Fig. 1. The four-dimensional power distribution of a
Gaussian distributed particle beam is given by [2]:

dP

dl
(x, x′, y, y′) =

C0
4π2εxεy

{

(

1

ρ
+Kx

)2

+K2y2

}

× exp

(

−
γxx

2 + 2αxxx
′ + βxx

′2

2εx

)

× exp

(

−
γyy

2 + 2αyyy
′ + βyy

′2

2εy

)

(3)

Here, αx,y, βx,y, and γx,y are the Twiss parameters
defined as αx,y = −β′x,y/2 and γx,y = (1 + α2x,y)/βx,y.
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These are not to be confused with the relativistic factors
which are denoted by β and γ without subscript.

To include the 1/γ spread of the radiation [3], we ap-
proximate the angular divergence of synchrotron radia-
tion of an individual particle by a Gaussian with stan-
dard deviation of 1/γ, and take the convolution with
the power formula:

dPγ
dl

(x, y, x′, y′) =

∫ ∞

−∞

∫ ∞

−∞

dP

dl
(x, y, x′ − ξ, y′ − ζ)

×
{

1

2π(1/γ)2
exp

(

−
ξ2 + ζ2

2(1/γ)2

)}
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2ε̃y

)

.

(4)
Here we redefined the constants as

α̃x,y =
αx,y
µx,y

, β̃x,y =
βx,y
µx,y

(5)

γ̃x,y =
γx,y +

1
γ2εx,y

µx,y
, ε̃x,y = µx,y εx,y (6)

µx,y =

√

1 +
βx,y
γ2εx,y

. (7)

3 Computational Tool

Using Eq. (4), we have developed a computer program
that computes the propagation of synchrotron radiation
numerically by propagating the radiation from different
magnet slices to a screen as indicated in Fig. 2. To
investigate cavity walls, the code is written so that the
screen can have an arbitrary angle to the optical axis.
We use BMAD [4] to calculate the Twiss parameters
at any point in the trajectory of the beam, given the
lattice of the ERL.

We then slice each magnet into many small pieces
and project the synchrotron radiation to a planar screen
placed at a certain distance. At this screen we sum the
power ∆P that is radiated by all small slices of width
∆l by ∆P = C0

ρ2
∆l.

As an example, Fig. 3 shows the radiation density at
a screen that is perpendicular to the cavity axis and
directly at the entrance of the first cavity, 2.5m after
the bending magnet. The maximum radiation density
is too large and has to be reduced.

Screen

Beam

Bending Magnet

Synchrotron
Radiation

Figure 2: Propagating synchrotron radiation.
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Figure 3: Radiation profile at the cavity entrance.

If one introduces shielding of the radiation, our for-
mula Eq. (4) no longer works since it assumes that no
object is present in the pathway of the radiation. If
there is such an object, the limits of the integrals in
Eq. (4) will have to be adjusted, which gives a com-
plicated formula that depends on the geometry. This
method is inefficient because the calculation cannot be
generalized.

To overcome this, we modified our program to use
the four-dimensional power distribution Eq. (3) if any
shielding material is present. In this approach, the pro-
gram tests if the beam hits a shield for sufficiently many
particles with different positions and angles. If so, it
propagates the 4-dimensional distribution to the plane
of the obstacle. Our program supports an arbitrary
number of apertures. We assumed that the radiation
that hits an aperture is completely absorbed. Reflec-
tions and secondary particles are not taken into account.

4 Radiation on Cavity Surface

In this section, we compute some analytical estimates
of the radiation power. Some relevant distances are in-
troduced in Fig. 4.

After the beam comes out of the last bending magnet
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Figure 4: Radiation from dipole to cavity.

of the arc in Fig. 1, it transverses a drift distance D
and then enters the cavities as shown in Fig. 4. We
investigate the radiation on a circular tube of radius d
that is meant to approximate the cavity wall.

Parameter Value
ρ [m] 77
d [m] .035
D [m] 2.5
I [A] .1

E [GeV] 3.238
C0 [kWm] 155.0

Table 1: Parameters of the ERL bend.

The linear radiation power density that shines on this
cylindrical cavity surface at a distance x after the start
of the linac section is denoted by d

dx
P . To compute this

power density, we need to find the angle ∆φ of the ray
originating from a point in the arc and hitting the end
of the section at x. As shown in Fig. 4, ∆φ is also the
angle between the ray and the cavity axis,

tan∆φ =
h(∆φ)

L(∆φ)
, (8)

h(∆φ) = d+ ρ (1− cos∆φ) , (9)

L(∆φ) = D + x+ ρ sin∆φ . (10)

To first order in ∆φ this leads to

∆φ =
d

D + x
. (11)

A second order expansion ∆φ leads to

∆φ(x) =
D + x

ρ

[
√

1 +
2dρ

(D + x)2
− 1

]

. (12)

The first order approximation is therefore only valid for
dρ¿ (D+x)2, which is not valid for the parameters of
Tab. 1. The total power P radiated into the cavity is
given by

Ptotal =
C0
ρ
∆φ(0) . (13)

For the parameters in Tab. 1 this is 24W. The power
irradiating the cylindrical wall before x is

P (x) = Ptotal −
C0
ρ
∆φ(x) (14)

Finally, the linear power density is

d

dx
P =

C0
ρ2

{

1−
[

1 +
2dρ

(D + x)2

]− 1
2

}

. (15)

In Fig. 5 (top) the first (dark blue) and second (light
green) order estimation are compared. The first order
treatment is obviously not sufficient. The second or-
der treatment, however, agrees well with the numerical
propagation of the radiation by Eq. (4) in Fig. 5 (bot-
tom).
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Figure 5: Linear power density along the cylindrical
cavity surface. Top: approximation with first order
(dark blue) and second order (light green) treatment.
Bottom: numerical radiation propagation.

Assuming uniform radiation within an opening angle
of 2/γ, the radiation per area on the cylindrical cavity
wall is approximately

d

da
P =

d

dx
P

γ

2L(∆φ(x))
=
γC0d

2ρ

∆φ(x)

(D + x)2 + 2dρ
, (16)

which is shown in Fig. 6. While this is already a very
large radiation load compared to the static heat load of
about 50W/m2 of the planed cavities. However, as in-
dicated in Fig. 4, the cavity has surfaces that are nearly
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Figure 6: Radiation per area on the cylindrical cavity
surface.

perpendicular to the radiation direction. At these sur-
faces the radiation density is larger by 1/ tan∆φ, lead-
ing to a worst case radiation density at the cavity wall
of

d

da
P⊥ =

d

da
P

1

∆φ(x)
=
γC0d

2ρ

1

(D + x)2 + 2dρ
, (17)

which is plotted in Fig. 7.
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Figure 7: Radiation per area on an exposed cavity sur-
face that is perpendicular to the radiation direction:
close to the entrance of the linac (top) and near the
center of the linac section (bottom).

It should be noted that the cavity surface is not per-
pendicular to the radiation direction, since most of the

surface of a cell is shielded by the previous iris. There-
fore only regions close to the irises can be irradiated, as
shown in Fig. 8.
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Figure 8: Radiation inside a cavity.

The cavity is made out of shells [5] with circu-
lar, straight, or elliptical sections as shown in Fig. 9.
The periodicity of the cavity cells is L = 57.692mm,
the center of the circles are located at (xc, yc) =
(2nL,±61.3mm) and the center of the ellipses are lo-
cated at (xe, ye) =

((

n+ 1
2

)

57.692,±54mm
)

. The ra-
dius of the circles is 42mm and the horizontal and
vertical main axes of the ellipses are a = 12mm and
b = 19mm. Neighboring ellipses and circles are con-
nected by a straight line. The onset of this straight line
at the ellipse is at (xe, ye) + (−a sinφ0,−b cosφ0) with
φ0 = 1.212899.

It turns out that radiation with an angle to the optical
axis of less than an angle θm only reaches the elliptical
iris section and not the straight section. This angle is
given by the following formula where c(θ0) = cos(θ0) +
r1−r2
b

and the radii of two successive irises are r1 and
r2, while the irises are a distance L apart,

sin θm = (18)

L
a
− sinφ0 − c(φ0)

√

(L
a
sinφ0 − 1)2 + c(φ0)2 − 1

(L
a
− sinφ0)2 + c(φ0)2

.

Within a cavity one has r1 = r2 = 35mm and very large

incident angles of θ ≥ θ
(1)
m = 0.1185 are required to

irradiate the straight section between iris and equator.
The first iris in each cavity has r1 = 39mm and one

obtains θ
(2)
m = 0.0802.
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Figure 9: Geometrical structure of TESLA cavities [5].

The slope of the elliptic section can then easily be
computed and it can be derived how much larger the
power per area is on the straight or elliptical section of
the cavity than on the cylindrical beam pipe. While
the power on the perpendicular section is enhanced by
1/ tan(θ), on the elliptical iris the enhancement is only
proportional to 1/

√
θ for small angles.

The radiation density along the linac is shown for the
first two unequal irises and for irises inside the cavity in
Fig. 10.

While these power densities are significantly smaller
than those for perpendicular radiation in Fig. 7, they
are still large for a superconducting environment. The
question arises which power density a superconducting
surface can tolerate.

5 Tolerable Power Densities

5.1 Heating

Here we assume that the superconducting cavity is cov-
ered in a 2K Helium bath. The niobium, however, has
a higher temperature for two reasons. (a) There is en-
ergy deposited in the niobium due to RF fields and the
resistivity of the material, and (b) there is a Kapitza
conductance that leads to a temperature jump at the
surface between superconductor and helium. The AC
surface resistance R(T ) of niobium strongly increases
with temperature, so that the deposition of synchrotron
radiation not only increases the power deposition, but
it increases the temperature and thus the power that is
absorbed from the RF field. This in turn increases the
temperature again, leading to further power absorption.
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Figure 10: Radiation per area on an exposed cavity
surface that has the correct slope on the elliptical iris
section. Computed for the second iris, in the shadow of
the first larger iris (dark blue) and for an iris inside a
multi cell TESLA cavity (light green).
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The radiation power density Ps plus the absorbed RF
power 12R(T )H

2 at a magnetic field H constitute the
total absorbed power P , which in turn determines the
temperature T (P ),

Ps +R(T (P ))
1

2
H2 = P . (19)

This implicit equation has to be solved for P , which
leads to the temperature T (P ) at the vacuum side of
the niobium, and the head transport equation leads to
the temperature at the helium side of the material.

Programs are available that perform this procedure
[6]. Results are shown in Tab. 2, where a magnetic field
at the surface of H =840Oe (6.7T) was assumed, cor-
responding to 20MV/m accelerating field. The last row

Ps TNb(He) TNb(Vac.) P
1.0kWm−2 2.46K 2.74K 1.43kWm−2

2.0kWm−2 2.58K 2.96K 2.60kWm−2

2.3kWm−2 2.62K 3.02K 3.01kWm−2

Table 2: Niobium Temperature for helium at 2K.

of this table describes the maximum tolerable radiation
power of 2.3kWm−2. With slightly more synchrotron
radiation power, the temperature increase becomes un-
stable so that no implicit solution P exits. It has to be
noted that this is a conservative estimate of the toler-
able synchrotron power, since the areas with largest H
are close to the equator and are therefore not irradiated.

Short bunches emit a significant part of their radia-
tion spectrum coherently, leading to strongly enhanced
radiation power. For a Gaussian longitudinal bunch
profile with bunch length στ this leads to an increase
in the total emitted power of [7]

P
(N)
coh

P
(N)
incoh

= 0.002237
GeV 4

pC

(mm

m

)
4
3 qbunch

E4

(

ρ

στ

)
4
3

,

(20)
For a bunch length of 0.6mm and a bunch current of
77pC this leads to quite significant coherent synchrotron
radiation as shown in Tab. 3 for the bending radii which
are used in this study. For the shielding factor of the
vacuum pipe we use a formula that has not been derived
for a Gaussian longitudinal profile but for a uniform
distribution of length στ ,

kshield =

(

στ√
3ρ

)
1
3 a

2στ
. (21)

For the distance between the shielding vacuum walls
parallel to the plane of the orbit we use a = 2cm.

For the large bending radii the radiation is completely
dominated by CSR and an enhancement of 86 is possi-
ble, which leads to a total power enhancement of only

ρ[m]
P

(N)
coh

P
(N)
incoh

kshield
P

(N)
tot

P
(N)
incoh

45 0.50 0.33 1.16
77 1.01 0.28 1.28
393 8.9 0.08 1.71
1291 43.5 0.05 3.34

Table 3: Parameters of the ERL bend.

4.9 due to shielding of CSR by a rather tight vacuum
pipe. In the remainder of this report, only the incoher-
ent part of the radiation is computed and plotted since
the coherent radiation is in the infrared and has a much
larger opening angle than the incoherent radiation. Fur-
thermore it reflects very well off the niobium walls [9].
For the planned bunch-length of 0.6mm, coherent radia-
tion is enhanced in the region of ν = c

στ
= 500GHz. At

these frequencies the reflectivity is very close to 100%
and the coherent radiation is therefore distributed over
the total cavity area.

According to [9], photons that are incident on a super-
conducting surface can break Cooper pairs and there-
fore destroy superconductivity. For superconducting
niobium the photon-energy threshold for this process
is about 750GHz or λcut = 0.4mm. At this frequency
the reflectivity jumps to about 98% and slowly increases
with increasing frequency.

5.2 Electron Emission

The synchrotron radiation can also lead to emission of
electrons from the niobium, which in turn can be accel-
erated and can damage vacuum components. For the
parameters of Tab. 1, the characteristic photon energy is

Ec = h̄ωc =
3cγ3

2ρ h̄ = 978eV. The number of photons per

unit time and area is roughly d
da
Ṅph = 15

√
3

8
d
da
P/Ec,

but not all of these photons an energy that is larger
than the work function of niobium, i.e. 4.3eV.

Table 4 gives the total number of photons per Watt of
radiation for the spectrum associated with three differ-
ent magnet radii. Furthermore it specifies the fraction
of these photons with an energy of less than the work
function WF . This fraction has been computed by [8],

N< =

∫ WF

0

dn

dE
dE ,

dn

dE
=

1

h̄2ω

dP

dω
, (22)

dP

dω
=

1

ωc
S

(

ω

ωc

)

, S(x) = x

∫ ∞

x

K 3
2
(ξ)dξ .(23)

The relative number of photons below the energy E is
plotted in Fig. 11.

Assuming a quantum efficiency of 10−4, one can now
compute the number of photons emitted per area when
it is irradiated by 2kWm−2. Since the synchrotron light
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Figure 11: Number of photons below energy E, relative
to the total number of photons for ρ = 77m.

arrives at the cavity approximately simultaneously with
the electrons that created it, the photo-emitted elec-
trons are accelerated away from the iris when a bunch in
the energy recovery phase is passing the iris. Assuming
these photons are focused without magnification onto
the neighboring iris after gaining 2MeV of energy, the
neighboring iris will obtain a sizable heat load due to
this electron radiation. This heat load is shown in the
last column.

ρ(m) Nph(W
−1) N<

Nph

dPe
da

(kWm−2)

77 2.1 · 1016 20% 1.1
393 1.4 · 1017 34% 4.5
1291 5.8 · 1017 49% 11.3

Table 4: The electron radiation density due to photo
emitted and accelerated electrons.

6 Reducing the Synchrotron Ra-
diation: (a) By Shielding

The power densities of Figs. 6 and 7 are much higher
than the 2kWm−2 that are tolerable. The synchrotron
radiation can be reduced in two ways: (1) by shielding
the radiation using a collimator, and (2) by relaxing the
bending radius of dipole magnets.

The shielding aperture is limited by the beam width,
below which the high-energy particles of the order of
a few GeV will hit the shielding material, resulting in
undesirable scattering. Safety concerns force us to make
the window width of the shield much wider than the
beam width, ensuring that very few particles will hit
the shield.

With the parameters of Tab. 1 and the Twiss param-
eters of [1], the standard deviations of the beam distri-
bution are σx = 0.0367 mm and σy = 0.0389 mm. In
our subsequent calculations, the horizontal aperture at

the entrance of the first cavity was chosen to be ±1cm,
which is approximately 272σx.

To get a rough estimate of the effectiveness of shield-
ing, one can use Eq. (10) and solve for x to find
xmin = d/∆φ−D− 12ρ∆φ as the first position to which
radiation can be deposited. The first angle ∆φ for ra-
diation is given by Eq. (12) when x and d are replaced
by the position x0 and the half aperture d0 of the colli-
mator,

∆φ0 =
D + x0

ρ

[
√

1 +
2d0ρ

(D + x0)2
− 1

]

, (24)

xmin =
dρ−D(D + x0)

[√
. . .− 1

]

(D + x0)
[√

1 + 2d0ρ
(D+x0)2

− 1
]

−
1
2 (D + x0)

2[
√
. . .− 1]2

(D + x0)
[√

1 + 2d0ρ
(D+x0)2

− 1
]

=
(d− d0)ρ

(D + x0)
[√

1 + 2d0ρ
(D+x0)2

− 1
] + x0

=
d− d0
∆φ0

+ x0 . (25)

For a collimator just before the linac (x0 = 0) and a half
aperture of 1cm one obtains xmin = 6.61m. In reality,
the collimator could never be so close to the cavity;
here we use this location to get a lower limit on the
radiation load. The radiation density on the cylindrical
cavity wall as obtained from numerical propagation of
radiation is given in Fig. 12. This result corresponds to
the radiation bejond xmin in Fig. 6.
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Figure 12: Radiation power density on cylindrical cavity
surface, after shielding with an aperture of 1cm before
the linac.

This radiation load would be tolerable, however, the
worst case scenario with the rays hitting vertically to a
screen at the distance 6.61m is shown in Fig. 13.
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Figure 13: :Power density on a vertical screen at 6.61m
into the linac section after shielding with an aperture of
1cm before the linac.

7 Reducing the Synchrotron Ra-
diation: (b) By Weakening
Dipole Magnets

Due to the space constraints indicated in Fig. 1, we can-
not blindly increase the bending radius of the dipole.
We investigate two approaches to reduce the syn-
chrotron radiation, while still having all the components
fit roughly in the size of the original space.

7.1 Reduced Magnet Length

One way is to replace only a small section toward the
end of the magnet with an elongated magnet with a
larger bending radius. The radiation that shines into
an aperture of radius da = 1 cm from the dipole magnet
at a distance 2.5m (x0 = 0) is due to less than the
last l = ρφ ≈ 30 cm of the magnet. We can therefore
reduce the length of this dipole and add a second dipole
with substantially larger bending radius that creates the
missing angle. This dipole should have just the right
length so that only radiation from this dipole passes
through the aperture and that Dnew =80cm space is
left between the dipole and the first cavity. The bending
angle of the added dipole is determined by

tan∆φ =
da + (Dold−Dnew

sin∆φ + ρold)(1− cos∆φ)

D + ρold sin∆φ
. (26)

For the specified parameters, the new magnet is 2.11m
long and has a bending radius of ρ′ = 393m. The re-
sulting power per area on the cylindrical beam pipe is
shown in Fig. 14, where the estimate of Eq. (16) was
used. Note that now the first position in the linac that
is reached by radiation is at xmin = 4.64m.
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Figure 14: Estimated radiation density on the cylindri-
cal cavity wall with a longer magnet and a radiation
shield.

Using this estimate can be dangerous, however, since
the finite width and divergence of the radiation source
can cause radiation from the stronger magnet with
ρ = 77m to radiate in the dipole. This causes the radi-
ation density in Fig. 15 to be significantly larger close
to xmni = 4.64m than the estimate would suggest. To
avoid this, the stronger magnet has to be reduced in
length by slightly more than given by Eq. (26).
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Figure 15: Radiation density on the cylindrical cavity
wall with a longer magnet and a radiation shield, ob-
tained by numerical radiation propagation.

While the radiation on the cylindrical surface is suit-
ably small, the more realistic power density on the el-
liptical iris as shown in Fig. 16 is much larger than the
tolarable 2kW/m2.

7.2 Increase Magnet Strength

To reduce the radiation load below 2kWm−2, further
manipulations are necessary. One possibility is to in-
crease the bending radius of the first part of the mag-
net, so that it becomes shorter and leaves more space
for the second magnet with reduced strength.
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Figure 16: Power density on the elliptical iris. Com-
puted for the first second iris (dark blue) and for an iris
inside a multi-cell TESLA cavity (light green).

In the current design, the last dipole has a length of
l = 6m with bending radius ρ = 77m. The total angle
covered by this dipole is φ = l/ρ ≈ 78mrad. If we split
this dipole into two parts and give the first part a radius
of ρ′ = 45m, then it can cover the same angle in about
l = ρ′φ = 3.51m, leaving D = 4.99m of drift space to
the first cavity. The first angle that now shines through
the aperture of d0 = 1cm is determined by Eq. (24) to
be ∆φ = 2.0mrad. Equation (25) determines the first
section in which the radiation reaches the surface to be
at x = 21.65m.

Analogous to the previous procedure we have to re-
duce the bending angle of the strong magnet by ∆φ from
Eq. (26) and we have to add a l′ = 4.34m long magnet
with ρ′ = 1291m. Ignoring the space between the two
magnets, this again leaves a drift space of D = 0.8m.

The radiation density which this scheme produces on
the cylindrical cavity wall and on the elliptical irises is
shown in Figs. 17 (top and bottom). Note that now the
first position in the linac that is reached by the radiation
is at x = 7.43m.

While this radiation load seems acceptably small, it
has to be remembered that a 6 times larger power from
photo-emitted electrons can be expected as shown in
Tab. 4.

7.3 Other Collimation Strategies

To limit the power load, it seems necessary not only to
shield the entrance of the linac, but to reduce the aper-
ture of the higher order mode ferrite dampers to cast
a shadow on each cavity, or to put other x-ray collima-
tors inside the linac at appropriate positions. For this
purpose, it would be suitable to locate the last dipole in
such a way that the complete fist cryomodule of about
15m length is not irradiated. A second collimator after
this cryomodule would then cast an even longer shadow
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Figure 17: Top: Estimated radiation density on the
cylindrical cavity wall with one stronger and one longer
magnet and a radiation shield. Bottom: The more
realistic power density on the elliptical iris.

along the linac. For example, one can place the last
magnet with ρ = 77m about 6m before the linac. An
aperture of 1cm would then cast a shadow of 16.16m on
the cavity walls. A similar collimator after a 15m long
first cryomodule would then cast a shadow to 52.55m
inside the linac. A 1cm aperture after the fourth cry-
omodule at 60m into the linac would finally bring the
total 140m long linac section of Fig. 1 into the shadow.

8 Conclusion

The power density due to x-rays or photo-electrons hit-
ting a superconducting niobium surface in a 2K helium
bath must be limited to 2kWm−2. Achieving this in the
suggested ERL in the CESR tunnel will require many
changes of the dipole arrangements as well as significant
collimation of the synchrotron fan before entering the
linac section. This first analysis shows that these mea-
sures can lead to a reduction of the radiation to about
700Wm−2 for the incoherent radiation. The resulting
power due to photon-emitted electrons can however be
significantly larger. The power from coherent radiation
can be much higher, but it is in the infrared range and is
therefore reflected strongly and therefore is distributed
over the complete cavity surface.
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Several questions remain, however: (a) What x-ray
and particle radiation are created in the collimation pro-
cess, and how do they disturb the superconducting cavi-
ties? (b) Can reflections of synchrotron radiation that is
created upstream of the end of the last magnet be sup-
pressed sufficiently? (c) Can a photo-emitted current
be undesirably focused in a way that the high power
densities would damage the chamber walls?
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