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Abstract

Single-particle dynamics in electron microscopes, ion or electron lithographic instruments, particle accelerators, and
particle spectrographs is described by weakly nonlinear ordinary di!erential equations. Therefore, the linear part of the
equation of motion is usually solved and the nonlinear e!ects are then found in successive order by iteration methods.
When synchrotron radiation is not important, the equation can be derived from a Hamiltonian or a Lagrangian. The
Hamiltonian nature can lead to simpli"ed computations of particle transport through an optical device when a suitable
computational method is used. H. Rose and his school have contributed to these techniques by developing and
intensively using the eikonal method [1}3]. Many ingenious microscopic and lithographic devices were found by Rose
and his group due to the simple structure of this method [4}6]. The particle optical eikonal method is either derived by
propagating the electron wave or by the principle of Maupertuis for time-independent "elds. Maybe because of the
time-dependent "elds which are often required, in the area of accelerator physics the eikonal method has never become
popular, although Lagrange methods had been used sometimes already in early days [7]. In this area classical
Hamilitonian dynamics is usually used to compute nonlinear particle motion. Here the author will therefore derive the
eikonal method from a Hamiltonian quite familiar to the accelerator physics community and reformulate it in
a simplifying way. With the event of high-energy polarized electron beams [8] and plans for high-energy proton beams
[9], nonlinear e!ects in spin motion have become important in high-energy accelerators. The author introduces
a successive approximation for the nonlinear e!ects in the coupled spin and orbit motion of charged particles which
resembles some of the simpli"cations resulting from the eikonal method for the pure orbit motion. ( 2000 Elsevier
Science B.V. All rights reserved.

1. Introduction

The well-known Lagrange variational principle requires

dPLdt"dP[p8 ) q5 !H]dt"0, (1.1)

with the Lagrangian L, Hamiltonian H, and generalized momenta p8 and coordinates q.
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In this principle all variations of q(t) are allowed and therefore the Euler}Lagrange equations of motion
hold,

d

dt
Lq5 L(q, q5 , t)"LqL(q, q5 , t). (1.2)

For relativistic single-particle motion the Lagrangian is

L"!mcJc2!r5 2#er5 )A!eU, (1.3)

where the position r(q) is a function of the generalized coordinates q. The Jacobian matrix r
6
of this function

can be written in the form r
6
"(LqrT)T and has the elements r

ij
"L

qj
r
*
. In this e$cient notation rT is the

transpose of the 3]1 matrix r. The Jacobian matrix of the function r5 (q5 ) is also r
6
since r5"+3

i/1
q5
i
L
qi

r"r
6
q5 .

The generalized momentum is p8 "LqL"r
6
T(mcr5#eA) and the variational principle can thus be written as

dP[p8 Tr
6
~1r5!H] dt"dP[(mcr5#eA)Tr

6
r
6
~1r5!H] dt"dP[mcv2#eATr5!H] dt. (1.4)

If only variations dH/E
are considered which keep the total energy H"E constant, the variational

principle becomes

dH/EP[p8 ) q5 !H] dt"dH/EP p8 ) dq"dH/EP[mcv2#eATr5 ] dt"0. (1.5)

The variational principle for constant total energy is called the principle of Maupertuis. However, in Eq.
(1.5) it does not lead to Euler}Lagrange equations of motion, since not all variations are allowed.

A particle optical device usually has an optical axis or some design curve along which a particle beam
should travel. This design curve R(l) is parameterized by a variable l and the position of a particle in the
vicinity of the design curve has coordinates x and y along the unit vectors e

9
and e

:
in a plane perpendicular

to this curve. This coordinate system is shown in Fig. 1. The third coordinate vector e
-
"dR/dl is tangential

to the design curve and the curvature vector is j"!de
l
/dl.

The unit vectors e
9

and e
:

in the usual Frenet}Serret comoving coordinate system rotate with the torsion
of the design curve. If this rotation is wound back, the equations of motion do not contain the torsion of the
design curve. The position and the velocity are

r"xe
x
#ye

y
#R(l), r5"x5 e

x
#y5 e

y
#hlQ e

l
, (1.6)

with h"1#xi
x
#yi

y
. This method is described in Refs. [3,10] and is mentioned here since design curves

with torsion are becoming important when considering particle motion in helical wigglers, undulators, and
wavelength shifters [11], and for polarized particle motion in helical dipole Siberian Snakes [12].

The variational principle Eq. (1.5) for the three generalized coordinates x(t), y(t), and l(t) can now be written
for the two generalized coordinates x(l) and y(l). This has the following two advantages: (a) The particle
trajectory along the design curve is usually more important than the particle position at a time t, and (b)
Whereas dH/E

does not allow for all variations of the three coordinates, the total energy can be conserved for
all variations of the two coordinates x and y by choosing for each position r the appropriate momentum with

mcv"J(E!eU(r))2/c2!(mc)2. We obtain from Eq. (1.5):

dH/EP p8 ) dq"d P Cmcv2
dt

dl
#evA )

dr
dlD dl"0 (1.7)
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Fig. 1. Curvatures i
x
, i

y
of the design curve and generalized coordinates x, y, and l.

with dr/dl"x@e
x
#y@e

y
#he

l
and dt/dl"Ddr/dlD/v. Since all variations are allowed, the integrand is a very

simple new Lagrangian

I̧ "mcvJx@2#y@2#h2#e(x@A
x
#y@A

y
#hA

l
) (1.8)

which leads to Euler}Lagrange equations of motion

p8
x
"L

x{
I̧ , p8 @

x
"L

x
I̧ , (1.9)

p8
y
"L

y{
I̧ , p8 @

y
"L

y
I̧ . (1.10)

The integral :l
0
I̧ (lI ) dlI is called the eikonal.

Since the Hamiltonian formulation is very common in the area of accelerator physics, we will show how
the eikonal can be derived from a Hamiltonian formulation.

The equations of motion for the three generalized coordinates x(t), y(t), and l(t) can be obtained from the
Hamiltonian

H"eU#Jm2c2#(p8
x
!eA

x
)2#(p8

y
!eA

y
)2#(p8

l
/h!eA

l
)2. (1.11)

In the case of time-independent "elds, H is the conserved total energy E and there are only "ve independent
variables, rather than six. Note that the velocity dependent or non-holonomic [13] boundary condition
H(p(q, q5 ), q, t)"E cannot be included in the Lagrange formalism directly. But in the Hamilton formalism
this can be done. Furthermore, a switch of independent variable from t to l can easily be done in the
Hamiltonian formulation. The Lagrange formulation is therefore abandoned (too easily, as will be shown
later). In the variational condition

dP[x5 p8 x#y5 p8
y
#lQp8

l
!H] dt"0, (1.12)

one can change to the independent variable l as follows:

dP[x@p8
x
#y@p8

y
#(!t@)H!(!p8

l
)] dl"0. (1.13)
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The six canonical coordinates are now x, p8
x
, y, p8

y
, !t, and H, and the new Hamiltonian is given by

H"!p8
l
which has to be expressed as a function of the six coordinates [14,15],

HI "!h[eA
l
#J(H!eU)2!(mc2)2!(p8

x
!eA

x
)2!(p8

y
!eA

y
)2]. (1.14)

In the Hamiltonion formalism it is simple to take advantage of the fact that the total energy is conserved for
time-independent "elds; H@"L

t
HI "0 leads to H"E. Then from the six coordinates only the "rst four

have to be considered, leading to the Lagrangian

I̧ "x@p8
x
#y@p8

y
!HI . (1.15)

From x@"L
p8 x

HI "(h/J )(p8
x
!eA

x
), y@"L

p8 y
HI "(h/J )(p8

y
!eA

y
) where J is the square root in HI , one

obtains

J "hS
(E!eU)2!(mc2)2

x@2#y@2#h2
"mcv

h

Jx@2#y@2#h2
,

(1.16)

p8
x
"

J
h

x@#eA
x
, p8

y
"

J
h

y@#eA
y
, (1.17)

I̧ "mcvJx@2#y@2#h2#e(x@A
x
#y@A

y
#hA

l
) (1.18)

for mcv"J(E!eU)2/c2!(mc)2. The very simple Lagrangian I̧ agrees with the integrand (1.8) of the
eikonal.

In the following, it will be shown how the Hamiltonian and the Lagrangian equations of motion for the
particle trajectory q(l) can be solved in an iterative way. We write a general equation of motion for
a coordinate vector z in the form

z@"f 1(z, l)#f w2(z, l), (1.19)

where we assume that z"0 is a solution of the di!erential equation. Furthermore, we assume z to be small
and let f 1 be linear in the coordinates. We assume that the nonlinear part of the equation of motion can be
expanded in a Taylor series f w2. The linearized equation of motion is solved by a trajectory z

1
(l)"M

1
(l)z

i
which depends linearly on the initial coordinates. For the transport matrix M

1
(l) we therefore have

M
1
@z

i
"f

1
1M

1
z
i

(1.20)

for all coordinate vectors z
i
; f
1
1 being the Jacobian matrix of f 1.

One can write every solution of Eq. (1.19) as z(l)"M
1
(l)f(l), leading to the equation of motion

M
1
@f#M

1
f@"f

1
1M

1
f#fw2(z). (1.21)

The Taylor coe$cients of f(z
i
, l) with respect to the initial coordinates z

i
"f(0) are called aberration

coe$cients. With equation Eq. (1.20), one obtains

z(l)"M
1
(l)Gz

i
#P

l

0

M
1
~1(lI ) f w2(z(lI ))HdlI . (1.22)

Now, we assume that the general solution z(z
i
, l) can be expanded in a power series with respect to the

initial coordinates. Then symbolizing the jth-order Taylor polynomial with [2]
j
, we write the orders up to

114 G.H. Howstaetter / Ultramicroscopy 81 (2000) 111}121



j as z
j
"[z(z

i
, l)]

j
, i.e. we use lower indices to describe the order of z

i
. The upper index in f describes the order

in z, which is in turn a nonlinear function of z
i
. When z

n~1
is known, one can iterate the expansion up to order

n with Eq. (1.22), since

z
n
"M

1
(l)Gz

i
#P

l

0

M
1
~1(lI )[ f w2(z

n~1
)]

nH dlI . (1.23)

The zeroth order of the expansion with respect to the coordinates must vanish, which means that the
trajectory q"0 must satisfy the equation of motion for some momentum p(l). Additionally, we require that
the vector potential on the design curve is gauged to zero. This can always be achieved. The canonical
momentum p then also vanishes for the trajectory q"0. It then follows that the Hamiltonian and the
Lagrangian have no components linear in the coordinates and momenta. When computing trajectories
through a particle optical device, it is customary to normalize the momenta to the initial design momentum
p
0
"p(0). The following two-dimensional generalized coordinates are therefore used:

q"A
x

yB, p"A
p8
x
/p

0
p8
y
/p

0
B, ¸(q, q@, l)" I̧ /p

0
,

p"Lq{
¸, p@"Lq¸, H(q, p, l)"HI /p

0
, q@"LpH, p@"!LqH. (1.24)

The Euler}Lagrange equations lead to the second-order di!erential equations (d/dl)Lq{
¸"Lq¸ for the

two-dimensional vector q.

2. Successive approximation in terms of Hamiltonians

In the Hamilton formalism, one obtains "rst-order equations of motion for the four-dimensional vector
zT"(q

1
, q

2
, p

1
, p

2
). With the antisymmetric matrix J

1
one can write the equation of motion as

J
1
"A

0
1 2

1
1 2

!1
1 2

0
1 2
B, z@"J

1
LzH, (2.1)

with the 2]2 identity and zero matrixes 1
1 2

and 0
1 2

. This structure implies special symmetries for the
transport maps m of particle optics. These maps describe how the "nal phase-space coordinates z

f
"m(z

i
) of

a particle, after #ying through an optical device, are related to the initial coordinates z
i
. These maps are often

weakly nonlinear and can be expanded in a Taylor expansion. The Hamiltonian nature implies that the
Jacobian m

6
"(LzmT)T of any transport map m(z) is symplectic [13], meaning that

m
6
J
1
m
6
T"J

1
. (2.2)

For the successive approximations we separate the equation of motion into its linear and nonlinear part,

z@"J
1
Lz(H2#Hw3). (2.3)

After we have solved for the linear transport matrix z
1
"M

1
z
i
, we can iterate by Eq. (1.23) which takes the

form

z
n
"M

1 Gz
i
#P

l

0

M
1
~1[J

1
LzHw3(z

n~1
)]

n
dlIH. (2.4)
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With the relation m
N
~1J

1
"J

1
m
N
T from Eq. (2.2) this can be written as

z
n
"M

1 Gz
i
#J

1 P
l

0

M
1
T[LzHw3(z

n~1
)]

n
dlIH. (2.5)

The corresponding equation for the aberrations f
n
"M

1
~1z

n
becomes

f
n
"z

i
#J

1 P
l

0

[LfHw3(M
1
f
n~1

)]
n

dlI . (2.6)

This form of the iteration equation is quite simple. However, since Hamiltonian (1.14) is a complicated
function, the evaluation of the four integrals can become very cumbersome.

3. Successive approximation in terms of Lagrangians

In Ref. [3] Rose used a variational principle to derive a successive approximation to nonlinear motion
based on the eikonal. This method iterates position q and momentum p in their nonlinear dependence on the
initial position q

i
and momentum p

i
. Knowing the order n!1 dependence q

n~1
and p

n~1
, one has to

compute q@
n~1

by di!erentiation of q
n~1

or by inversion of p"Lq{
¸(q, q@, l). Then the eikonal can be

evaluated to compute the order n dependence q
n

and p
n
. In general, it can be cumbersome to compute

q@
n~1

and therefore here we derive a new version of the eikonal method, which iterates directly q@
n
rather than

the momentum.
In deriving the simple form of Eq. (2.6), advantage has only been taken of the symplectic "rst-order transfer

matrix. We therefore wish to exploit this advantage again by working with new coordinates which are
identical with the canonical q and p up to "rst order so that the new coordinates lead to the same "rst-order
transport matrix M

1
. To "rst order, one obtains

p"Lq{
¸"

p(s)

p
0

q@#
e

p
0
A
A1

x
A1

y
B#O2(q, q@), (3.1)

where p(s) is the momentum of a particle traveling on the design curve q"0, and the upper index 1 speci"es
the part of the vector potential linear in x and y. We therefore work with the coordinates

Q"A
q

uB"A
q

p(s)

p
0

q@#
e

p
0
A
A1

y
A1

x
BB

. (3.2)

Moreover, it can be shown [3,16}18] that the contribution from the vector potential can be gauged to vanish
whenever there is no longitudinal magnetic "eld B

0
e
l

on the design curve. Then if one investigates
trajectories which start with momentum p

0
in a region free of such a "eld, we have the simple relation

u
i
"q@

i
.

By splitting the Lagrangian into its second-order and its higher-order part, the equation of motion
becomes

Q@"A
q@

u@B"A
p
0

p(s)
u!

e

p(s)
(A1

y

A
1
x
)

Lq¸2 B!A
0

d

dlI
Lq{

¸w3!Lq¸w3B. (3.3)
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After having solved the linearized equation of motion, we obtain with Eq. (1.23)

Q"M
1 GQi

!P
l

0

M
1
~1A

0
d

dlI
Lq{

¸w3!L@q¸w3B dlI H
"M

1 GQi
#J

1 P
l

0

M
1
TA

d

dlI
Lq{

¸w3!Lq¸w3

0 B dlI H. (3.4)

An integration by parts leads to

Q"M
1 GQ

i
!J

1 P
l

0
CM

1
@TA

Lq{
¸w3

0 B#M
1
TA

Lq¸w3

0 BD dlI#J
1 CM

1
TA

Lq{
¸w3

0 BD
l

0
H. (3.5)

Writing the Jacobian as M
1
T"LQ

i
QT

1
"LQ

i
(Q!Q

w2
)T where Q"Q

1
#Q

w2
was split into parts which

depend on Q
i
linearly and nonlinearly, we obtain

M
1
~1Q"Q

i
!J

1 P
l

0

[(LQ
i
(q@T!q@T

w2
))Lq{

¸w3#(LQ
i
(qT!qT

w2
))Lq¸w3] dlI#J

1
[(LQ

i
qT
1
)Lq{

¸w3]l
0

"Q
i
!J

1 P
l

0

[LQ
i
¸w3!(LQ

i
q@T

w2
)Lq{

(¸!¸2)!(LQ
i
qT
w2

)Lq(¸!¸2)] dlI#J
1
[(LQ

i
qT
1
)L@q¸w3]l

0

"Q
i
!J

1 P
l

0

[LQ
i
¸w3#(LQ

i
q@T

w2
)Lq{

¸2#(LQ
i
q@T

w2
)Lq{

¸2

!(LQ
i
q@T

w2
)Lq{

¸!(LQ
i
qT
w2

)
d

dlI
Lq{

¸] dlI#J
1
[(LQ

i
qT
1
)Lq{

¸w3]l
0
. (3.6)

Note that the A@
x
, A@

y
, p(s) and p

0
of Eq. (3.2) drop out of the right-hand side of Eq. (3.6) owing to the

multiplications by the zeros in Eq. (3.5). The second order ¸2 of the Lagrangian is a quadratic form in which
every quadratic combination of the q and q@ can occur. It can be written using a matrix ¸

M
2 as ¸2"QT¸

M
2Q.

Part of the above integrand can be rewritten as

q@T
w2

Lq{
¸2#qT

w2
Lq¸2"QT

w2
¸

M
2Q#QT¸

M
2Q

w2
. (3.7)

For convenience, we write ¸2(a)"aT¸
M
2a. Another integration by parts in Eq. (3.6) leads to

M
1
~1Q"Q

i
!J

1 P
l

0

[LQ
i
(¸w3#¸2(Q

w2
))

#(LQ
i
q{T
w2

)Lq@
1
¸2(Q

1
)#(LQ

i
qT
w2

)Lq
1
¸2(Q

1
)] dlI

#J
1
[(LQ

i
qT
w2

)Lq{
¸#(LQ

i
qT
1
)Lq{

¸w3]l
0
. (3.8)

The "rst part of the integral contains ¸
E
"¸w3#¸2(Q

w2
). The integral :l

0
¸
E

dlI is called the perturbation
eikonal. This scheme embodies the essential requirement that the (n#1)-order dependence of ¸

E
on the
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initial variables Q
i
can be computed already when Q

n~1
is known; Q

n
does not need to be known. For an

iteration of Q
n
, knowledge of Q

n~1
is su$cient. Since q

1
satis"es the "rst-order equation of motion, we can

use the relation Lq
1
¸2(Q

1
)"(d/dl )Lq{1

¸2(Q
1
) to perform another integration by parts,

M
1
~1Q"Q

i
!J

1
LQ

i P
l

0

¸
E

dlI#J
1
[(LQ

i
qT
w2

)Lq{
¸#(LQ

i
qT
1
)Lq{

¸w3!(LQ
i
qT
w2

)Lq{1
¸2(Q

1
)]l

0

"Q
i
!J

1
LQ

i P
l

0

¸
E

dlI#J
1
[(LQ

i
qT)Lq{

¸!(LQ
i
qT
1
)Lq{

¸2!(LQ
i
qT
w2

)Lq{1
¸2(Q

1
)]l

0
. (3.9)

LQ
i
¸
E

is the part of LQ
i
¸ which up to order n in Q

i
does not depend on Q

n
. Similarly the term outside the

integral is simply the part of (LQ
i
qT)Lq{

¸ which up to order n does not depend on Q
n
. We therefore write

(LQ
i
qT)Lq{

¸!(LQ
i
qT
1
)Lq{

¸2!(LQ
i
qT
w2

)Lq{1
¸2(Q

1
)"M(LQ

i
qT)Lq{

¸N
E
. If we now express the Lagrangian in terms

of the aberrations n with Q"M
1
n, we obtain the iteration equation

n
n
"

n
Q

i
!J

1
LQ

i P
l

0

¸
E
(M

1
n
n~1

) dlI#J
1
[M(LQ

i
qT)Lq{

¸N
E
]l
0
. (3.10)

When computing n
n

from n
n~1

with this iteration equation, all parts of the right-hand side which contribute
to higher orders are neglected, as indicated by "

n
. This iteration equation can have several advantages over

the Hamiltonian iteration Eq. (1.23):

(a) The Lagrangian Eq. (1.8) is a much simpler function than the Hamiltonian Eq. (1.14).
(b) The derivative in Eq. (3.10) is performed after the integral has been evaluated. Therefore only one integral

has to be computed and it describes all four coordinates of m
n
.

(c) The fact that the various coordinates are the derivatives with respect to initial conditions yields very
simple relations [19] between the various expansion coe$cients of m

n
, which are the so-called aberration

coe$cients of particle optical devices. These relations can be much simpler than relations entailed by the
symplectic symmetry implicit in the Hamiltonian formulation.

(d) The second pair of coordinates in Eq. (3.2) can be calculated very easily. With Eq. (1.21) and (3.3), the
equation of motion for n is

M
1
n@"A

0
d

dlI
Lq{

¸w3!Lq¸w3B. (3.11)

After having computed q
n
"M

1 2C4
n
n

by iteration, the derivative q@ can then easily be computed as
q@

n
"M

1
@
2C4

n
n

using Eq. (3.11). One thus only needs to iterate the two-dimensional vector q
n

and not
a four-dimensional vector z

n
as in the Hamiltonian iteration procedure.

4. Successive approximation for spin}orbit motion

The time variation of a spin s in the rest frame of a particle is described by the so-called Thomas}BMT
equation s5"X

BMT
]s [20,21] where

X
BMT

"!

q

mcG(ac#1)B
M
#(1#a)B

,
!

c
c
b]EAa#

1

1#cBH (4.1)

with the electric "eld E, the parts of the magnetic "eld B which are perpendicular (o) and parallel (E) to the
particle's velocity, and the anomalous gyro-magnetic factor a"(g!2)/2.
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Changing to the comoving coordinate system of Fig. 1, we obtain s"S
x
e
x
#S

y
e
y
#S

l
e
l

and
s@"(S@

x
!S

l
i
x
)e

x
#(S@

y
!S

l
i
y
)e

y
#(S@

l
#S

x
i
x
#S

y
i
y
)e

l
. The equation of motion for the vector S of these

spin components is then

S@"X]S, X"X
BMT

h

v
Jx@2#y@2#h2!j]e

l
. (4.2)

The equations of motion for the phase-space vector z and the spin S have the form

z@"f (z, l), S@"X(z, l)]S. (4.3)

The general solutions transporting the coordinates along the optical system, starting at the initial values
z
i
, S

i
, is given by the transport map m and the rotation matrix R

M
3SO(3),

z(l)"m(z
i
, l), S(l)"R

M
(z
i
, l)S

i
. (4.4)

In order to "nd the general solution, one could compute the nine coe$cients of the rotation matrix by
solving the di!erential equation

R
ij
(z
i
, l)@"e

ilk
X

l
R

kj
(z
i
, l), (4.5)

where the vector product was expressed by the totally antisymmetric tensor e
ilk

. However, computing the
nine components of the rotation matrix seems ine$cient, since a rotation can be represented by three angles.
It has turned out [22] to be most e$cient to represent the rotation of spins by the quaternion A which gives
the rotation transformation in the SU(2) representation as

A"a
0
1
1
!ia ) r

6
. (4.6)

Here 1
1
is the 2]2 identity matrix and the elements of the vector r

6
are the three two-dimensional Pauli

matrixes. When a rotation by an angle / is performed around the unit vector e, the quaternion representation
of the rotation has a

0
"cos(//2) and a"sin(//2)e. Therefore, a2

0
#a2"1 and the identity transformation is

represented by a
0
"1.

If a particle traverses an optical element which rotates the spin according to the quaternion A and then
passes through an element which rotates the spin according to the quaternion B, the total rotation of the spin
is given by

C"c
0
1
1
!ic ) r

6
"(b

0
1
1
!ib )r

6
) ) (a

0
1
1
!ia )r

6
)

"(b
0
a
0
!b ) a)1

1
!i(b

0
a#ba

0
#b]a) ) r

6
. (4.7)

The concatenation of quaternions can be written in matrix form as

C"A
c
0
c B"B

M A
a
0
a B, B

M
"A

b
0

!b
1

!b
2

!b
3

b
1

b
0

!b
3

b
2

b
2

b
3

b
0

!b
1

b
3

!b
2

b
1

b
0
B. (4.8)

This concatenation of two quaternions can be used to "nd a di!erential equation for the spin rotation.
While propagating along the design curve by a distance dl, spins are rotated by an angle X dl"DXD dl

around the vector X. After having been propagated to l by the quaternion A, a spin gets propagated from l to
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l#dl by the quaternion with b
0
"1 and b"1

2
X dl. The resulting total rotation is given by A#A@ dl and we

obtain the di!erential equation

A
a@
0

a@B"
1

2 A
0 !X

1
!X

2
!X

3
X

1
0 !X

3
X

2
X

2
X

3
0 !X

1
X

3
!X

2
X

1
0 BAa0a B. (4.9)

Writing the matrix as X
M

and the vector as A, the spin orbit equation of motion has the form

z@"f (z, l), A@"X
M
(z, l) A. (4.10)

The starting conditions are z(0)"z
0
, a

0
"1, and a"0. The quaternion A depends on the initial phase-space

coordinates z
i
and can be expanded in a Taylor series with respect to these coordinates. In the following, we

want to devise an iteration method for A
n
, which is the Taylor expansion to order n of A.

The rotation vector X is split into its value on the design curve and its phase-space-dependent part as
X(z, l)"X0(l)#Xw1(z, l). The spin motion on the design curve is given by A@

0
(l)"X

M
0A

0
(l). Similarly, to Eq.

(1.21), spin aberrations are de"ned with respect to the leading order motion. Small phase-space coordinates
will create a rotation which di!ers little from A

0
(l) and we write the phase-space-dependent rotation as

a concatenation of A
0

and the z-dependent rotation (1#d, d) which reduces to the identity for z"0 by
requiring that the aberrations d and d vanish on the design curve. With Eq. (4.8) we obtain

A"A
M
0A

1#d

d B. (4.11)

The quaternion A is now inserted in the di!erential Eq. (4.10) to obtain

A
M
@
0A

1#d

d B#A
M 0A

d@

d@B"(X
M
0#X

M
w1)A

M 0A
1#d

d B. (4.12)

Taking into account the equation on the design curve and the fact that A
M
T
0

describes the inverse rotation of
A
M 0

, we obtain

A
d@

d@B"(A
M
T
0
X
M
w1A

M 0
)A

1#d

d B"XI
M
(z, l) A

1#d

d B. (4.13)

Writing the Taylor expansion to order n in z
i
, one "nally obtains the iteration equation

A
d
n

d
n
B"nP

l

0

XI
M
(z
n
)A

1#d
n~1

d
n~1

B dlI , A
d
0

d
0
B"0. (4.14)

This iteration method was used for the spin transport in the program SPRINT [22] and was evaluated using
MATHEMATICA in Ref. [23].

In the case of successive approximation in terms of the Hamiltonian, the various aberration coe$cients
were related by the symplectic symmetry. With the Lagrange formalism the various aberration coe$cients
were related by their being derivatives of a common integral with respect to di!erent initial coordinates. In
the case of the successive approximation for spin motion, the various aberration coe$cients in d and d are
related by the relation (1#d)2#d2"0.
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