## RF in Accelerators

$$
\left.\left.\begin{array}{l}
\vec{\nabla} \times \vec{E}=-\partial_{t} \vec{B} \\
\vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \partial_{t} \vec{E}+\mu_{0} \vec{j}
\end{array}\right\} \vec{\nabla} \times(\vec{\nabla} \times \vec{E})=-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E}-\mu_{0} \partial_{t} \vec{j}, \vec{B}\right)=-\frac{1}{c^{2}} \partial_{t}^{2} \vec{B}-\mu_{0} \vec{\nabla} \times \vec{j}
$$

Wave guides:
Wave equation for all components

$$
\begin{aligned}
& \vec{\nabla}^{2} \vec{E}=\frac{1}{c^{2}} \partial_{t}^{2} \vec{E} \\
& \vec{\nabla}^{2} \vec{B}=\frac{1}{c^{2}} \partial_{t}^{2} \vec{B}
\end{aligned}
$$

$\left.\vec{\nabla} \times \vec{E}=-\partial_{t} \vec{B}\right\} \vec{\nabla}_{\perp} \times \vec{E}_{\perp}=-\partial_{t} \vec{B}_{z}$
$\left.\vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \partial_{t} \vec{E}\right\} \vec{\nabla}_{\perp} \times \vec{B}_{\perp}=\frac{1}{c^{2}} \partial_{t} \vec{E}_{z}$

$$
\left.\begin{array}{l}
\vec{\nabla} \cdot \vec{E}=0 \\
\vec{\nabla} \cdot \vec{B}=0
\end{array}\right\} \vec{\nabla}_{\perp} \cdot \vec{E}_{\perp}+\partial_{z} E_{z}=0 \cdot \vec{B}_{\perp}+\partial_{z} B_{z}=0
$$

Search for simple modes:
Transverse electric and magnetic (TEM) waves cannot exists, since:
$E_{z}=0$ and $B_{z}=0 \Rightarrow \vec{E}_{\perp}=0$ and $\vec{B}_{\perp}=0$

## TE and TM Modes

Fourier expansion of the z-dependence: $\vec{E}(x, y, z, t)=\int \vec{E}_{k_{z} \omega}(x, y) e^{i k_{z} z-i \omega t} d k_{z} d \omega$ $\vec{\nabla}^{2} \vec{E}=\frac{1}{c^{2}} \partial_{t}^{2} \vec{E} \quad \Rightarrow \quad \vec{\nabla}_{\perp}^{2} E_{z}=-\left[\left(\frac{\omega}{c}\right)^{2}-k_{z}^{2}\right] E_{z}$
$\vec{\nabla}^{2} \vec{B}=\frac{1}{c^{2}} \partial_{t}^{2} \vec{B} \quad \rightarrow \quad \vec{\nabla}_{\perp}^{2} B_{7}=-\left[\left(\frac{\omega}{r}\right)^{2}-k_{7}^{2}\right] B_{7}$
Eigenvalue equation with boundary conditions:
$\vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \partial_{t} \vec{E}$
$\vec{\nabla}_{\perp} \times B_{z}+i k_{z} \vec{e}_{z} \times \vec{B}_{\perp}=-i \omega \frac{1}{c^{2}} \vec{E}_{\perp}$
$\vec{\nabla}_{r} \times B_{z}+i k_{z} \vec{e}_{z} \times \vec{B}_{r}=-i \omega \frac{1}{c^{2}} \vec{E}_{\varphi} \Rightarrow \partial_{r} B_{z}=0$
Walls:
$\vec{E}_{/ /}=0 \quad \vec{B}_{r}=0$
$E_{z}=0 \quad \partial_{r} B_{z}=0$

Solutions for E or B only exist for a discrete set of eigenvalues: $\left(\frac{\omega}{c}\right)^{2}-k_{z}^{2}=k_{n}^{(E)^{2}}$

$$
\left(\frac{\omega}{c}\right)^{2}-k_{z}^{2}=k_{n}^{(B)^{2}}
$$

Due to different boundary conditions, $\mathrm{E}_{\mathrm{z}}$ and $\mathrm{B}_{\mathrm{z}}$ cannot simultaneously be nonzero. TE modes have $E_{z}=0$ TM modes have $B_{z}=0$

## Dispersion relation

$$
\omega\left(k_{z}\right)=c \sqrt{A_{n}^{2}+k_{z}^{2}}
$$

Phase velocity $v_{p h}=\omega / k_{z}=c \sqrt{1+\left(\frac{A_{n}}{k_{z}}\right)^{2}}>c$
Group velocity $v_{g r}=d \omega / d k_{z}=c / \sqrt{1+\left(\frac{A_{n}}{k_{z}}\right)^{2}}<c$
For each excitation frequency $\omega$ one obtains a propagation in the wave guide of $e^{i k_{z} z}, \quad k_{z}=\sqrt{\left(\frac{\omega}{c}\right)^{2}-A_{n}^{2}}$


Transport for $\omega$ above the cutoff frequency $\omega>\omega_{n}=c A_{n}$
$k_{z}$
Damping for $\omega$ below the cutoff frequency $\omega<\omega_{n}=c A_{n}$

## Rectangular Wave Guide

Boundary conditions:

$$
\begin{gathered}
E_{z}\left(\vec{x}_{0}\right)=0 \quad \vec{\nabla}_{\perp}^{2} E_{z}=\left[k_{z}^{2}-\left(\frac{\omega}{c}\right)^{2}\right] E_{z} \\
E_{z}(\vec{x})=E_{z} \sin \left(\frac{n \pi}{a} x\right) \sin \left(\frac{m \pi}{b} y\right) \\
\left(\frac{\omega}{c}\right)^{2}-k_{z}^{2}=k_{n m}^{(B) 2}=\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2} \\
\partial_{r} B_{z}\left(\vec{x}_{0}\right)=0 \quad \vec{\nabla}_{\perp}^{2} B_{z}=\left[k_{z}^{2}-\left(\frac{\omega}{c}\right)^{2}\right] B_{z} \\
B_{z}(\vec{x})=B_{z} \cos \left(\frac{n \pi}{a} X\right) \cos \left(\frac{m \pi}{b} y\right) \\
\quad\left(\frac{\omega}{c}\right)^{2}-k_{z}^{2}=k_{n m}^{(E) 2}=\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}
\end{gathered}
$$



TE and TM modes happen to have the same eigenvalues.
For simplicity one still looks at TE and TM modes separately.

## Rectangular TE Modes

## CHESS \& LFPP

Boundary conditions: $E_{z}(\vec{x})=0$

$$
\vec{E}_{/ /}\left(\vec{x}_{0}\right)=0
$$

$$
\left.E_{x}(\vec{x})=\left[A \cos \left(\frac{n \pi}{a} x\right)+B \sin \left(\frac{n \pi}{a} x\right)\right] \sin \frac{m \pi}{b} y\right)
$$

$$
E_{y}(\vec{x})=\sin \left(\frac{n \pi}{a} x\right)\left[C \cos \left(\frac{m \pi}{b} y\right)+D \sin \left(\frac{m \pi}{b} y\right)\right]
$$



$$
\vec{\nabla}_{\perp} \cdot \vec{E}_{\perp}=0 \Rightarrow D=0, \quad B=0, \quad C=-A \frac{n}{a} \frac{b}{m}
$$

$$
\vec{\nabla}_{\perp} \times \vec{E}_{\perp}=i \omega B_{z} \cos \left(\frac{n \pi}{a} x\right) \cos \left(\frac{m \pi}{b} y\right) \Rightarrow A \frac{b}{m \pi} \underbrace{\left[\left(\frac{m \pi}{b}\right)^{2}+\left(\frac{n \pi}{a}\right)^{2}\right]}_{k_{m}^{(G)}}=-i \omega B_{z}
$$

$$
\begin{gathered}
\vec{B}_{r}\left(\vec{x}_{0}\right)=0 \quad B_{x}(\vec{x})=\sin \left(\frac{n \pi}{a} x\right)\left[C^{\prime} \cos \left(\frac{m \pi}{b} y\right)+D^{\prime} \sin \left(\frac{m \pi}{b} y\right)\right] \\
B_{y}(\vec{x})=\left[A^{\prime} \cos \left(\frac{n \pi}{a} x\right)+B^{\prime} \sin \left(\frac{n \pi}{a} x\right)\right] \sin \left(\frac{m \pi}{b} y\right) \\
\vec{\nabla}_{\perp} \times \vec{B}_{\perp}=0 \quad \Rightarrow \quad D^{\prime}=0, \quad B^{\prime}=0, \quad C^{\prime}=A^{\prime} \frac{n}{a} \frac{b}{m} \\
\vec{\nabla}_{\perp} \cdot B_{\perp}=-i k_{z} B_{z} \cos \left(\frac{n \pi}{a} x\right) \cos \left(\frac{m \pi}{b} y\right) \quad \Rightarrow \quad A^{\prime} \frac{b}{m \pi} k_{n m}^{(E) 2}=-i k_{z} B_{z}
\end{gathered}
$$

## Rectangular TE and TM Modes



## Cylindrical Wave Guides

TM Modes:
$E_{z}\left(\vec{x}_{0}\right)=0 \quad \vec{\nabla}_{\perp}^{2} E_{z}=\left[k_{z}^{2}-\left(\frac{\omega}{c}\right)^{2}\right] E_{z}$
$\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\varphi}^{2}\right) E_{z}=\left[k_{z}^{2}-\left(\frac{\omega}{c}\right)^{2}\right] E_{z}$
$\left(\xi^{2} \partial_{\xi}^{2}+\xi \partial_{\xi}+\xi^{2}-n^{2}\right) E_{z}=0, \quad \xi=k_{n m}^{(E)} r$
$E_{z}(\vec{x})=E_{z} J_{n}\left(k_{n m}^{(B)} r\right) e^{i n \varphi} \quad k_{n m}^{(B)}$ is the $\mathrm{m}^{\text {th }} 0$ of the $\mathrm{n}^{\text {th }}$ Bessel function over r .
TE Modes:
$\partial_{r} B_{z}\left(\vec{x}_{0}\right)=0$
$B_{z}(\vec{x})=B_{z} J_{n}\left(k_{n m}^{(E)} r\right) e^{i n \varphi} \quad k_{n m}^{(E)}$ is the $\mathrm{m}^{\text {th }}$ extremeum of $\mathrm{J}_{n}$ over $r$.
Notation: $\mathrm{TE}_{\mathrm{nm}}$ Mode

## 184

## Fundamental Mode

Mode for particle acceleration: $\mathrm{TM}_{01} \quad E_{z}(\vec{x})=E_{z} J_{0}\left(\frac{r}{r_{0}}\right) \cos \left(k_{z} Z-\omega t\right)$ $E_{r}(\vec{x})=-E_{z} r_{1} k_{z} J_{0}{ }^{\prime}\left(\frac{r}{r_{1}}\right) \sin \left(k_{z} Z-\omega t\right)$
$E_{\varphi}(\vec{x})=0$
$B_{r}(\vec{x})=0$

$B_{\varphi}(\vec{x})=-E_{z} r_{1} \frac{\omega}{c^{2}} J_{0}{ }^{\prime}\left(\frac{r}{r_{1}}\right) \sin \left(k_{z} z-\omega t\right)$


## Resonant Cavities



## Resonant Cavities Examples

Rectangular cavity:


$$
\omega_{n m l}^{(E / B)}=C \sqrt{\left(\frac{n \pi}{L_{x}}\right)^{2}+\left(\frac{m \pi}{L_{y}}\right)^{2}+\left(\frac{l \pi}{L_{z}}\right)^{2}}
$$

Fundamental acceleration mode: $\omega_{110}^{(B)}=c \frac{\pi}{L} \sqrt{2}$

$$
L_{x}=L_{y}=22 \mathrm{~cm} \Rightarrow f_{110}^{(B)}=1.0 \mathrm{GHz}
$$

Pill Box cavity:

$$
\omega_{n m}^{(E / B)}=c \sqrt{k_{n m}^{(E / B) 2}+\left(\frac{l \pi}{L}\right)^{2}}
$$

$k_{n m}^{(B)} r \quad$ is the $\mathrm{m}^{\text {th }} 0$ of the $\mathrm{n}^{\text {th }}$ Bessel function. $k_{n m}^{(E)} r \quad$ is the $\mathrm{m}^{\text {th }}$ extremeum of $\mathrm{J}_{\mathrm{n}}$
Fundamental acceleration mode: $\omega_{010}^{(E)}=c \frac{2.4}{r}$

$$
r=11 \mathrm{~cm} \Rightarrow f_{010}^{(M)}=1.0 \mathrm{GHz}
$$

## Cavity Operation

## 500 MHz Cavity of DORIS:

$$
r=23.1 \mathrm{~cm} \Rightarrow f_{010}^{(M)}=0.4967 \mathrm{GHz}
$$


$\rightarrow$


The frequency is increased and tuned by a tuning plunger.

- An inductive coupling loop excites the magnetic field at the equator of the cavity.


## Superconducting Cavities



$$
Q=10^{10}
$$

$\mathrm{E}=20 \mathrm{MV} / \mathrm{m}$


A bell with this Q would ring for a year.

- Very low wall losses.
- Therefore continuous operation is possible.
- Energy recovery becomes possible.


## Normal conducting cavities

- Significant wall losses.
- Cannot operate continuously with appreciable fields.
- Energy recovery was therefore not possible.


## Multicell Cavities

The filed in many cells can be excited by a single power source and a single input coupler in order to have the voltage of several cavities available.
coupling slots RF coupling loop


Without the walls: Long single cavity with too large wave velocity. $\quad v_{\mathrm{ph}}=\frac{\omega}{k}$
Thick walls: shield the particles from regions with decelerating phase.

## Modes in Waveguides

The iris size is chosen to let the phase velosity equal the particle velocity.


Long initial settling or filling time, not good for pulsed operation.


Small shunt impedance per length.


## 191

## Disc Loaded Waveguides

The iris size is chosen to let the phase velocity equal the particle velocity.



Traveling wave cavity (wave guide).


## The Klystron as Power Source

CHESS \%: LEPP


