Macroscopic Fields in Accelerators

E has a similar effect as $\vee B$.

$$
\frac{d}{d t} \vec{p}=q(\vec{E}+\vec{v} \times \vec{B})
$$

For relativistic particles $B=1 \top$ has a similar effect as
$E=c B=310^{8} \mathrm{~V} / \mathrm{m}$, such an
Electric field is beyond technical limits.

- Electric fields are only used for very low energies or
- For separating two counter rotating beams with

Magnetic Fields in Accelerators

Static magnetic fileds: $\partial_{t} \vec{B}=0 ; \quad \vec{E}=0 \quad$ Charge free space: $\vec{j}=0$

$$
\begin{array}{ll}
\vec{\nabla} \times \vec{B}=\mu_{0}\left(\vec{j}+\varepsilon_{0} \partial_{t} \vec{E}\right)=0 & \Rightarrow \vec{B}=-\vec{\nabla} \psi(\vec{r}) \\
\vec{\nabla} \cdot \vec{B}=0 & \Rightarrow \vec{\nabla}^{2} \psi(\vec{r})=0
\end{array}
$$

For finite fields on the design curve, Ψ can be power expanded in x and y :

$$
\psi(x, y, z)=\sum_{n, m=0}^{\infty} b_{n m}(z) x^{n} y^{m}
$$

Surfaces of Equal Potential

Green's Theorem

$$
\vec{\nabla}^{2} \psi=0
$$

Green function:

$$
\begin{aligned}
\vec{\nabla}_{0}^{2} G\left(\vec{r}, \vec{r}_{0}\right)=\delta\left(\vec{r}-\vec{r}_{0}\right) \quad \psi(\vec{r}) & =\int_{V} \psi\left(\vec{r}_{0}\right) \delta\left(\vec{r}-\vec{r}_{0}\right) d^{3} \vec{r}_{0} \\
& =\int_{V}\left[\psi\left(\vec{r}_{0}\right) \vec{\nabla}_{0}^{2} G-G \vec{\nabla}_{0}^{2} \psi\left(\vec{r}_{0}\right)\right] d^{3} \vec{r}_{0} \\
& =\int_{V} \vec{\nabla}_{0}\left[\psi\left(\vec{r}_{0}\right) \vec{\nabla}_{0} G-G \vec{\nabla}_{0} \psi\left(\vec{r}_{0}\right)\right] d^{3} \vec{r}_{0} \\
& =\int_{\partial V}\left[\psi\left(\vec{r}_{0}\right) \vec{\nabla}_{0} G-G \vec{\nabla}_{0} \psi\left(\vec{r}_{0}\right)\right] \cdot d^{2} \vec{r}_{0} \\
& =\int_{\partial V}\left[\psi\left(\vec{r}_{0}\right) \vec{\nabla}_{0} G+\vec{B}\left(\vec{r}_{0}\right) G\right] \cdot d^{2} \vec{r}_{0}
\end{aligned}
$$

Knowledge of the field and the scalar magnetic potential on a closed surface inside a magnet determines the magnetic field for the complete volume which is enclosed.

Potential Expansion

If field data in a plane (for example the midplane of a cyclotron or of a beam line magnet) is known, the complete filed is determined:

$$
\begin{gathered}
\psi(x, y, z)=\sum_{n=0}^{\infty} b_{n}(x, z) y^{n} \Rightarrow \vec{B}(x, 0, z)=-\left(\begin{array}{r}
\partial_{x} b_{0}(x, z) \\
b_{1}(x, z) \\
\partial_{z} b_{0}(x, z)
\end{array}\right) \\
0=\vec{\nabla}^{2} \psi=\sum_{n=0}^{\infty}\left(\partial_{x}^{2}+\partial_{z}^{2}\right) b_{n} y^{n}+\sum_{n=2}^{\infty} n(n-1) b_{n} y^{n-2} \\
=\sum_{n=0}^{\infty}\left[\left(\partial_{x}^{2}+\partial_{z}^{2}\right) b_{n}+(n+2)(n+1) b_{n+2}\right] y^{n} \\
b_{n+2}(x, z)=-\frac{1}{(n+2)(n+1)}\left(\partial_{x}^{2}+\partial_{y}^{2}\right) b_{n}(x, z)
\end{gathered}
$$

Data of the magnetic field in the plane $y=0$ is used to determine $b_{0}(x, z)$ and $b_{1}(x, z)$.

Complex Potentials

$$
\begin{aligned}
& w=x+i y \quad, \quad \bar{w}=x-i y \\
& \partial_{x}=\partial_{w}+\partial_{\bar{w}}, \quad \partial_{y}=i \partial_{w}-i \partial_{\bar{w}}=i\left(\partial_{w}-\partial_{\bar{w}}\right) \\
& \vec{\nabla}^{2}=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}=\left(\partial_{w}+\partial_{\bar{w}}\right)^{2}-\left(\partial_{w}-\partial_{\bar{w}}\right)^{2}+\partial_{z}^{2}=4 \partial_{w} \partial_{\bar{w}}+\partial_{z}^{2} \\
& \psi=\operatorname{Im}\left\{\sum_{\nu, \lambda=0}^{\infty} a_{\nu \lambda}(z) \cdot(w \bar{w})^{\lambda} \bar{w}^{\nu}\right\} \\
& \vec{\nabla}^{2} \psi=\operatorname{Im}\left\{\sum_{v=0, \lambda=1}^{\infty} 4 a_{v \lambda}(\lambda+v) \lambda(w \bar{w})^{\lambda-1} \bar{w}^{v}+\sum_{v=0, \lambda=0}^{\infty} a_{\nu \lambda}^{\prime \prime}(w \bar{w})^{\lambda} \bar{w}^{v}\right\} \\
& =\operatorname{Im}\left\{\sum_{v, \lambda=0}^{\infty}\left[4(\lambda+1+v)(\lambda+1) a_{v \lambda+1}+a_{v \lambda}\right](w \bar{w})^{\lambda} \bar{w}^{\nu}\right\}=0 \\
& \text { Iteration equation: } a_{v \lambda+1}=\frac{-1}{4(\lambda+1+v)(\lambda+1)} a_{v \lambda}^{\prime \prime} \quad, \quad a_{v 0}=\Psi_{v}(z)
\end{aligned}
$$

The functions $\Psi_{v}(z)$ along a line determine the complete field inside a magnet.

Multipole Coefficients

$\Psi_{v}(z)$ are called the z-dependent multipole coefficients

$$
\begin{aligned}
& \psi(x, y, z)=\operatorname{Im}\left\{\sum_{v, \lambda=0}^{\infty} \frac{(-1)^{\lambda} v!}{(\lambda+v)!\lambda!}\left(\frac{w \bar{w}}{4}\right)^{\lambda} \bar{w}^{\nu} \Psi_{v}^{[2 \lambda]}(z)\right\} \\
& \psi(r, \varphi, z)=\sum_{v, \lambda=0}^{\infty} \frac{(-1)^{\lambda} v!}{(\lambda+v)!\lambda!}\left(\frac{r}{2}\right)^{2 \lambda} r^{\nu} \operatorname{Im}\left\{\Psi_{v}^{[2 \lambda]}(z) e^{-i v \varphi}\right\}
\end{aligned}
$$

The index v describes C_{v} Symmetry around the z-axis \vec{e}_{z} due to a sign change after $\Delta \varphi=\frac{\pi}{v}$

Fringe Fields and Main Fields

Only the fringe field region has terms with $\lambda \neq 0$ and $\partial_{z}^{2} \psi \neq 0$
Main fields in accelerator physics: $\lambda=0, \quad \partial_{z}^{2} \psi=0$

$$
\left.\begin{array}{l}
\Psi_{\nu}=\left\{\begin{array}{c}
e^{i v \vartheta_{v}}\left|\Psi_{v}\right| \\
\text { for } \\
i \\
i
\end{array}\left|\Psi_{0}\right| \text { for } \quad v=0\right.
\end{array}\right\} \begin{aligned}
& \psi(r, \varphi)=\sum_{v=1}^{\infty} r^{v}\left|\Psi_{v}\right| \operatorname{Im}\left\{e^{-i v\left(\varphi-\vartheta_{v}\right)}\right\}+\left|\Psi_{0}\right|
\end{aligned}
$$

Main Field Potential

Main field potential:

$$
\psi=\left|\Psi_{0}\right|-\sum_{v=1}^{\infty} r^{\nu}\left|\Psi_{v}\right| \sin \left[v\left(\varphi-\vartheta_{v}\right)\right]
$$

The isolated multipole: $\quad \psi=-r^{\nu}\left|\Psi_{\nu}\right| \sin (\nu \varphi)$
Where the rotation ϑ_{v} of the coordinate system is set to 0

The potentials produced by different multipole cont $\$$
a) Different rotation symmetry C_{v}
b) Different radial dependence r^{v}

Multipoles in Accelerators

$\mathrm{v}=0$: Solenoids

$$
\binom{\ddot{x}}{\ddot{y}}=\frac{q B_{z}}{m \gamma}\binom{\dot{y}}{-\dot{x}}+\frac{q B_{z}^{\prime} \dot{Z}}{2 m \gamma}\binom{y}{-x}
$$

$$
\Downarrow
$$

$$
\ddot{w}=-i \frac{q B_{z}}{m \gamma} \dot{w}-i \frac{q \dot{B}_{z}}{2 m \gamma} w
$$

$$
\begin{aligned}
\psi & =\Psi_{0}(z)-\frac{w \bar{w}}{4} \Psi_{0}^{\prime \prime}(z) \pm \ldots \\
\vec{B} & =\left(\begin{array}{l}
\frac{x}{2} \Psi_{0}^{\prime \prime} \\
\frac{y}{2} \Psi_{0}^{\prime \prime} \\
-\Psi_{0}^{\prime}
\end{array}\right) \Rightarrow \vec{\nabla} \cdot \vec{B}=0 \\
g & =\frac{q B_{z}}{2 m \gamma} \quad, \quad w_{0}=w e^{i \int_{0}^{t} g d t} \\
\ddot{w}_{0} & =\left(\ddot{w}+i 2 g \dot{w}+i g \dot{g}-g^{2} w\right) e^{\int_{0}^{t} g d t} \\
& =-g^{2} w_{0} \\
\ddot{x}_{0} & =-g^{2} x_{0} \quad \text { Focusing in a rotating } \\
\ddot{y}_{0} & =-g^{2} y_{0} \quad \text { coordinate system }
\end{aligned}
$$

Solenoid vs. Strong Focusing

If the solenoids field was perpendicular to the particle's motion,
its bending radius would be $\rho_{z}=\frac{p}{q B_{z}}$
$\ddot{r}=-\left(\frac{q B_{z}}{2 m \gamma}\right)^{2} r=-\frac{q v_{z}}{m \gamma} B_{z} \frac{r}{4 \rho_{z}}$
Solenoid focusing is weak compared to the deflections created by a transverse magnetic field.

Transverse fields: $\quad \vec{B}=B_{x} \vec{e}_{x}+B_{y} \vec{e}_{y}$

$$
m \gamma\left(\begin{array}{c}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array}\right)=q\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right) \times\left(\begin{array}{c}
B_{x} \\
B_{y} \\
0
\end{array}\right) \Rightarrow\binom{\ddot{x}}{\ddot{y}}=\frac{q v_{z}}{m \gamma}\binom{-B_{y}}{B_{x}} \text { Strong focusing }
$$

Weak focusing < Strong focusing by about r / ρ

Solenoid Focusing

CHESS \% LEPP

Solenoid magnets are used in detectors for particle identification via $\rho=\frac{p}{q B}$
The solenoid's rotation $\dot{\varphi}=-\frac{q B_{z}}{2 m \gamma}$ of the beam is often compensated by a reversed solenoid called compensator.

Solenoid or Weak Focusing:
Solenoids are also used to focus low γ beams: $\quad \ddot{w}=-\left(\frac{q B_{z}}{2 m \gamma}\right)^{2} w$
Weak focusing from natural ring focusing:

Multipoles in Accelerators

v=1: Dipoles

Equipotential $y=$ const.
 $$
y=\text { const }
$$

$$
\psi=\Psi_{1} \operatorname{Im}\{x-i y\}=-\Psi_{1} \cdot y \Rightarrow \vec{B}=-\vec{\nabla} \psi=\Psi_{1} \vec{e}_{y}
$$

C_{1} Symmetry

Dipole magnets are used for steering the beams direction

$$
\frac{d \vec{p}}{d t}=q \vec{v} \times \vec{B} \Rightarrow \frac{d p}{d t}=q v B_{\perp} \Rightarrow \rho=\frac{d l}{d \varphi}=\frac{v d t}{d p / p}=\frac{p}{q B_{\perp}}
$$

Bending radius: $\rho=\frac{p}{q B}$

Dipole Fields

63
 Where is the vertical Dipole?

CHESS \& LFPP

$$
\psi=\Psi_{2} \operatorname{Im}\left\{(x-i y)^{2}\right\}=-\Psi_{2} \cdot 2 x y \Rightarrow \vec{B}=-\vec{\nabla} \psi=\Psi_{2} 2\binom{y}{x}
$$

C_{2} Symmetry

In a quadrupole particles are focused in one plane and defocused in the other plane. Other modes of strong focusing are not possible.

Quadrupole Fields

Real Quadrupoles

Sextupole Fields

CHESS \% LEPP

Real Sextupoles

Higher order Multipoles

$$
\psi=\Psi_{n} \operatorname{Im}\left\{(x-i y)^{n}\right\}=\Psi_{n} \cdot\left(\ldots-i n x^{n-1} y\right) \Rightarrow \vec{B}(y=0)=\Psi_{n} n\binom{0}{x^{n-1}}
$$

Multipole strength: $k_{n}=\left.\frac{q}{p} \partial_{x}^{n} B_{y}\right|_{x, y=0}=\frac{q}{p} \Psi_{n+1}(n+1)$! units: $\frac{1}{\mathrm{~m}^{n+1}}$
p / q is also called $\mathrm{B} \rho$ and used to describe the energy of multiply charge ions
Names: dipole, quadrupole, sextupole, octupole, decapole, duodecapole, ...

Higher order multipoles come from

- Field errors in magnets
- Magnetized materials
- From multipole magnets that compensate such erroneous fields
- To compensate nonlinear effects of other magnets
- To stabilize the motion of many particle systems
- To stabilize the nonlinear motion of individual particles

Midplane Symmetric Motion

$$
\begin{aligned}
& \vec{r}^{\oplus}=(x,-y, z) \\
& \vec{p}^{\oplus}=\left(p_{x},-p_{y}, p_{z}\right) \\
& \frac{d}{d t} \vec{p}=\vec{F}(\vec{r}, \vec{p}) \quad \Rightarrow \quad \frac{d}{d t} \vec{p}^{\oplus}=\vec{F}\left(\vec{r}^{\oplus}, \vec{p}^{\oplus}\right) \\
& \frac{1}{-y} \\
& v_{y} B_{z}-v_{z} B_{y}=-v_{y} B_{z}(x,-y, z)-v_{z} B_{y}(x,-y, z) \quad B_{x}(x,-y, z)=-B_{x}(x, y, z) \\
& v_{z} B_{x}-v_{x} B_{z}=v_{z} B_{x}(x,-y, z)-v_{x} B_{z}(x,-y, z) \Rightarrow B_{y}(x,-y, z)=B_{y}(x, y, z) \\
& v_{x} B_{y}-v_{y} B_{x}=v_{x} B_{y}(x,-y, z)+v_{y} B_{x}(x,-y, z) \\
& B_{z}(x,-y, z)=-B_{z}(x, y, z) \\
& \psi(x,-y, z)=-\psi(x, y, z) \\
& \Psi_{n} \operatorname{Im}\left\{e^{i n \vartheta_{n}}(x+i y)^{n}\right\}=-\Psi_{n} \operatorname{Im}\left\{e^{i n \vartheta_{n}}(x+i y)^{n}\right\} \\
& \Rightarrow \quad \Psi_{n} \operatorname{Im}\left[e^{i n \vartheta_{n}} 2 \operatorname{Re}\left\{(x+i y)^{n}\right\}\right]=0 \Rightarrow \vartheta_{n}=0 \\
& \text { The discussed multipoles } \\
& \text { produce midplane symmetric motion. When the field is rotated by } \pi / 2 \text {, } \\
& \text { i.e } \vartheta_{n}=\pi / 2 n \text {, one speaks of a skew multipole. }
\end{aligned}
$$

Superconducting Magnets

Above 2T the field from the bare coils dominate over the magnetization of the iron.
But Cu wires cannot create much filed without iron poles:
5 T at 5 cm distance from a 3 cm wire would require a current density of

$$
j=\frac{I}{d^{2}}=\frac{1}{d^{2}} \frac{2 \pi r B}{\mu_{0}}=1389 \frac{\mathrm{~A}}{\mathrm{~mm}^{2}}
$$

Cu can only support about $100 \mathrm{~A} / \mathrm{mm}^{2}$.

- Superconducting cables routinely allow current densities of $1500 \mathrm{~A} / \mathrm{mm}^{2}$ at 4.6 K and 6 T . Materials used are usually Nb aloys, e.g. $\mathrm{NbTi}^{2} \mathrm{Nb}_{3} \mathrm{Ti}$ or $\mathrm{Nb}_{3} \mathrm{Sn}$.

Superconducting Magnets

Problems:

Superconductivity brakes down for too large fields
Due to the Meissner-Ochsenfeld effect superconductivity current only flows on a thin surface layer.

Remedy:
Superconducting cable consists of many very thin filaments (about $10 \mu \mathrm{~m}$).

Complex Potential of a Wire

Straight wire at the origin: $\quad \vec{\nabla} \times \vec{B}=\mu_{0} \vec{j} \Rightarrow \vec{B}(r)=\frac{\mu_{0} I}{2 \pi r} \vec{e}_{\varphi}=\frac{\mu_{0} I}{2 \pi r}\binom{-y}{x}$ Wire at \vec{a} :

$$
\vec{B}(x, y)=\frac{\mu_{0} I}{2 \pi(\vec{r}-\vec{a})^{2}}\binom{-\left[y-a_{y}\right]}{x-a_{x}}
$$

This can be represented by complex multipole coefficients Ψ_{v}

$$
\begin{aligned}
& \vec{B}(x, y)=-\vec{\nabla} \Psi \Rightarrow B_{x}+i B_{y}=-\left(\partial_{x}+i \partial_{y}\right) \psi=-2 \partial_{\bar{w}} \psi \\
& \begin{aligned}
B_{x}+i B_{y} & =\frac{\mu_{0} I}{2 \pi} \frac{-i\left(w_{a}-w\right)}{\left(w_{a}-w\right)\left(\bar{w}_{a}-\bar{w}\right)}=i \frac{\mu_{0} I}{2 \pi} \frac{-\frac{w_{a}}{a^{2}}}{1-\frac{\bar{w} w_{a}}{a^{2}}} \\
& =i \frac{\mu_{0} I}{2 \pi} \partial_{\bar{w}} \ln \left(1-\frac{\overline{\bar{w}} w_{a}}{a^{2}}\right)=-2 \partial_{\bar{w}} \operatorname{Im}\left\{\frac{\mu_{\mu_{2} I}^{2}}{2 \pi} \ln \left(1-\frac{\bar{w} w_{a}}{a^{2}}\right)\right\}
\end{aligned} \\
& \psi=\operatorname{Im}\left\{\frac{\mu_{0} I}{2 \pi} \ln \left(1-\frac{\overline{\bar{w}} w_{a}}{a^{2}}\right)\right\}=-\operatorname{Im}\left\{\frac{\mu_{0} I}{2 \pi} \sum_{v=1}^{\infty} \frac{1}{v}\left(\frac{w_{a}}{a^{2}}\right)^{\nu} \bar{w}^{v}\right\} \Rightarrow \Psi_{v}=\frac{\mu_{0} I}{2 \pi} \frac{1}{v} \frac{1}{a^{v}} e^{i v \varphi_{a}}
\end{aligned}
$$

Special SC Air-coil Magnets

