Advanced Accelerator Physics

Content

1. A History of Particle Accelerators
2. E \& M in Particle Accelerators
3. Linear Beam Optics in Straight Systems
4. Linear Beam Optics in Circular Systems
5. Nonlinear Beam Optics in Straight Systems
6. Nonlinear Beam Optics in Circular Systems
7. Injection and Extraction
8. Accelerator Measurements
9. RF Systems for Particle Acceleration
10. Luminosity

Literature

Required:

Particle Accelerator Physics I, Helmut Wiedemann, Springer, 2nd edition, 1999, ISBN 3540 64671 x

Optional:
The Physics of Particle Accelerators, Klaus Wille, Oxford University Press, 2000, ISBN: 19 8505493

Related material:
Handbook of Accelerator Physics and Engineering, Alexander Wu Chao and Maury Tigner, 2nd edition, 2002, World Scientific, ISBN: 9810238584

Particle Accelerator Physics II, Helmut Wiedemann, Springer, 2nd edition, 1999, ISBN 3540645047

What is accelerator physics

Accelerator Physics has applications in particle accelerators for high energy physics or for x-ray science, in spectrometers, in electron microscopes, and in lithographic devices. These instruments have become so complex that an empirical approach to properties of the particle beams is by no means sufficient and a detailed theoretical understanding is necessary. This course will introduce into theoretical aspects of charged particle beams and into the technology used for their acceleration.

- Physics of beams
- Physics of non-neutral plasmas
- Physics of involved in the technology:
- Superconductivity in magnets and radiofrequency (RF) devices
- Surface physics in particle sources, vacuum technology, RF devices
- Material science in collimators, beam dumps, superconducting materials

A short history of accelerators

1862: Maxwell theory of electromagnetism

- 1887: Hertz discovery of the electromagnetic wave
- 1886: Goldstein discovers positively charged rays (ion beams)
- 1894: Lenard extracts cathode rays (with a 2.65 um AI Lenard window)
- 1897: JJ Thomson shows that cathode rays are particles since they followed the classical Lorentz force $m \vec{a}=e(\vec{E}+\vec{v} \times \vec{B})$ in an electromagnetic field
- 1926: GP Thomson shows that the electron is a wave
(1929-1930 in Cornell, NP in 1937)

Philipp E.A. von Lenard Germany 1862-1947

1905

NP 1906

A short history of accelerators

- 1911: Rutherford discovers the nucleus with $7.7 \mathrm{MeV}{ }^{4} \mathrm{He}$ from ${ }^{214} \mathrm{Po}$ alpha decay measuring the elastic crossection of ${ }^{197} \mathrm{Au}+{ }^{4} \mathrm{He} \mapsto{ }^{197} \mathrm{Au}+{ }^{4} \mathrm{He}$.

$$
\begin{aligned}
& E=\frac{Z_{1} e Z_{2} e}{4 \pi \varepsilon_{0} d}=Z_{1} Z_{2} m_{e} c^{2} \frac{r_{e}}{d}, \\
& r_{e}=2.8 \mathrm{fm}, \quad m_{e} c^{2}=0.511 \mathrm{MeV}
\end{aligned}
$$

d = smalles approach for back scattering

1919: Rutherford produces first nuclear reactions with natural ${ }^{4} \mathrm{He}$ ${ }^{14} \mathrm{~N}+{ }^{4} \mathrm{He} \mapsto{ }^{17} \mathrm{O}+\mathrm{p}$

- 1921: Greinacher invents the cascade generator for several 100 keV

Rutherford is convinced that several 10 MeV are in general needed for nuclear reactions. He therefore gave up the thought of accelerating particles.

Tunneling allows low energies

1928: Explanation of alpha decay by Gamov as tunneling showed that several 100keV protons might suffice for nuclear reactions
Schroedinger equation: $\quad \frac{\partial^{2}}{\partial r^{2}} u(r)=\frac{2 m}{\hbar^{2}}[V(r)-E] u(r), \quad T=\left|\frac{u(L)}{u(0)}\right|^{2}$
The transmission probability T for an alpha particle traveling from the inside towards the potential well that keeps the nucleus together determines the lifetime for alpha decay.

$\ln T \approx A-\frac{C}{\sqrt{E}}$

Three historic lines of accelerators

Direct Voltage Accelerators

Resonant Accelerators Transformer Accelerator

Voltage 1MV
Charge Ze
Energy Z MeV

The energy limit is given by the maximum possible voltage. At the limiting voltage, electrons and ions are accelerated to such large energies that they hit the surface and produce new ions. An avalanche of charge carries causes a large current and therefore a breakdown of the voltage.

The Van de Graaff Accelerator

1930: van de Graaff builds the first 1.5MV high voltage generator

- Today Peletrons (with chains) or Laddertron (with stripes) that are charged by influence are commercially available.
- Used as injectors, for electron cooling, for medical and technical n-source via $\mathrm{d}+\mathrm{t} \mapsto \mathrm{n}+\alpha$

Up to 17.5 MV with insulating gas (1 MPa SF_{6})

The Tandem Accelerator

- Two Van de Graaffs, one + one -
- The Tandem Van de Graaff, highest energy 35 MeV

- 1932: Brasch and Lange use potential from lightening, in the Swiss Alps, Lange is fatally electrocuted

The Cockcroft-Walton Accelerator

1932: Cockcroft and Walton 1932: 700keV cascate generator (planed for 800keV) and use initially 400 keV protons for ${ }^{7} \mathrm{Li}+\mathrm{p} \mapsto{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}+\mathrm{p} \mapsto{ }^{7} \mathrm{Be}+\mathrm{n}$

The Marx Generator

- 1932: Marx Generator achieves 6MV at General Electrics
high voltage

After capacitors of around 2 uF are filled to about 20 kV , the spark gaps or switches close as fast as 40ns, allowing up to 500kA.

Today:
The Z-machine (Physics Today July 2003) for z-pinch initial confinement fusion has 40TW for 100ns from 36 Marx generators

Three historic lines of accelerators

Resonant Accelerators

Direct Voltage Accelerators

Transformer Accelerator

The Cyclotron

The cyclotron frequency

$$
\begin{aligned}
& F_{r}=m_{0} \gamma \omega_{z} v=q v B_{z} \\
& \omega_{z}=\frac{q}{m_{0} \gamma} B_{z}=\mathrm{const}
\end{aligned}
$$

Condition: Non-relativistic particles. Therefore not for electrons.

- The synchrocyclotron:

Acceleration of bunches with decreasing

$$
\omega_{z}(E)=\frac{q}{m_{0} \gamma(E)} B_{z}
$$

-The isocyclotron with constant

$$
\omega_{z}=\frac{q}{m_{0} \gamma(E)} B_{z}(r(E))
$$

 this vertically defocuses the beam

First Medical Applications

- 1939: Lawrence uses 60 ' cyclotron for 9 MeV protons, 19 MeV deuterons, and 35 MeV 4 He . First tests of tumor therapy with neutrons via $\mathrm{d}+\mathrm{t} \mapsto \mathrm{n}+\alpha$ With $200-800 \mathrm{keV}$ d to get 10 MeV neutrons.

Modern Nuclear Therapy

The Loma Linda proton therapy facility

The microtron

- Electrons are quickly relativistic and cannot be accelerated in a cyclotron.
- In a microtron the revolution frequency changes, but each electron misses an integer number of RF waves.

Today: Used for medical applications with one magnet and 20 MeV .

- Nuclear physics: MAMI designed for 820 MeV as race track microtron.

The microtron condition

CHESS \% LEPP

The extra time that each turn takes must be a multiple of the RF period. magnetic shield for beam extraction

$$
\begin{aligned}
\Delta t & =2 \pi\left(\frac{\rho_{n+1}}{v_{n+1}}-\frac{\rho_{n}}{v_{n}}\right) \\
& =\frac{2 \pi}{q B}\left(m_{0} \gamma_{n+1}-m_{0} \gamma_{n}\right)=\frac{2 \pi}{q B c^{2}} \Delta K
\end{aligned}
$$

$B=1 \mathrm{~T}, \mathrm{n}=1$, and $\mathrm{f}_{\mathrm{RF}}=3 \mathrm{GHz}$ leads to 4.78 MeV This requires a small linear accelerator.

$$
\Delta K=n \frac{q B c^{2}}{\omega_{R F}} \text { for an integer } \mathrm{n}
$$

Wideroe linear accelerator

Called the π or the $1 / 2 \beta \lambda$ mode

Wideroe

Accelerating cavities

1933: J.W. Beams uses resonant cavities for acceleration

Traveling wave cavity:

Standing wave cavity:

$$
\begin{aligned}
& \frac{\omega}{k}=v_{\text {particle }} \\
& E(t, s) \approx E_{\max } \sin (\omega t) \sin (k s) \\
& E\left(\frac{s}{v_{\text {particl }}}, s\right) \approx E_{\max } \sin ^{2}(k s) \\
& \pi \text { or the } 1 / 2 \beta \lambda \text { mode }
\end{aligned}
$$

Transit factor (for this example): $\langle E\rangle=\frac{1}{\lambda_{R F}} \int_{0}^{\lambda_{R F}} E\left(\frac{s}{v_{\text {particle }}}, s\right) d s \approx \frac{1}{2} E_{\text {max }}$

The Alvarez Linear Accelerator

Needs only one power input coupler and walls do not dissipate energy.

Phase focusing

Phase focusing is required in any RF accelerator.

Three historic lines of accelerators

Transformer Accelerator

Direct Voltage Accelerators Resonant Accelerators

- 1924: Wideroe invents the betatron
- 1940: Kerst and Serber build a betatron for 2.3 MeV electrons and understand betatron (transverse) focusing (in 1942: 20MeV)

Betatron:
$\mathrm{R}=$ const, $\mathrm{B}=\mathrm{B}(\mathrm{t})$
Whereas for a cyclotron:
$R(t), B=c o n s t$

No acceleration section is needed since
$\oint_{\partial A} \vec{E} \cdot d \vec{s}=-\iint_{A} \frac{d}{d t} \vec{B} \cdot d \vec{a}$

The Betatron Condition

Condition: $R=\frac{-p_{\varphi}(t)}{q B_{z}(R, t)}=$ const. given $\oint_{\partial A} \vec{E} \cdot d \vec{s}=-\iint_{A} \frac{d}{d t} \vec{B} \cdot d \vec{a}$
$E_{\varphi}(R, t)=-\frac{1}{2 \pi R} \int \frac{d}{d t} B_{z}(r, t) r d r d \varphi=-\frac{R}{2}\left\langle\frac{d}{d t} B_{z}\right\rangle$
$\frac{d}{d t} p_{\varphi}(t)=q E_{\varphi}(R, t)=-q \frac{R}{2}\left\langle\frac{d}{d t} B_{z}\right\rangle$

$$
p_{\varphi}(t)=p_{\varphi}(0)-q \frac{R}{2}\left[\left\langle B_{z}\right\rangle(t)-\left\langle B_{z}\right\rangle(0)\right]=-R q B_{z}(R, t)
$$

$B_{z}(R, t)-B_{z}(R, 0)=\frac{1}{2}\left[\left\langle B_{z}\right\rangle(t)-\left\langle B_{z}\right\rangle(0)\right]$

Small deviations from this condition lead to transverse beam oscillations called betatron oscillations in all accelerators.

Today: Betatrons with typically about 20 MeV for medical applications

The Synchrotron

- 1945: Veksler (UDSSR) and McMillan (USA) invent the synchrotron
- 1946: Goward and Barnes build the first synchrotron (using a betatron magnet)
- 1949: Wilson et al. at Cornell are first to store beam in a synchrotron (later 300 MeV , magnet of 80 Tons)
- 1949: McMillan builds a 320 MeV electron synchrotron
$>$ Many smaller magnets instead of one large magnet
$>$ Only one acceleration section is needed, with
$R=\frac{p(t)}{q B(R, t)}=$ const.
$\omega=2 \pi \frac{v_{\text {particle }}}{L} n$
for an integer n called the harmonic number

Rober R Wilson, Architecture

29 Rober R Wilson, Cornell \& FNAL CHFSS \& LFPP

Weak focusing Synchrotrons

- 1952: Operation of the Cosmotron, 3.3 GeV proton synchrotron at Brookhaven: Beam pipe height: 15 cm .

Natural ring focusing:

+ Horizontal defocusing + ring focusing
Focusing in both planes

The Cosmotron

Weak focusing accelerator

Strong focusing Synchrotrons

- 1952: Courant, Livingston, Snyder publish about strong focusing
- 1954: Wilson et al. build first synchrotron with strong focusing for 1.1 MeV electrons at Cornell, 4 cm beam pipe height, only 16 Tons of magnets.
- 1959: CERN builds the PS for 28 GeV after proposing a 5 GeV weak focusing accelerator for the same cost (still in use)
Transverse fields defocus in one plane if they focus in the other plane.
But two successive elements, one focusing the other defocusing, can focus in both planes:

Today: only strong rocusing is used. Due to daa tiend quality at lower field excitations the injection energy is $20-500 \mathrm{MeV}$ from a linac or a microtron.

Limits of Synchrotrons

$$
\rho=\frac{p}{q B} \Rightarrow \text { The rings become too long }
$$

Protons with $p=20 \mathrm{TeV} / \mathrm{c}, \mathrm{B}=6.8 \mathrm{~T}$ would require a 87 km SSC tunnel Protons with $p=7 \mathrm{TeV} / \mathrm{c}, \mathrm{B}=8.4 \mathrm{~T}$ require CERN's 27 km LHC tunnel

$$
P_{\text {radiation }}=\frac{c}{6 \pi \varepsilon_{0}} N \frac{q^{2}}{\rho^{2}} \gamma^{4} \quad \Downarrow
$$

Energy needed to compensate Radiation becomes too large

Electron beam with $p=0.1 \mathrm{TeV} / \mathrm{c}$ in CERN's 27 km LEP tunnel radiated 20 MW Each electron lost about 4 GeV per turn, requiring many of RF accelerating sections.

Colliding Beam Accelerators

- 1961: First storage ring for electrons and positrons (AdA) in Frascati for 250 MeV
- 1972: SPEAR electron positron collider at 4 GeV . Discovery of the J/Psi at 3.097 GeV by Richter (SPEAR) and Ting (AGS) starts the November revolution and was essential for the quarkmodel and chromodynamics. - 1979: 5 GeV electron positron collider CESR (designed for 8 GeV)

Advantage:

More center of mass energy

Drawback:

Less dense target
The beams therefore must be stored for a long time.

Ellements of a Collider

Storage Rings

To avoid the loss of collision time during filling of a synchrotron, the beams in colliders must be stored for many milions of turns.

Chalenges:
-Required vacuum of pressure below $10^{-7} \mathrm{~Pa}=10^{-9} \mathrm{mbar}, 3$ orders of magnitude below that of other accelerators.

- Fields must be stable for a long time, often for hours.
- Field errors must be small, since their effect can add up over millions of turns.
- Even though a storage ring does not accelerate, it needs acceleration sections for phase focusing and to compensate energy loss due to the emission of radiation.

Further Development of Colliders

1981: Rubbia and van der Meer use stochastic cooling of antiportons and discover $\mathrm{W}+, \mathrm{W}$ - and Z vector bosons of the weak interaction

- 1987: Start of the superconducting TEVATRON at FNAL
- 1989: Start of the 27 km long LEP electron positron collider
- 1990: Start of the first asymmetric collider, electron (27.5GeV) proton (920 GeV) in HERA at DESY
- 1998: Start of asymmetric two ring electron positron colliders KEK-B / PEP-II
- Today: $27 \mathrm{~km}, 7 \mathrm{TeV}$ proton collider LHC being build at CERN

Simon van der Meer Netherlands 1925 -

Special Relativity

$$
E=m c^{2}
$$

Albert Einstein, 1879-1955
Nobel Prize, 1921
Time Magazine Man of the Century

Four-Vectors:

Quantities that transform according to the Lorentz transformation when viewed from a different inertial frame.

Examples:

$$
X^{\mu} \in\{c t, x, y, z\}
$$

$$
P^{\mu} \in\left\{\frac{1}{c} E, p_{x}, p_{y}, p_{z}\right\}
$$

$$
\Phi^{\mu} \in\left\{\frac{1}{c} \phi, A_{x}, A_{y}, A_{z}\right\}
$$

$$
J^{\mu} \in\left\{c \rho, j_{x}, j_{y}, j_{z}\right\}
$$

$$
K^{\mu} \in\left\{\frac{1}{c} \omega, k_{x}, k_{y}, k_{z}\right\}
$$

$$
X^{\mu} \in\{c t, x, y, z\} \quad \Rightarrow \quad X^{\mu} X_{\mu}=(c t)^{2}-\vec{x}^{2}=\text { const. }
$$

$$
P^{\mu} \in\left\{\frac{1}{c} E, p_{x}, p_{y}, p_{z}\right\} \Rightarrow \quad P^{\mu} P_{\mu}=\left(\frac{E}{c}\right)^{2}-\vec{p}^{2}=\left(m_{0} c\right)^{2}=\text { const. }
$$

Available Energy

$$
\begin{aligned}
\frac{1}{c^{2}} E_{\mathrm{cm}}^{2} & =\left(P_{1}^{\mu}+P_{2}^{\mu}\right)_{\mathrm{cm}}\left(P_{1 \mu}+P_{2 \mu}\right)_{\mathrm{cm}} \\
& =\left(P_{1}^{\mu}+P_{2}^{\mu}\right)\left(P_{1 \mu}+P_{2 \mu}\right) \\
& =\frac{1}{c^{2}}\left(E_{1}+E_{2}\right)^{2}-\left(p_{z 1}-p_{z 2}\right)^{2} \\
& =2\left(\frac{E_{1} E_{2}}{c^{2}}+p_{z 1} p_{z 2}\right)+\left(m_{01} c\right)^{2}+\left(m_{02} c\right)^{2}
\end{aligned}
$$

Operation of synchrotrons: fixed target experiments where some energy is in the motion of the center off mass of the scattering products

$$
E_{1} \gg m_{01} c^{2}, m_{02} c^{2} ; p_{z 2}=0 ; E_{2}=m_{02} c^{2} \Rightarrow E_{\mathrm{cm}}=\sqrt{2 E_{1} m_{02} c^{2}}
$$

Operation of colliders:
the detector is in the center of mass system

$$
E_{1} \gg m_{01} c^{2} ; E_{2} \gg m_{02} c^{2} \Rightarrow E_{\mathrm{cm}}=2 \sqrt{E_{1} E_{2}}
$$

The Livingston Chart

Comparison:
highest energy cosmic rays have a few $10^{20} \mathrm{eV}$

Energy that would be needed in a fixed target experiment versus the year of achievement

$$
E_{1}=\frac{E_{\mathrm{cm}}^{2}}{2 m_{02} c^{2}}
$$

Example: Production of the pbar

1954: Operation of Bevatron, first proton synchrotron for 6.2 GeV , production of the antiporton by Chamberlain and Segrè

$$
\begin{aligned}
& p+p \mapsto p+p+p+\bar{p} \\
& \frac{1}{c^{2}} E_{\mathrm{cm}}^{2}=2\left(\frac{E_{1} E_{2}}{c^{2}}+p_{z 1} p_{z 2}\right)+\left(m_{01} c\right)^{2}+\left(m_{02} c\right)^{2} \\
&\left(4 m_{p 0} c\right)^{2}<\frac{1}{c^{2}} E_{\mathrm{cm}}^{2}=2 \frac{E_{1} m_{p 0}}{c^{2}}+\left(m_{p 0} c\right)^{2}+\left(m_{p 0} c\right)^{2} \\
& 7 m_{p 0} c^{2}<E_{1}
\end{aligned}
$$

$$
K_{1}=E_{1}-m_{0} c^{2}>6 m_{p 0} c^{2}=5.628 \mathrm{GeV}
$$

Example: c-cbar states

1974: Observation of $c-\bar{c}$ resonances (J / Ψ) at $\mathrm{Ecm}=3095 \mathrm{MeV}$ at the $\mathrm{e}^{+} / \mathrm{e}^{-}$collider SPEAR

$$
\begin{gathered}
\frac{1}{c^{2}} E_{\mathrm{cm}}^{2}=2\left(\frac{E_{1} E_{2}}{c^{2}}+p_{z 1} p_{z 2}\right)+\left(m_{01} c\right)^{2}+\left(m_{02} c\right)^{2} \\
E_{1}=E_{2} \Rightarrow E_{\mathrm{cm}}^{2}=4 E^{2}
\end{gathered}
$$

Energy per beam: $\quad K=E-m_{0} c=1547 \mathrm{MeV}$

Beam energy needed for an equivalent fixed target experiment:

$$
\frac{E_{c m}^{2}}{c^{2}}=2\left[E m+(m c)^{2}\right]
$$

$$
K=E-m_{0 e} c^{2}=\frac{E_{c m}^{2}-4\left(m_{0 e} c^{2}\right)^{2}}{2 m_{0 e} c^{2}}=9.4 \mathrm{TeV}
$$

Rings for Synchrotron Radiation

3 Generations of Light Sources

$1^{\text {st }}$ Genergation (1970s): Many HEP rings are parasitically used for X-ray production
$2^{\text {nd }}$ Generation (1980s): Many dedicated X-ray sources (light sources)
$3^{\text {rd }}$ Generation (1990s): Several rings with dedicated radiation devices (wigglers and undulators)
Today (4 ${ }^{\text {th }}$ Generation): Construction of Free Electron Lasers (FELs) driven by LINACs

Accelerators of the World

Sorted by Location

Europe

AGOR Accelerateur Groningen-ORsay, KVI Groningen, Netherlands
ANKA Angströmquelle Karlsruhe, Karlsruhe, Germany (Forschungsgruppe Synchrotronstrahlung (FGS))
ASTRID Aarhus Storage Ring in Denmark, ISA, Aarhus, Denmark
BESSY Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, Germany (BESSY I status, EESSY II status)
BINP Budker Institute for Nuclear Physics, Noyosibirsk, Russian Federation (VEPP-2M collider, VEPP-4M collider (status))
CERN Centre Europeen de Recherche Nucleaire, Geneva, Suisse (LEP \& SPS Status, LHC, CLIC, PS-Division, SL-Division)
COSY Cooler Synchrotron, IKP, FZ Jülich, Germany (COSY Status)
CYCLONE Cyclotron of Louvain la Neuve, Louvain-la-Neuve, Belgium
DELTA Dortmund Electron Test Accelerator, U of Dortmund, Germany (DELTA Status)
DESY Deutsches Elektronen Synchrotron, Hamburg, Germany (HERA, PETRA and DORIS status, TESLA)
ELBE ELectron source with high Brilliance and low Emittance, FZ Rossendorf, Germany
ELETTRA Trieste, Italy (ELETTRA status)
ELSA Electron Stretcher Accelerator, Bonn University, Germany (ELSA status)
ESRF European Synchrotron Radiation Facility, Grenoble, France (ESRF status)
GANIL Grand Accélérateur National d'lons Lourds, Caen, France
GSI Gesellschaft für Schwerionenforschung, Darmstadt, Germany
IHEP Institute for High Energy Physics, Protvino, Moscow region, Russian Federation
INFN Istituto Nazionale di Fisica Nucleare, Italy,
LNF - Laboratori Nazionali di Frascati (DAFNE, other accelerators),
LNL - Laboratori Nazionali di Legnaro (Tandem, CN Van de Graaff, AN 2000 Van de Graaff),
LNS - Laboratori Nazionali del Sud, Catania, (Superconducting Collider \& Van de Graaff Tandem)
ISIS Rutherford Appleton Laboratory, Oxford, U.K. (ISIS Status)
ISL IonenStrahiLabor am HMI, Berlin, Germany
JINR Joint Institute for Nuclear Research, Dubna, Russian Federation (U-200, U-400, U-400M, Storage Ring, LHE Synchrophasotron / Nuclotron)
JYFL Jywäskylän Yliopiston Fysiikan Laitos, Jywäskylä, Finland
KTH Kungl Tekniska Högskola (Royal Institute of Technology), Stockholm, Sweden (Alfén Lab electron accelerators)

Accelerators of the World

MUTUM

erator of LMU and TU Muenchen, Munich, Germany
LURE
MAMI
MAX-Lab
MSL
NIKHEF
PSI
S-DAL
SRS
Rs
TSL
TSR
The Svedberg Laboratory, Uppsala University, Sweden (CELSUS)
Heaw-lon Test Storage Ring, Heidelberg, Germany

North America

號 Light Source, Lawrence Berkeley Laboratory (LBL), Berkeley, CA (ALs Status)
Argonne National Laboratory, Chicago, IL (Advanced Photon Source APS [status], Intense Pulsed Neutron Source IPNS [status], Argonne Tandem Linac Accelerator System ATLAS)
BNL Brookhaven National Laboratory, Upton, NY (AGS, ATF, NSLS, RHIC)
CAMD Center for Advanced Microstructures and Devices
CHESS
CLS
Canadian Light Source, U of Saskatchewan, Saskatoon, Canad
CESR Cornell Electron-positron Storage Ring, Cornell University, Ithaca, NY (CESR Status)
FNAL Fermi National Accelerator Laboratory, Batavia, IL (Tevatron)
Idaho accelerator center, Pocatello, Idaho
UCF Indiana University Cyclotron Facility, Bloomington, Indiana
JLab aka TJNAF, Thomas Jefferson National Accelerator Facility (formerly known as CEBAF), Newport News, VA
Louisiana Accelerator Center, U of Louisiana at Lafayette, Louisiana
ANL Los Alamos National Laboratory
MIT-Bates Bates Linear Accelerator Center, Massachusetts Institute of Technology (MIT)
NSCL National Superconducting Cyclotron Laboratory, Michigan State University
ORNL Oak Ridge National Laboratory (EN Tandem Accelerator), Oak Ridge, Tennessee
SBSL Stony Brook Superconducting Linac, State University of New York (SUNY)
SLAC Stanford Linear Accelerator Center (Linac, NLC - Next Linear Collider, PEP - Positron Electron Project (finished), PEP-II - asymmetric 日 Factory (in commissioning), SLC - SLAC Linear electron positron Collider, SPEAR - Stanford Positron Electron Asymmetric Ring (actually SPEAR-II, see SSRL) SSRL Collider, SPEAR - Stanford Positron Electron
Spallation Neutron Source, Oak Ridge, Tennessee
SRC Synchrotron Radiation Center, U of Wisconsin - Madison (Aladdin Status)

BEPC

Africa

 construction)Synchrotron Ultraviolet Radiation Facility, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland
Tandem Accelerator Superconducting Cyclotron (Canada) (closedi)
TRI-University Meson Facility / National Meson Research Facility, Vancouver, BC (Canada)

South America

Laboratorio Nacional de Luz Sincrotron, Campinas SP, Brazi Tandem Accelerator, Buenos Aires, Argentina

Asia

Beijing Electron-Positron Collider, Beijing, China
National Laboratory for High Energy Physics ("Koh-Ene-Ken"), Tsukuba, Japan (KEK-B, PF, JLC) Nuclear Science Centre, New Delhi, India (15 UD Pelletron Accelerator) Pohang Light Source, Pohang, Korea
Institute of Physical and Chemical Research ("Rikagaku Kenkyusho"), Hirosawa, Wako, Japan Synchrotron-light for Experimental Science and Applications in the Middle East, Jordan (under

Super Photon ring - 8 GeV , Japan
Synchrotron Radiation Research Center, Hsinchu, Taiwan (SRRC Status)
Ultraviolet Synchrotron Orbital Radiation Facility, Japan
Variable Energy Cyclotron, Calcutta, India

National Accelerator Centre, Cape Town, South Africa

Sorted by Accelerator Type

Electrons

Stretcher Ring/Continuous Beam facilities
ELSA (Bonn U), JLab, MAMI (Mainz U), MAX-Lab, MIT-Bates, PSR (SAL), S-DALINAC (TH Darmstadt), SLAC

Accelerators of the World

Synchrotron Light Sources

ANKA (FZK), ALS (LBL), APS (ANL), ASTRID (ISA), BESSY, CAMD (LSU), CHESS (Comell Wilson Lab), CLS (U of Saskatchewan), DELTA (U of Dortmund), ELBE (FZ Rossendorf), Elettra, ELSA (Bonn U), ESRF, HASYLAB (DESY), LURE, MAX-Lab, LNLS, NSLS (BNL), PF (KEK), UVSOR (IMS), PLS, S-DALINAC (TH Darmstadt), SESAME, SLS (PSI), SPEAR (SSRL, SLAC), SPring-8, SRC (U of Wisconsin), SRRC, SRS (Daresbury), SURF II (NIST)

Other

Alfén Lab (KTH), IAC

Protons

88" Cyclotron (LEL), CELSIUS (TSL), COSY (FZ Jülich), IPNS (ANL), ISL (HMI), ISIS, IUCF, LHC (CERN), NAC, PS (CERN), PSI, SPS (CERN)

Light and Heavy lons

88" Cyclotron (LBL), AGOR, ASTRID (ISA), ATLAS (ANL), CELSIUS (TSL), CRYRING (MSL), CYCLONE, EN Tandem (ORNL), GANIL, GSI, ISL (HMI), IUCF, JYFL, LAC, LHC (CERN), LHE Synchrophasotron / Nuclotron (JINR),
LMUITUM, LNL (INFN), LNS (INFN), NAC, NSC, PSI, RHIC (BNL), SBSL, SNS, SPS (CERN), TANDAR, TSR, U-200 U-400 / (U-400M / Storage Ring (JINR), VECC

Collider

BEPC, CESR, DAFNE (LNF), HERA (DESY), LEP (CERN), LHC (CERN), PEP / PEP-II (SLAC), SLC (SLAC), KEK-B (KEK), TESLA (DESY), Tevatron (FNAL), VEPP-2M, VEPP-4M (BINP)

The Future

