Normalization and probability density

Probability to find a particle in the volume element $d^3\vec{x}$ is given by $|\Psi(\vec{x},t)|^2 d^3\vec{x}$

Probability to find the particle somewhere is one: $\int |\Psi(\vec{x},t)|^2 d^3\vec{x} = 1$

Examples:

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} |\Psi(\vec{x},t)|^{2} dxdydz = 1$$

$$\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} |\Psi(r, \vartheta, \varphi, t)|^{2} r^{2} \sin \vartheta d\varphi d\vartheta dr = 1$$

Spherical symmetric wave functions: $4\pi \int_{0}^{3} |\Psi(r,t)|^{2} r^{2} dr = 1$

Probability to find a particle with a radius between **r** and **r+dr**: $4\pi |\Psi(r,t)|^2 r^2 dr$

For a stationary state this is $4\pi |r\Phi(r)|^2 dr = 4\pi |u(r)|^2 dr$

$$u(r)$$
 is not normalized to 1 but to 1/4 π :
$$\int_{0}^{\pi} |u(r)|^2 dr = \frac{1}{4\pi}$$

Georg.Hoffstaetter@Cornell.edu

Expectation values

The most probable value of **r** is given by $\frac{\partial}{\partial r}u(r)=0$

The average radius after many measurements in identically prepared states:

After N measurements one might have measured a radius $\mathbf{r_1}$, $\mathbf{n_1}$ time $\mathbf{r_2}$, $\mathbf{n_2}$ times, etc.

The average radius is then

$$\langle r \rangle = \frac{1}{N} (n_1 r_1 + n_2 r_2 + n_3 r_3 + \dots), \quad N = n_1 + n_2 + n_3 + \dots$$

$$= p_1 r_1 + p_2 r_2 + p_3 r_3 + \dots \quad \text{propability } p_j \text{ to measure } r_j$$

$$= 4\pi \int_0^\infty r |u(r)|^2 dr$$

$$= \int_0^\infty \int_0^{\pi/2\pi} r |\Psi(r, \vartheta, \varphi, t)|^2 r^2 \sin \vartheta d\varphi d\vartheta dr$$

Similarly in one dimension: $\langle x \rangle = \int_{-\infty}^{\infty} x |\Psi(x,t)|^2 dx$

A limit of the Bohr model

$$E = E_1$$
 $E = \frac{1}{4}E_1$ $r_{\text{max}} = a_0$ $r_{\text{max}} = (3 + \sqrt{5})a_0 > 4a_0$

The Bohr radius is not the most likely radius.

$$\langle r \rangle_{E_1} = \frac{3}{2} a_0 \qquad \langle r \rangle_{E_2} = 6a_0$$

The Bohr radius is also not the expectation value.

