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LECTURE 9

Single Particle Acceleration:
Standing wave structures

Travelling wave structures
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 In our discussion of structures used to provide electric fields
for the acceleration of particles, we’ll focus on RF fields:

AC electric fields in the frequency range of 10 MHz to 30
GHz, with accelerating gradients from 1 MV/m to 100 MV/m.

There are two principal types of RF accelerating structures in
use in accelerators:

1. Standing wave structures: resonant cavities
Used in both linacs and synchrotrons

2. Travelling wave structures: waveguides
Used primarily in linacs
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RF Cavities

The prototypical example is the “pillbox cavity”
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The cavity is operated in the TM010 mode: longitudinal E field,
transverse B field.
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The solutions to Maxwell’s equations in the cavity, with the
boundary conditions E B|| = =⊥ 0 at the cavity walls, are
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with k ck= 2π
λ

ω and =  . J0(x) and J1(x) are Bessel functions,

with J0 2 405 0( . ) = . σ and K are surface charge and current.
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The boundary condition requires kR = 2 405. , so the cavity
radius determines the wavelength.

 Example:R f= ⇒10  cm = 26 cm => = 1.15 GHzλ
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Energy gain for a particle of velocity v:

eV e dsE t

V dsE
s

v
E

v L
v

acc
L

L

acc
L

L

= ⇒

= =

−

−

∫

∫

0

2

2

0

2

2

0
2

2

cos

cos sin

ω

ω
ω

ω

“Transit time factor”:
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This limits the length of the cavity: e.g., for T=0.9 and v~c,
L/R~2/3=>L=6.7 cm
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Figures of merit for an RF cavity

1. Quality factor: a measure of how lossy the cavity is.
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in which Rw
c= ρ

δ
 is the surface resistivity, ρc is the volume

resistivity, and δ ρ
µ ω

= 2

0

c  is the skin depth.

Eliminate ρc in favor of δ to get  P B dSl = ∫
δω
µ4 0
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Q depends on the geometry of the cavity and on the surface
resistance

We’d like Q to be high, to minimize losses
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2. Shunt impedance per unit length
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We’d like r to be high, to get high accelerating voltages with
low losses.
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This ratio depends only on the cavity geometry.
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4. Filling time:

Power in the cavity decays according to
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Example: for a “pillbox” cavity
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For pillbox parameters above

Q r t f= = =20620 77 5 7,   .   secM / m,  Ω µ .

The total shunt impedance of the cavity is about

Rs=rL= 77x0.067=5 MΩ,

so that an RF drive power of 500 kW will produce an
accelerating voltage of V T PrLacc l= =1.4 MV.
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Travelling wave structures

These structures are essentially cylindrical waveguides :
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The waveguide is operated in the TM01 mode.
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The fields are travelling waves:
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ωc is called the “cutoff frequency”.

The wave velocity is v
k
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In order to be able to accelerate charged particles over any
reasonable distance, the wave and the particle must have the same

velocity. The waveguide is “loaded” with periodic structures
(called “disks”) to make this happen.
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Typically, for electron linacs, kd = π π
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  or ; then v cp ≈ . The

beam particles at v=vp will ride the travelling wave down the
loaded waveguide, accelerating as they go. For protons, where the

particle velocity changes as the energy grows, the disk spacing
must be varied along the length to adjust the phase velocity to the

particle velocity.
Energy is transported down the waveguide in the travelling

electromagnetic wave; the accompanying wall currents dissipate
energy, so that there is a loss of power as the wave travels.
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Let us assume that we have a waveguide in which the cells are
all identical. Then the group velocity is constant along the

structure. Consider a slab of space, of length ∆s:

∆s

Conservation of energy requires that

P s s P s Pl( ) ( )+ = −∆ ∆

The Q of that section of the waveguide is
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This equation describes the attenuation of the power along the
waveguide. The solution is
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The electric field amplitude varies as the square root of the
power, so

 E s E s( ) exp= −[ ]0 α
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The effective accelerating voltage seen by a charged particle
traveling on the crest of the wave for a distance L is
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in which τ=αL is the attenuation factor. The shunt impedance

per unit length
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is constant along the structure, and in terms of it we can write

V P rLacc = − −[ ]( )0
2

1
τ

τ
τexp

11/26/01 USPAS Lecture 9 20

The filling time of the waveguide is t
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Example: CESR linac, section 1:

L=3.05 m, r=60 MΩ/m, Q=18400, f=2896 MHz, vg=0.0088c.

Then we find τ=0.57, tf=1.15 µsec, V P
acc

≈11 0   kV.

For a peak power input to the section of P0 = 10 MW,

we get Vacc = 34 MV.

Typically such high peak power is only available in pulses of a few
µsec in length.
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Constant impedance. vs. constant gradient

In the case just discussed, the group velocity was constant along
the structure, leading to a constant impedance, and a decreasing
electric field. It is also possible to lower the group velocity from

cell to cell, which can give a constant electric field along the
structure. This generally makes better use of the available power,

as higher average fields can be reached.

In this case the accelerating voltage is given by

V P rLacc = − −[ ]( )0 1 2exp τ

withP L P( ) exp[ ]= −0 2τ


