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LECTURE 7

Lattice design: insertions and matching
Linear deviations from an ideal lattice:

Dipole errors and closed orbit deformations
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Lattice design: insertions and matching

The “backbone” of an accelerator lattice is the FODO cell. A
machine composed entirely of identical FODO cells has very

regular lattice functions: (this is 100 m of our 500 m accelerator)
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However, such a machine is lacking long straight sections for
injection and extraction. The dispersion is non-zero everywhere,
which is unfavorable for the location of RF cavities. There is no
low-β for colliding beam luminosity enhancement. There is no

room for wigglers or undulators, or for beam collimation systems.

To allow for such devices, we create insertions in the otherwise
regular FODO lattice. An insertion is a break in the FODO lattice
into which a different configuration of magnets is placed, to allow

for some of the functions mentioned above.
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insertionFODO FODOFODO FODO FODO FODO

MATCH POINTS
Ideally, we would like to leave unchanged the lattice functions in

the part of the machine outside the insertion. In order to do this, the
optics of the insertion must be designed such that the one turn

matrix of the machine, with the insertion included, gives the same
lattice functions at the match points as the original unperturbed

lattice.
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Failure to do this is termed a “mismatch” and the resulting
perturbations to the lattice functions are sometimes called “beta

beats”.
Example: increase the drift space in the FODO cell at s=60 m from

5 m to 7.5 m:
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This produces major perturbations to the lattice functions (beta
more than doubles) and is highly undesirable. The insertion needs

to be matched. We’ll discuss several simple types of matched
insertions.

1. Collins insertion

A simple scheme involving two quadrupoles can be used in a
straight section to provide beta function matching. The Collins

insertion does not provide dispersion matching, but the
combination of a dispersion suppressor and a Collins insertion

results in a zero-dispersion straight section in which all the lattice
functions are matched.
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Collins insertion:

f - f f

Insertion

- f f - f f- f
sss 11 2

L

L / 4

Straight  section

F -F

L / 4

The transfer matrix of the insertion is
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In order to match the lattice functions, we require that
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in which α, β, and γ are the regular FODO cell lattice functions at

the match point, and µI is the phase advance across the insertion (a

free parameter)

The result is
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Typically, to maximize the length of the straight section s2, we

choose µΙ = π/2, so that s s s s1 2

2

2 1
1= = + =
γ

α
γ

β,   ,   . For this

insertion to match in both x and y, we need to have αx = -αy, which

will be the case for a thin-lens FODO cell.

The insertion raises the tune of the machine by 1/4.
This insertion matches the beta function but does nothing for the

dispersion mismatch:
17.8 m long Collins insertion, starting at s=60
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To fix the dispersion mismatch, we need another type of insertion:

2. Dispersion suppressor

This insertion is used to create a zero-dispersion straight section.
There are many possible variants: we will only discuss the simple

“missing-magnet” scheme.
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“Missing magnet” dispersion suppressor

f - f f - f 2 f- f

φ φ φ φ φ φ
21 1 2

Straight  section

Insertion

...

The insertion starts with two regular-strength FODO cells, in
which the dipoles are operated at different bend angles, φ1 and φ2,

than the dipoles in the rest of the lattice (which have a bend angle
φ). These cells are followed by a straight section, in which the

dispersion will be zero. The insertion is symmetric about the center
of the straight section.
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The bend angles φ1 and φ2 are chosen to make the dispersion

function and its slope zero at the beginning of the straight section.

Let ηc and ′ηc be the values of the dispersion and its slope at the

beginning of the insertion. These are just the regular FODO cell
values.

The dispersion propagates through the two FODO cells according

to 
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where the FODO cell matrices depend on the cell phase advance
µ and on the dipole bend angles  φ1 and φ2
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To get zero dispersion in the straight section, we solve the equation
η
η φ µ φ µ

η
η′













=












= ′












1

0

0

1 1
2 1M Mc c

c

c( , ) ( , )

for the dipole bend angles and find the simple results
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For µ ≥ 60o, the bends need to have reduced strength relative to
the normal FODO cells; the strength depends on the cell phase

advance.
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For µ = 60o, φ1 =0 and φ2 =φ.  In this case, we just leave out two

magnets in the first FODO cell of the insertion, and run the next
cell as normal. This is the origin of the term “missing magnet”.

Even for general phase advance, this scheme is easy to implement
and widely used.

This guarantees that the dispersion is both zero in the straight
section, and unperturbed in the rest of the lattice. In combination

with the Collins insertion, we get a long straight section into which
we can put devices to perform some of the utility functions

mentioned above.
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17.8 m long Collins insertion, starting at s=60 m, with two-cell
dispersion suppressor on each side

20 40 60 80 100

5

10

15

20

25

30

35

Beta (m)

s(m)

20 40 60 80 100

0.5

1

1.5

2

2.5

3

Dispersion(m)

s(m)



11/26/01 USPAS Lecture 7 17

Many other, more complex types of insertions are possible. Among
these are the so-called π and 2π insertions.

The π insertion has a transfer matrix equal to the negative of the

unit matrix, and hence automatically provides lattice function
matching. The insertion phase advance is π. Such an insertion does

not match the dispersion.
A 2π insertion has a 3x3 unit matrix and matches all the lattice

functions.

A particularly important type of insertion for colliding beam
machines is the low-β insertion
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*

Two symmetric insertions are used, to match from the FODO
lattice to the collision point. Dispersion suppression is also

required.
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The box labeled “low-β” will contain at least a quadrupole doublet,

together with a straight section of length L0 on each side of the

collision point, to provide space for experiments. In this drift space
the beta function varies like
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which is close to π, for L0>>β*.
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The phase advance across the straight section dominates that of the
insertion. Thus, the machine tune increases by about 0.5 when a

low-β insertion is added.

The rapid increase of the β-function in the straight section leads

inevitably to a large value, βmax, of the β function somewhere in the

insertion, before the lattice function can be matched to the FODO
lattice. Typically, βmax in the low-β insertion is the maximum value

of β in the machine. Since, as we’ll see, errors tend to have effects

proportional to β β  or  at their location, the low-β insertion is

usually the most sensitive region of the machine.
A rough “rule of thumb”:β β*

max ∝ L0
2

Example: LHC low-β insertion, β* =0.5 m
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Linear deviations from an ideal lattice:
Dipole errors and closed orbit deformations

We now begin to examine the results of field errors: the
differences between the real fields in a machine, and the idealized

fields on which the lattice design is based.

We’ll start with the simplest kind of field errors: those due to
dipole fields.

Dipole field errors can come from a variety of sources. Some
of them are:
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•  Dipole fields due to quadrupoles not being aligned on the
reference orbit (this is usually the biggest source of error)

•  Differences between the idealized dipole field and the true dipole
field, due to fabrication errors in the magnets, and/or due to

remnant field effects
•  Horizontal dipole fields (causing vertical orbit errors) due to

rotated dipole magnets
•  Dipole field errors due to misalignments of combined function

magnets
•  Stray fields on the reference orbit from other accelerator

components

From Lecture 3, p 7: The trajectory equations, to lowest order in
dipole field errors, are
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We will treat dipole errors in the “kick approximation”:

Write the above equation as

∆ ∆ ∆ ∆ ∆′ + = = ( )
z Kz s
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B
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0 0ρ ρ
in which the field error is taken to be highly localized over a length

L. Then, as ∆s->0 with ∆(BL) finite, we have
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∆ ∆′ = = ( )
z

BL
B

θ
ρ0

The field error, in this approximation, just causes a change in the
slope of the trajectory, by the angle θ, at the location of the error.

The trajectory of a particle, which would otherwise be on the
reference orbit but for the field error, must be a closed curve, just
like the reference orbit, since the kick is periodic with period C.

How do we find the equation of this curve, relative to the reference
orbit?

Let the field error be located at s=sk
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where the last follows from the fact that the trajectory is closed.
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In terms of the lattice functions, we have
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Comparing with the trajectory equations in the form
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so that the closed trajectory as a function of s has the form
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The above form applies when s>sk. A form valid for all s is
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