		1			
LECTURE 5 Periodic systems Twiss parameters and stability Hill's equation and its solution Courant-Snyder invariant and emittance			Periodic systemsEverything we have done up to this point can be applied to beam transfer lines, linacs, or circular accelerators. We now specialize to circular accelerators, which are periodic systems with period C, where C=circumference=length of the (closed) reference orbit. Consider only (x, x') motion for the moment (or only (y, y'))- just two dimensions. If I start at the point s_0 on the reference orbit, then, after one turn, $\vec{x}(s_0 + C, s_0) = \mathbf{M}(s_0 + C, s_0)\vec{x}(s_0)$		
12/4/01	USPAS Lecture 5	1	where C is the ci 12/4/01	rcumference (length of the closed reference) USPAS Lecture 5	rence orbit). 2
The matrix $\mathbf{M}(s+C,s)$ is called the <u>one-turn transfer matrix</u> at the point <i>s</i> . Important properties of this matrix: 1. \mathbf{M} is periodic in <i>s</i> with period <i>C</i> : $\mathbf{M}(s+C,s) = \mathbf{M}(s,s-C)$ 2. Det $\mathbf{M}(s+C,s) = 1$ 3. Trace $\mathbf{M}(s+C,s) = \mathbf{M}_{11} + \mathbf{M}_{22}$ is independent of <i>s</i> . Why? <u>Theorem</u> : The trace of a matrix product is invariant under a permutation of the matrices.		<u>atrix</u> at s. der a	$\mathbf{M}(s+C,s) = \mathbf{M}(s+C,s+C-\delta s)\mathbf{M}(s+C-\delta s,s+C-2\delta s) \times \dots \mathbf{M}(s+2\delta s,s+\delta s)\mathbf{M}(s+\delta s,s)$ $\mathbf{M}(s+C-\delta s,s-\delta s) = \mathbf{M}(s+C-\delta s,s+C-2\delta s)\dots \mathbf{M}(s+\delta s,s)\mathbf{M}(s,s-\delta s)$ $= \mathbf{M}(s+C-\delta s,s+C-2\delta s)\dots \mathbf{M}(s+\delta s,s)\mathbf{M}(s+C,s+C-\delta s)$ $\mathbf{M}(s+C-\delta s,s-\delta s) \text{ is related to } \mathbf{M}(s+C,s) \text{ by a permutation of the matrices in the matrix product.}$ So the trace of M is independent of s.		
12/4/01	USPAS Lecture 5	3	12/4/01	USPAS Lecture 5	4

Taking advantage of these properties, we write the 2x2 total The *s*-dependent coefficient of B^2 must be a constant. Since $\alpha(s)$, one-turn matrix M(s+C,s) as the sum of a constant matrix plus a $\beta(s)$, and $\gamma(s)$ are arbitrary functions of s, we can choose them so traceless matrix, periodic in s with period C. $-\alpha(s)^2 + \beta(s)\gamma(s) = \text{constant} = 1$ $\mathbf{M}(s+C,s) = A\mathbf{I} + B\mathbf{J}(s)$ $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad \mathbf{J}(s) = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix}$ Then $A^2 + B^2 = 1$ Here A and B are constants, and $\alpha(s)$, $\beta(s)$, and $\gamma(s)$ are functions of Let $A = \cos \mu$, $B = \sin \mu$: (note that μ could be imaginary), s, periodic in s with period C. Since Det M=1, we have we have $A^{2} + B^{2} \left(-\alpha(s)^{2} + \beta(s)\gamma(s)\right) = 1$ $\mathbf{M}(s+C,s) = \mathbf{I}\cos\mu + \mathbf{J}(s)\sin\mu =$ $\begin{pmatrix} \cos\mu + \alpha(s)\sin\mu & \beta(s)\sin\mu \\ -\gamma(s)\sin\mu & \cos\mu - \alpha(s)\sin\mu \end{pmatrix}$ 5 **USPAS** Lecture 5 **USPAS** Lecture 5 12/4/01 6 12/4/01 When **M** is written in this form, it is called the "Twiss matrix": Note that The Twiss parameters α , β , and γ are periodic functions of s, with $\mathbf{J}^{2}(s) = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix} \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\mathbf{I}$ period C, related by $-\alpha^2 + \beta \gamma = 1$. Because these functions completely describe the properties of the magnetic lattice, they are also called lattice functions. **J** is the matrix equivalent of $i = \sqrt{-1}$. An additional restriction on the constant μ comes from the requirement of *stability*. Hence we can write After *n* turns in the accelerator, we have $\mathbf{M}(s+C,s) = \mathbf{I}\cos\mu + \mathbf{J}(s)\sin\mu = \exp[\mathbf{J}(s)\mu]$ $\vec{x}(s+nC,s) =$ $\mathbf{M}(s_0 + nC, s_0 + (n-1)C)...\mathbf{M}(s_0 + 2C, s_0 + C)\mathbf{M}(s_0 + C, s_0)\vec{x}(s_0)$ $[\mathbf{M}(s+C,s)]^n = \exp[\mathbf{J}(s)n\mu] = \mathbf{I}\cos n\mu + \mathbf{J}\sin n\mu$ $= [\mathbf{M}(s_0 + C, s_0)]^n \vec{x}(s_0)$ For the matrix elements to be finite as $n \rightarrow \infty$ requires that μ is Stability requires that all the elements of $[\mathbf{M}(s_0 + C, s_0)]^n$ remain real. finite as $n \to \infty$. 7 12/4/01 **USPAS** Lecture 5 12/4/01**USPAS** Lecture 5 8

$$\begin{aligned} \text{Finis also implies that} \\ \text{[Trace } M(s + C, s) = |M_1| + M_{22}| = |2\cos \mu < 2 \\ \text{The condition} \\ \text{Trace } M(s + C, s) < 2 \\ \text{is a general condition for the stability of trajectories in any periodic system.} \\ \textbf{Example 3:} \\ \text{Suppose we make a circular accelerator out of a collection of m identical system is periodic in swith period. The one-turn matrix is the product of n identical matrices, each of the form 124401 USPAS Lecture 5 9 \\ \text{If race(}M_n(L,0)) = \left(2 - \frac{L^2}{4f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{The values of the Twiss parameters u the beginning of the FODO cell of the requirement that 12401 USPAS Lecture 5 9 \\ \text{If race(}M_n(L,0)) = \left(2 - \frac{L^2}{4f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left|\frac{L}{4f}\right| < 1 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left(\frac{L}{4f}\right) < 2 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left(\frac{L}{4f}\right) < 2 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 = \left(\frac{L}{4f}\right) < 2 \\ \text{M}_n(L,0) = \left(1 - \frac{L^2}{8f^2}\right) < 2 \\ \text{$$

From sine coefficient (times f): integral equation for
$$\Phi$$

$$f(2f\Phi' + f\Phi'') = 2ff\Phi' + f^2\Phi'' = (f^2\Phi')^{'} = 0$$

$$f^{'}(s\Phi''(s) = f^{'}(s_{0})\Phi'(s_{0}) + k_{1} = k_{2}$$
From the vise parameters:
In which k_{1} and k_{2} are constants. Absorb the constant k_{1} into the arbitrary constant a which in multiplies, t_{1} .

$$\Phi' = \frac{1}{f^{2}} = \Phi(s_{0}) = \Phi(s_{0}) + \frac{1}{g_{1}}\frac{dt_{1}}{dt_{1}}^{'}(t_{1})^{2}}{\frac{1}{g_{1}}\frac{dt_{1}}{dt_{2}}^{'}}$$
where the last equation follows if we absorb $\Phi(s_{0})$ into the arbitrary constant δ which is added to Φ . Then s_{0} is the location from which we measure the phase advance $\Phi(s)$.
124401 USPAS Lecture 5 21

$$z(s+C) = z(s)[\cos\mu + a^{'}(s)\sin\mu] + z^{'}(s)\beta(t)\sin\mu$$
Compare with solution to Hill's equation:

$$z(s+C) = z(s)[\cos(\mu + a^{'}(s)\sin\mu] + z^{'}(s)\beta(t))\sin\mu$$

$$f(s+C,s) = \frac{s^{'}}{f(s)}\frac{dt}{f(s)} = \frac{1}{f_{2}}\frac{dt}{f(t_{1})^{2}} = 2\pi Q$$
is a constant since $\Phi' = \frac{1}{f_{2}}$ is proided: in s with period C.
So
12401 USPAS Lecture 5 23
12401 USPAS Lecture 5 23
12401 USPAS Lecture 5 24

$$z(s+C) = af(s)\cos(\Phi(s) + 2\pi Q + \delta) = z(s)\frac{f'}{f}$$

$$z(s+C) = af(s)\cos(\Phi(s) + \delta) + z(s)\frac{f'}{f}$$
to obtain

$$z'(s) = -\frac{a}{f}\sin(\Phi(s) + \delta) + z(s)\frac{f'}{f}$$

$$z(s+C) = z(s)[\cos 2\pi Q - f(s)f'(s)\sin 2\pi Q] + z'(s)f(s)^{2}\sin 2\pi Q$$
Compare with
$$z(s+C) = z(s)[\cos \mu + \alpha(s)\sin \mu] + z'(s)f(s)^{2}\sin 2\pi Q$$
Interpretation:
The trajectory
$$z(s) = a\sqrt{\beta}(s)\cos(\Phi(s) + \delta)$$
is called a betatron oxillation. The amplitude is determined both
by a (initial conditions) and by β (magnet lattice). As we saw
earlier, the trajectory evolve variable wavelength, this
$$g(s) = f(s)^{2}$$

$$\alpha(s) = -f(s)f'(s) = -\frac{\beta'(s)}{2}$$

$$\mu = 2\pi Q = \frac{f}{2}\frac{ds}{\beta(s)}$$
124401
USPAS Lecture 5
25
The function $\Phi = \int \frac{ds}{\beta(s)}$ is called the phase advance (for obvious
reasons). The phase of the oscillations per turn is
$$\frac{f}{2}\frac{ds}{\beta(s)} = \frac{1}{2\pi} \frac{f}{2}\frac{ds}{\beta(s)} = Q$$
which is called the machine, changing fast when β is small,
and slowly when β is large.
The total number of oscillations per turn is
$$\frac{f}{2\pi} \frac{ds}{\beta(s)} = \frac{1}{2\pi} \frac{f}{2}\frac{ds}{\beta(s)} = Q$$
which is called the tax ecclerator. Note that, we have:
$$noghly$$

$$Q = \frac{1}{2\pi} \frac{f}{2\pi} \frac{ds}{\beta(s)} = \frac{\pi}{2\pi} \frac{f}{\beta(s)}.$$
124401
USPAS Lecture 5
27
$$Iz401$$
USPAS Lecture 5
27

Exercises: 1.1 Using
$$\begin{aligned} z = a_{1}^{2}\beta\cos(\Phi + \delta) \\ z' = \frac{-g_{1}^{2}(\cos(\Phi + \delta) + \sin(\Phi + \delta))^{2}}{-g_{1}^{2}(\cos(\Phi + \delta) + \sin(\Phi + \delta))^{2}} \end{aligned}$$

Write the trajectory equations for the constriktic and sitelike trajectories in the accelerator, s_{1} of an 0.8 Stown that the trade-term matrix to more point in the accelerator, s_{1} of an 0.8 Stown that the trade-term matrix to more point in the accelerator, s_{1} of an 0.8 Stown that the trade-term matrix to more point in the accelerator, s_{1} of an 0.8 Stown that the trade-term matrix to more point in the accelerator, s_{1} of an 0.8 Stown that the trade-term matrix to $\beta(x_{1}, x_{1}) \in C(s_{1}, s_{1}) \in S(s_{1}, s_{1})^{2} = (C(s_{1}, s_{1}) \in S(s_{1}, s_{1})^{2})$ be the transfer matrix from s_{1} or $S(s_{1}, s_{1})$ where $\Delta \Phi = \alpha(s_{1}) \tan \Phi = \frac{1}{2} \frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \cos \Delta \Phi - \alpha(s) \sin \Delta \Phi|}$, $\frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \sin \Delta \Phi|} = \frac{|\vec{B}(s_{1})|}{|\vec{B}(s_{1})|} \sin \Delta \Phi|} = \frac{|\vec{B}(s_{1}$

$$\begin{aligned} & \text{Let us be set of the trajectory solutions:} \\ & z = a \sqrt{\beta} \cos \theta \\ & z = a \sqrt{\beta} \cos \theta$$

The ellipse is upright when α =0. At these points

$$\beta = \frac{z_{\max}}{z'_{\max}}$$

If β is at a minimum, we call it a <u>waist</u>. In FODO cells, waists appear at the center of the D quads.

12/4/01

USPAS Lecture 5

41