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LECTURE 5

Periodic systems
Twiss parameters and stability
Hill’s equation and its solution

Courant-Snyder invariant and emittance
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Periodic systems

Everything we have done up to this point can be applied to
beam transfer lines, linacs, or circular accelerators. We now

specialize to circular accelerators, which are periodic systems with
period C, where C=circumference=length of the (closed) reference

orbit.
Consider only (x, ′x ) motion for the moment (or only (y, ′y ))-

just two dimensions. If I start at the point s0 on the reference orbit,
then, after one turn,

r r
x s C s s C s x s( , ) ( , ) ( )0 0 0 0 0+ = +M

where C is the circumference (length of the closed reference orbit).
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The matrix M(s+C,s) is called the one-turn transfer matrix at
the point s.

Important properties of this matrix:
1. M is periodic in s with period C:

M M( , ) ( , )s C s s s C+ = −

2. Det M( , )s C s+ = 1

3. Trace ( + , ) =M M Ms C s 11 22+  is independent of s.

Why?
Theorem: The trace of a matrix product is invariant under a

permutation of the matrices.
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M( , )s C s s s+ − −δ δ  is related to M( , )s C s+  by a permutation of
the matrices in the matrix product.

So the trace of M is independent of s.
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Taking advantage of these properties, we write the 2x2 total
one-turn matrix M(s+C,s) as the sum of a constant matrix plus a

traceless matrix, periodic in s with period C.

M I J

I J

( , ) ( )

;   ( )
( ) ( )

( ) ( )

s C s A B s

s
s s

s s

+ = +

= 





=
− −







1 0

0 1

α β
γ α

Here A and B are constants, and α(s), β(s), and γ(s) are functions of

s, periodic in s with period C.  Since Det M=1, we have

A B s s s2 2 2 1+ − +( ) =α β γ( ) ( ) ( )
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The s-dependent coefficient of B2 must be a constant. Since α(s),

β(s), and γ(s)  are arbitrary functions of s, we can choose them so

that
− + = =α β γ( ) ( ) ( )s s s2 1constant

Then
A B2 2 1+ =

Let A B= =cos ,   sinµ µ:  (note that µ could be imaginary),

we have

M I J( , ) cos ( )sin

cos ( )sin ( )sin

( )sin cos ( )sin

s C s s

s s

s s

+ = + =
+

− −






µ µ
µ α µ β µ
γ µ µ α µ
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When M is written in this form, it is called the “Twiss matrix”;
The Twiss parameters α, β, and γ are periodic functions of s, with

period C, related by  − + =α βγ2 1. Because these functions
completely describe the properties of the magnetic lattice, they are

also called lattice functions.
An additional restriction on the constant µ comes from the

requirement of stability.
After n turns in the accelerator, we haver

r

r

x s nC s

s nC s n C s C s C s C s x s

s C s x sn

( , )

( , ( ) )... ( , ) ( , ) ( )

( , ) ( )

+ =
+ + − + + +

= +[ ]
M M M

M

0 0 0 0 0 0 0

0 0 0

1 2

Stability requires that all the elements of M( , )s C s n
0 0+[ ]  remain

finite as n → ∞.
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Note that

J I2 1 0

0 1
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
s

s s

s s

s s

s s
=

− −




 − −






=
−

−






= −
α β
γ α

α β
γ α

J is the matrix equivalent of i = −1.

Hence we can write
M I J J( , ) cos ( )sin exp ( )s C s s s+ = + = [ ]µ µ µ

So
M J I J( , ) exp ( ) cos sins C s s n n nn+[ ] = [ ] = +µ µ µ

For the matrix elements to be finite as n → ∞ requires that µ is

real.
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This also implies that

Trace ( + , ) =M M Ms C s 11 22 2 2+ = <cos µ

The condition
Trace ( + , )M s C s < 2

is a general condition for the stability of trajectories in any periodic
system.

Example 3:

Suppose we make a circular accelerator out of a collection of m
identical symmetric FODO cells. The one-turn matrix is the

product of m identical matrices, each of the form
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Mc L
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The one-turn matrix for m FODO cells of length L is
M M M M M

M M M

( , ) ( , ) ( , )... ( , ) ( , )

( , ) ( , ) ( , )

C s s C s C C C L L L L s

s L L s

c c c c

c c
m

c

+ = + −

= [ ] −

2

0 0 1

where C=mL.
This system is  periodic in s with periodL.

For n turns, the stability argument applies to the FODO cell matrix
and leads to the requirement that
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Trace Mc L
L

f

L
f

( , )0 2
4

2
4

1
2

2( ) = − < ⇒ <

The values of the Twiss parameters at the beginning of the FODO
cell (at the F quad) can be found from

Mc L

L

f
L

L
f

L

f

L
f

L

f

( , )

cos ( )sin ( )sin

( )sin cos ( )sin

0
1

8 4

4
1

4
1

8

0 0

0 0

2

2

2

2

2
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=
− +

− −





−

















=
+

− −






µ α µ β µ
γ µ µ α µ
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from which we find

sin ;    ( )
sin

sin
;

( )

µ β

µ

µ
α

2 4
0

1
2

0 0

= =
+





=

L
f

L

We can find the Twiss parameters at a general point s within the
cell from

M M M

M M M

c c c

c c c

L s s L s L L s

s L s

s s

s s

( , ) ( , ) ( , )

( , ) ( , ) ( , )

cos ( )sin ( )sin

( )sin cos ( )sin

+ = +

=

==
+

− −






−0 0 01

µ α µ β µ
γ µ µ α µ
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Numerical results:
Bend example 1 around into a circle with bending magnets in

FODO drifts.

.....

L 9L 10L=00

−f f f f f−f −f −f −f

Circular symmetric FODO lattice C=10L.
L=1 m. Lens focal length f=0.45 m.

For this FODO cell we have
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sin
.

.

.  ( . )

   ( )
sin

sin
.

.
.  

µ

µ

β

µ

µ

2 4
1

4 0 45
0 5555

1 178 67 5

0
1

2 1 1 0 555
0 924

1 68

= =
×

=

=

=
+



 = +( ) =

L
f

L

o

m

We can calculate the trajectories and Twiss parameter β  through

the accelerator
In the following figures, the sinelike trajectories and β are in m.
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Single-pass cosinelike trajectory and 
β
β
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Multi-pass cosinelike trajectory and 
β
β

( )
( )
s
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0

 forms the envelope of the cosinelike trajectory
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Single-pass sinelike trajectory and β β( ) ( )s 0
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Multi-pass sinelike trajectory and β β( ) ( )s 0
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β β( ) ( )s 0  forms the envelope of the sinelike trajectory
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Hill’s equation and its solution

We see from the above example that there is a very direct relation
between the particle trajectories and the Twiss parameters.

To explore this relation further, we return to the general
homogeneous differential equation for the trajectories:

d z

ds
K s z

2

2 0+ =( )

where z=x or y, and for a circular accelerator of circumference C, K
is periodic in s with period C.

This type of differential equation is called Hill’s equation.
Floquet’s theorem  (a result from the 19th century) states that the

solution can be written in the form
z s af s s( ) ( )cos ( )= +( )Φ δ
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in which a and δ are arbitrary constants, f(s) is a function which

has the same periodicity as that of K (i.e, periodic in s with period
C).

For a trajectory in an accelerator, cos ( )Φ s +( )δ  (and z(s)) should
be non-periodic.

Differential equations for f and Φ can be obtained by requiring that

z satisfy Hill’s equation:
′ = +( ) ′ − +( ) ′( )z a f fcos sinΦ Φ Φδ δ

′′ + = +( ) − ′ + ′′( ) + +( ) − ′ ′ − ′′( ) =z Kz fK f f f fcos sinΦ Φ Φ Φ Φδ δ2 2 0

Coefficients of sine and cosine must be separately zero, since δ is
arbitrary
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From sine coefficient (times f): integral equation for Φ

f f f ff f f

f s s f s s k k

2 2 02 2

2 2
0 0 1 2

′ ′ + ′′( ) = ′ ′ + ′′ = ′( )′ =

′ = ′ + =

Φ Φ Φ Φ Φ

Φ Φ( ) ( ) ( ) ( )

in which k1 and k2 are constants. Absorb the constant k2 into the
arbitrary constant a which multiplies f:

′ = ⇒ = + =∫ ∫Φ Φ Φ1
2 0 2 2

0 0
f

s s
dt

f t

dt

f ts

s

s

s

( ) ( )
( ) ( )

where the last equation follows if we absorb Φ(s0) into the

arbitrary constant δ, which is added to Φ. Then s0 is the location

from which we measure the phase advance Φ(s).
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From cosine coefficient: Differential equation for f:

fK f f
f

fK f− ′ + ′′ = − + + ′′ =Φ 2
3

1
0

Relation to the Twiss parameters:

From the Twiss matrix

z s C

z s C
s C s

z s

z s

( )

( )
( , )

( )

( )

+
′ +







= +
′







M

M( , )
cos ( )sin ( )sin

( )sin cos ( )sin
s C s

s s

s s
+ =

+
− −







µ α µ β µ
γ µ µ α µ
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so
z s C z s s z s s( ) ( ) cos ( )sin ( ) ( )sin+ = +[ ] + ′µ α µ β µ

Compare with solution to Hill’s equation:

z s C af s C s C( ) ( )cos ( )+ = + + +( )Φ δ

Now

Φ Φ( ) ( )
( ) ( )

s C s
dt

f t

dt

f t
Q

s

s C

C

+ − = = =
+

∫ ∫2 2 2π

is a constant since ′ =Φ 1
2f

 is periodic in s with period C.

 So
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z s C af s s Q

af s s Q af s s Q

z s Q af s s Q

( ) ( )cos ( )

( )cos ( ) cos ( )sin ( ) sin

( )cos ( )sin ( ) sin

+ = + +( )
= +( ) − +( )
= − +( )

Φ

Φ Φ

Φ

2

2 2

2 2

π δ
δ π δ π

π δ π

Use

′ = − +( ) + ′
z s

a
f

s z s
f
f

( ) sin ( ) ( )Φ δ

to obtain
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z s C z s Q f s f s Q z s f s Q( ) ( ) cos ( ) ( )sin ( ) ( ) sin+ = − ′[ ] + ′2 2 22π π π

Compare with

z s C z s s z s s( ) ( ) cos ( )sin ( ) ( )sin+ = +[ ] + ′µ α µ β µ

thus

β

α β

µ π
β

( ) ( )

( ) ( ) ( )
( )

( )

s f s

s f s f s
s

Q
ds

sC

=

= − ′ = − ′

= = ∫

2

2

2
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Interpretation:
The trajectory

z s a s s( ) ( ) cos ( )= +( )β δΦ

is called a betatron oscillation. The amplitude is determined both
by a (initial conditions) and by β (magnet lattice). As we saw

earlier, the trajectory envelope varies like β . But β also

determines the wavelength of the trajectory’s oscillation.

For constant λ, the phase is Φ = 2π
λ

s
. For variable wavelength, this

generalizes to Φ = = =∫ ∫2 2π
λ β

λ πβds
s

ds
s

s s
( ) ( )

,  ( ) ( )
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The function Φ = ∫
ds

sβ( )
 is called the phase advance (for obvious

reasons). The phase of the oscillating trajectory advances at
different rates around the machine, changing fast when β is small,

and slowly when β is large.

The total number of oscillations per turn is
ds

s
ds

s
Q

C Cλ π β( ) ( )∫ ∫= =1
2

which is called the tune of the accelerator. Note that, we have,
roughly

Q
ds

s
C R

C

= ≈ =∫
1

2 2π β π β β( )
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where R
C=
2π

 mean radius of the accelerator.

Back to the numerical example: circular accelerator, 10 FODO
cells, cell length L=1 m, focal length f=0.45 m.

For a single FODO cell, we found µ
βc

C

ds
s

= =∫ ( )
.1 178.

For the whole machine

 
µ µ π= = =

=
10 11 78 2

1 8748
c Q

Q

.

.
And

R
C

R
Q

= = =

≈ =

2
10
2

1 59

1 59
1 8748

π π

β

  .  

.
.

 

m m

m = 0.85 m
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Exercises:  1.Using  
z a

z
a

= +( )

′ = − +( ) + +( )( )

β δ

β
α δ δ

cos

cos sin

Φ

Φ Φ
,

write the trajectory equations for the cosinelike and sinelike trajectories
in terms of α, β and Φ. Show that the transfer matrix from one point in

the accelerator, s0, to another, s, can be written in terms of β, α, and Φ, as

M( , )
( , ) ( , )

( , ) ( , )

( )
( )

cos ( )sin ( ) ( )sin

( ) ( )

( ) ( ) cos

( ) ( ) sin

s s
C s s S s s

C s s S s s

s
s

s s s

s s

s s

s s

0
0 0

0 0

0
0 0

0

0

0

1

1

=
′ ′







=

+[ ]
−( )

− +( )

β
β

α β β

β β
α α

α α

∆Φ ∆Φ ∆Φ

∆Φ

∆Φ∆Φ
∆Φ ∆Φ

∆Φ Φ Φ









 −[ ]



















= −

β
β

α( )
( )

cos ( )sin

  ( ) ( )

s
s

s

s s

0

0where
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2. The one-turn matrix M I J( , ) cos ( )sins C s Q s Q1 1 12 2+ = +π π

s

s

C+s

C+s

1

2

1

2
 propagates a particle around one turn

starting at s1. M( , )s C s2 2+  does the same starting at s2. Let

M( , )
( , ) ( , )

( , ) ( , )
s s

C s s S s s

C s s S s s2 1
2 1 2 1

2 1 2 1
=

′ ′





 be the transfer matrix from s1 to

s2. Then we have
M M M M

M M M M

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

s s s C s s C s s s

s C s s s s C s s s

2 1 1 1 2 2 2 1

2 2 2 1 1 1 2 1
1

+ = +

+ = + −

So J M J M( ) ( , ) ( ) ( , )s s s s s s2 2 1 1 2 1
1= − .
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Use this matrix equation to show that
β
α
γ

( )

( )

( )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

s

s

s

C s s C s s S s s S s s

C s s C s s C s s S s s S s s C s s

2

2

2

2 1
2

2 1 2 1 2 1
2

2 1 2 1 2 1 2 1 2 1 2 1

2















=

[ ] − [ ]
− ′ ′ + ′ −− ′

′[ ] − ′ ′ ′[ ]































S s s S s s

C s s C s s S s s S s s

s

s

s

( , ) ( , )

( , ) ( , ) ( , ) ( , )

( )

( )

( )
2 1 2 1

2 1
2

2 1 2 1 2 1
2

1

1

12

β
α
γ

This allows us to propagate the lattice functions from one point
to another.
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For example, in a drift space of length s, C S s C S= = ′ = ′ =1 0 1,  ,  ,

β
α
γ

β
α
γ

β β α γ
α α γ

γ γ

( )

( )

( )

( )

( )

( )

s

s

s

s s

s

s s s

s s

s















=
−

−




























⇒
= − +

= −
=

1 2

0 1

0 0 1

22
0

0

0

0 0 0
2

0 0

0

If α β β
β

α
β0 0

2

0 0
0= = + = −,  ( ) ,   ( )s

s
s

s
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In a thin lens C S C
f

S= = ′ = ′ =1 0
1

1,  ,  ,m

β
α
γ

β
α
γ

β β

α α β

γ γ β α
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1

1
2

0

0

0

1 0

1 0
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1 0
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2

0

1 0 0
1

1 0

1 2
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⇒

=
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f f
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Courant-Snyder invariant and emittance
Back to the trajectory solutions:

z a

z
a

=

′ = − +( )

= +

β θ

β
α θ θ

θ δ

cos

cos sin

Φ
Form the combination

γ α β

βγ θ α θ α θ θ α θ θ

θ βγ α θ θ α α θ

z zz z

a a a

a

a

2 2

2 2 2 2 2

2 2 2 2

2

2

2

2 2

+ ′ + ′

= − +( ) + +( )

= −( ) + − +( ) +[ ]
=

cos cos cos sin cos sin

cos cos sin sin
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So
γ α β( ) ( ) ( ) ( ) ( ) ( ) ( )s z s s z s z s s z s a2 2 22+ ′ + ′ =

(the Courant-Snyder invariant)
-it is constant along a particular particle trajectory.

Let us pick a particular position in the ring s0. Let the values of z
and ′z  at this position, on turn n, be z sn( )0  and ′z sn( )0 .

z s z s nC a s s nC

a s nQ s a s n

z s z s nC
a
s

s n n

n

n

( ) ( ) ( ) cos ( )

( ) cos ( ) ( ) cos ( )   

( ) ( )
( )

( )cos ( ) sin ( )

0 0 0 0

0 0 0

0 0
0

0

2

= + = + +( )
= + +( ) = [ ]

′ = ′ + = − [ ] + [ ]( )

β δ

β π δ β φ

β
α φ φ

Φ

Φ

where   ( )φ πn nQ= +2 constant
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At this position, the Courant-Snyder invariant is

γ α β( ) ( ) ( ) ( ) ( ) ( ) ( )s z s s z s z s s z s an n n n0 0
2

0 0 0 0 0
2 22+ ′ + ′ =

The two-dimensional space formed by z sn( )0  and ′z sn( )0  is called
phase space. The equation expressing the Courant-Snyder invariant
is the equation of an ellipse in this phase space. From turn to turn,

the phase space points {z sn( )0 , ′z sn( )0 } map out this ellipse.

Example:
phase space plot (just upstream of the F quad) in the 10 m

accelerator, with a2 = 0.01 m. The first five turns are shown by the
numbers.
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a2 is called the emittance  of a particle which has this trajectory.

a2 = =ε
π

Area   of  ellipse

The parameters of the ellipse are determined by the lattice
functions α, β,  and γ, at the position s0, and by the emittance:

φ

tan2
2φ α

γ β
=

−

z

z '

εβA = πε

εγ
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As we change the observation position s0, the phase space ellipse
changes its shape and orientation, but ε, proportional to the area, is

constant:

Example; back to the 10 m accelerator with 10 FODO cells.

Plot β within one cell, and the phase space ellipse at several

positions within the cell.

The number on the phase space ellipse plots indicates the value of
s within the cell for which it is plotted.
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The ellipse is upright when α=0. At these points

β =
′

z
z
max

max

If β is at a minimum, we call it a waist. In FODO cells, waists

appear at the center of the D quads.


