Piecewise	LECTURE 4 matrix solutions to the linear trajecto equations	ry	To unc A Let s_0 b C'' S'' $C(s,s_0)$ i	lerstand strong focusing, we must consider what when K varies with s. General linear trajectory equation $\frac{d^2z}{ds^2} + K(s)z = F(s)$ second order, inhomogeneous differential equat General solution: the the initial position. Define solutions to the hom equation $f(s,s_0) + K(s)C(s,s_0) = 0, C(s_0,s_0) = 1, C'(s_0,s_0)$ $(s,s_0) + K(s)S(s,s_0) = 0, S(s_0,s_0) = 0, S'(s_0,s_0)$ s called the "cosinelike" principal trajectory, and the "sinelike" principal trajectory.	happens tion hogeneous y = 0 z = 1 $d S(s, s_0)$ is
12/4/01	USPAS Lecture 4	1	12/4/01	USPAS Lecture 4	2
Suppo $C(s, s_0) = co$ 12/4/01	se K is constant and $K > 0$: then we have $s((s - s_0)\sqrt{K}), S(s, s_0) = \frac{1}{\sqrt{K}}sin((s - s_0)\sqrt{K})$ Hence the names. Properties of C and S: $C'' + KC = 0 \times S$ $S'' + KS = 0 \times (-C)$ $C''S - S''C = -\frac{d}{ds}(CS' - C'S) = 0$ CS' - C'S = constant = 1 USPAS Lecture 4	<u></u> <i>K</i>),	12/4/01	Back to the inhomogeneous equation: $\frac{d^2z}{ds^2} + K(s)z = F(s)$ $z'' + K(s)z = F(s) \times (-C)$ $\frac{C'' + K(s)C = 0}{Add} \times z$ Add: $C''z - Cz'' = \frac{d}{ds}(C'z - Cz') = -CF(s)$ $C'(s,s_0)z - C(s,s_0)z' + z'(s_0) = -\int_{s_0}^{s} C(t,s_0)F(t)dt$ USPAS Lecture 4	<i>lt</i>

Same, but with S in place of C:

$$S'(s,s_0) z - S(s,s_0)z' - z(s_0) = -\int_{0}^{1} S(s,s_0)F(t)dt$$
Multiply first equation by -S, second by C, and add:

$$CS'z - CS'z - Cz(s_0) = -\int_{0}^{1} C(s,s_0)F(t)dt$$

$$CS'z - CS'z - Cz(s_0) = -\int_{0}^{1} S(s,s_0)F(t)dt$$

$$\frac{CS'z - CS'z - Cz(s_0) = -\int_{0}^{1} S(s,s_0)F(t)dt$$
This is the general solution. Applying it to our trajectory equations. we have:

$$12/401 USPAS Lecture 4 5 12/401 USPAS Lecture 4 6$$
Puth-length equation:

$$\frac{dt}{ds} = 1 + \frac{x}{\rho}$$

$$\delta_{1}(s,s_{0}) = f(s,s_{0})z(s_{0}) + S_{1}(s,s_{0})\frac{s}{s_{0}}\frac{S_{1}(s,s_{0})}{\rho(t)}dt - C_{1}(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho(t)}dt - S(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho(t)}dt - C_{1}(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho(t)}dt - S(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho(t)}dt - S(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho(t)}dt - S(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho(t)}dt - S(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho(t)}dt - S(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho(t)}dt - S(s,s_{0})\frac{s}{s_{0}}\frac{S(s,s_{0})}{\rho$$

Simplest case: Gradient dipole with $1/\rho \rightarrow 0$, k $\rightarrow 0 \Rightarrow$ Drift space, length L: $\mathbf{M}(L,0) = \begin{pmatrix} 1 & L & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & L & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	Gradient dipole with k->0=> pure "sector" dipole, length L _D : Let $\phi = \frac{L_D}{\rho}$ = dipole bend angle Transfer matrix:
12/4/01 USPAS Lecture 4 17	12/4/01 USPAS Lecture 4 18
$\mathbf{M}(L_D, 0) = \begin{pmatrix} \cos\phi & \rho\sin\phi & 0 & 0 & 0 & \rho(1-\cos\phi) \\ -\frac{1}{\rho}\sin\phi & \cos\phi & 0 & 0 & 0 & \sin\phi \\ 0 & 0 & 1 & \rho\phi & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \sin\phi & \rho(1-\cos\phi) & 0 & 0 & 1 & \rho(\phi-\sin\phi) \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ Focal length in x is $f = \frac{\rho}{\sin\phi}$. If, as is usual for high-energy accelerators, $\phi <<1$, $\sin\phi \approx \phi = \frac{L_D}{\rho}$. This corresponds to a focal length $f \approx \frac{\rho^2}{L_D} >> L_D$. 12/4/01 USPAS Lecture 4 19	In this approximation, the transfer matrix is $\mathbf{M}(L_D, 0) = \begin{pmatrix} 1 & L_D & 0 & 0 & 0 & \frac{L_D}{2} \sqrt{\frac{L_D}{f}} \\ -\frac{1}{f} & 1 & 0 & 0 & 0 & \sqrt{\frac{L_D}{f}} \\ 0 & 0 & 1 & L_D & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \sqrt{\frac{L_D}{f}} & \frac{L_D}{2} \sqrt{\frac{L_D}{f}} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}$ Except for very weak focusing in x, the sector dipole looks like a drift section of length L_D . The lowest order dispersive effects are a change in the trajectory's angle by the bend angle times times the relative momentum deviation: 12/4/01 USPAS Lecture 4 20

$$\mathbf{M}(L_Q,0) = \begin{pmatrix} 1 & \frac{L_Q}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2} \\ 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} \\ 1 & -\frac{L_Q}{2f} & L_Q & -\frac{L_Q^2}{2f} & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} & L_Q & \frac{L_Q^2}{4f} \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 1 & -\frac{L_Q}{2f} & L_Q & \frac{L_Q^2}{4f} \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 1 & \frac{L_Q}{2f} & L_Q & \frac{L_Q^2}{4f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 1 & \frac{L_Q}{2f} & L_Q & \frac{L_Q^2}{4f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 1 & \frac{L_Q}{2f} & \frac{L_Q^2}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & -\frac{L_Q^2}{2f} \\ 1 & \frac{L_Q}{2f} & 0 \\ 0 & 0 & \frac{1}{f} & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & \frac{L_Q}{2f} \\ 1 & 0 & 0 \\ 1 & \frac{L_Q}{2f} \\ 1 & \frac{L_Q}{$$

