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LECTURE 3

Particle trajectory equations (continued)
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Expansion of the fields about the reference orbit:
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In these equations, we explicitly include only the idealized normal
dipole and quadrupole fields. ∆

r
B x y s( , , ) represents additional

idealized fields, due, for example, to skew quadrupoles,
sextupoles, or solenoids, or the deviations between the true

magnetic field (including errors, misalignments, fringe fields, etc.)
and the idealized fields.

Then
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On the reference orbit: x x x y y y B= ′ = ′′ = = ′ = ′′ = =∆
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Substitute:
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Expand, keeping only terms to second order in products of x, y,
′ ′x y, , and ∆

r
B
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Introducing the relative momentum deviation δ = −p p
p

0

0
 <<1,

we have, to second order in products of x, y, ′ ′x y, , δ, and ∆
r
B
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The linear terms in these equations, with ∆
r
B = 0 form the basis for

ideal linear optics. The nonlinear terms are generally treated as
perturbations to the linear motion.
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Note:

 Trajectory equations are written in curvilinear coordinate system,
but the field expansion is based on solution to LaPlace’s equation

in Cartesian coordinates.

We should really solve LaPlace’s equation in the reference orbit
coordinate system, and use that expansion for the fields.  See

Brown and Servranckx, “First and Second Order Charged Particle
Optics”, in “Physics of High Energy Accelerators”, AIP #127

(1985) pp. 64-138.

Result: additional nonlinear term  
y k2

2ρ
 in the ′′x  equation above.



11/21/01 USPAS Lecture 3 9

The effects of skew quadrupoles, sextupoles, and solenoids can be
treated by including the appropriate idealized fields in ∆

r
B .

Example: skew quadrupole
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The x and y motions are coupled
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Example: solenoid
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Again, the x and y motions are coupled
 (Note that the ′r  terms are only non-zero in the solenoid ends)
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Example: sextupole
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The equations are nonlinear and coupled.
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To start the general study of the trajectory equations:
Take the linear terms only, with ∆

r
B=0.
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In general, k and ρ depend on s. If Κ  were constant, (as in a

classical cyclotron) this is the equation for simple harmonic
motion.

Solution:
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Oscillatory (stable) if K>0; unstable if K<0.

For K>0, magnitude of K measures the strength of the focusing.
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In the x-direction:
The 1

2ρ
 term is the radial “weak focusing” provided by a

uniform dipole field. In terms of the field index n, the quadrupole
strength provided by a non-uniform dipole field
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Stability in both planes requires 0 1< <n  (weak focusing)
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Some typical numbers for high-energy accelerators:

CESR: B0 = 0.18 T; p0 = 5.2 GeV; => ρ = 96.4 m; Bρ=17.3 T-m

Weak focusing strength 1/ρ2 = 10-4 m-2.

Typical CESR quadrupole:
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Tevatron: B0 = 4.4 T; p0 = 1000 GeV; =>ρ = 758 m; Bρ=3335 T-m

Weak focusing strength 1/ρ2 = 1.7x10-6 m-2.

Typical Tevatron quadrupole:
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