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LECTURE 26
Collective instabilities;

Rigid beam transverse multibunch instability

The macroparticle model used in the previous lecture can be
applied to the important case of multiple bunches in a common

vacuum chamber. Long-range wakefields will couple the
motion of the bunches together and can lead to tune shifts and

instabilities.

As we saw above, the wake fields generated by the
macroparticle can be expressed in terms of a transverse

integrated force exerted at the location of the impedance.r
F t ieI t mr r m m Zm

m
m⊥

− ⊥= −( ) ( )( ) ( ) ˆ cos ˆ sin1 φ φ φ ω
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 For m=1, and in the vertical direction, we have

F t ieI t Zy( ) ( )= ( )⊥
1 1 ω

To use the above equation, we need to know the Fourier
spectrum of the dipole moment of the current. As discussed in

Lecture 25, the wake force is

F t
iNe

T
y i p Q t Z p Q

y i p Q t Z p Q

y y y
p

y y

( ) ˜ exp

˜ exp*

= − +( )( ) +( )( )
+ − −( )( ) −( )( )

⊥

=−∞

∞

⊥

∑
2

0
0 0 1 0

0 0 1 0

2
ω ω

ω ω

in which ỹ y i yy= + ′β . Using the symmetry property

Z Z1 1
⊥ ⊥= − −( ) ( )*ω ω .
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The integrated force, summed over all harmonics, can be
written as

F t
iNe

T
y i p Q t Z p Q c cy y y

p

( ) ˜ exp . .= − +( )( ) +( )( ) +⊥

=−∞

∞

∑
2

0
0 0 1 02

ω ω

c.c represents the complex  conjugate-dropped for now, added
back in equation of motion

This is the integrated force due to a single macroparticle.
Suppose now that we have 2 bunches (macroparticles), of equal
charge. We’ll label the first bunch 0, and the second (trailing)

bunch 1. The wake force due to bunch 0 can be written as

F t
iNe

T
y t ip t Z p Qy y

p
0

2

0
0 0 1 02

( ) = ( ) −( ) +( )( )⊥

=−∞

∞

∑˜ exp ω ω
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in which ˜ ˜ expy t y iQ ty( ) = −( )0 0ω

Suppose that bunch 1 trails bunch 0 by the time interval t t= 01.

t

0 1

t0 1
(n+1)T0

0 1

t0 1

nT
0

Since it arrives at the impedance at t nT t= +0 01, its current is
given by

I t
Ne
T

ip t t
p

0
0

0 01( ) exp= − −( )( )
=−∞

∞

∑ ω
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and its betatron oscillation can be written as

˜ ˜ expy t y iQ t ty1 10 0 01( ) = − −( )( )ω

so the force created by its wake is given by

F t
iNe

T
y iQ t t

ip t t Z p Q

y y

y
p
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10 0 01
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2
( ) = − −( )( ) ×

− −( )( ) +( )( )⊥

=−∞

∞

∑

˜ exp

exp

ω

ω ω

Bunch 0 arrives at the impedance at time t T T= −... , , ,...0 00  and
feels the total wake force
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Let us define
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ˆ ,  ˆy n y n0 1( ) ( ) are the ŷ variables of bunch 0,1 when bunch 0
crosses the location of the impedance. These are sometimes

called the “snapshot” position of the bunch. ˆ ,  ˆy n y n0 1( ) ( )
describe the bunch displacements and slopes, not at the same

location, but at the same time at different locations (the location
of the impedance, for bunch 0; a distance ct01 behind bunch 0,

for bunch 1).
Then we have

F
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We now insert this into the betatron equation of motion. The
unperturbed betatron equation for the 0th bunch, written in

terms of turn number, has the form

dy
dn

iQ yy

ˆ
ˆ  0

02= − π

The effect of the integrated force is to produce a change in ŷ0

given by ∆ ∆ˆ , ,y i y i
F

pv
i

F

m cy y
y n

y
y n

0 0
0 0

0
2= ′ = =β β β
γ

. Hence the

equation of motion becomes
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dy
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iQ y i
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m c T
y A y A y B y B

A Z p Q
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Now let us consider the motion of bunch 1. Since bunch 1 trails
bunch 0, it crosses the impedance at the time nT t0 01+  and feels

the force
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We now insert this into the betatron equation of motion for
bunch 1. The unperturbed betatron equation for bunch 1,

written in terms of turn number, has the form

dy
dn

iQ yy

ˆ
ˆ  1

12= − π

The effect of the integrated force is to produce a change in ŷ1

given by

∆ ∆ˆ exp exp,y i y iQ
t
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i
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m c
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π . Hence

the equation of motion becomes
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This, and the equation for bunch 0, are a set of coupled
differential equations, for the 2 bunches. We can rewrite these

equations as

dy
dn

iQ y y y y y

dy
dn

iQ y y y y y

y A A B B

y A A B B
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ˆ ˆ ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ
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m c T

BNe

m c T

B Ne

m c T
= = =

′
′

2

0
2

0

2

0
2

0

2

0
2

02 2 2

β
γ

β
γ

β
γ

    

We will treat the wake effects as a small perturbation: that is,
we assume that
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Γ
2

1
πQy

<< , and take the motion of the two bunches to have the

form

ˆ ˆ exp, ,y n y i n0 1 00 01( ) = −( )Ω

with Ω = + <<2 1π δ δQy ,

In this case, the complex conjugate terms in the above
equations have the approximate forms

ˆ ˆ exp ˆ
ˆ

ˆ
exp,

*
,

*
,

,
*

,

y n y i Q n y n
y

y
i Q ny y0 1 00 01 0 1

00 01

00 01

2 4( ) ≈ ( ) ≈ ( ) ( )





π π
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For 
Γ

2
1

πQy

<< , these rapidly oscillating terms may be omitted

from the equations, which then simplify to the set of coupled
equations

dy
dn

iQ y y y

dy
dn

iQ y y y

y A B

y A B

ˆ
ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ

0
0 0 1

1
1 1 0

2

2

= − − −

= − − − ′

π

π

Γ Γ

Γ Γ

or, in matrix form,

dy
dn

y
iQ

iQ
y A B

B y A

ˆ
ˆ,   

r
r′ = =

− − −
− − −





′

M M
2

2

π
π

Γ Γ
Γ Γ
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There will be a set of normal modes ζ m, for which the
equations of motion decouple:

ˆ
r r
y = Sζ

The normal mode eqations are

S MS S MS
d
dn

d
dn

′ = ′ = =−
r

r
r

r rζ ζ ζ ζ ζ   1 Λ

The matrix Λ = 





λ
λ

0

1

0

0

in which λ0 and λ1 are the eigenvalues of the matrix M. For the

matrix given above, the eigenvalues are

λ πi y A B BiQ= − − ± ′2 Γ Γ Γ
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The eigenvectors in the ( ˆ , ˆy y0 1) basis are

r r
ζ ζ1 2

1
2 1

1
2 1

= ′








 = −

′










B
B

B
B,  

We have, for each normal mode, the equation

d
dn

i
i i

′ =ζ λζ

Assuming a solution of the form

ζ ζi i in in( ) ˜ exp= −( )0 Ω .  Using

d
dn

ii
i i i i

′ = − =ζ ζ λζΩ .

The normal mode frequencies are
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Ω Γ Γ Γi i y A B Bi Q i i= = − ± ′λ π2

Using the definitions of Γ and A, B from above, these become
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Ω Γ Γ Γi y A B B
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m

exp 11 0
⊥

=−∞

∞

′ +( )( )





















∑ p Qy
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ω

Consider the special case when t
T

01
0

2
= . Then
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exp exp2 1 101

0
π πi p p

t
T

i p p p p− ′( )
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The eigenvectors are
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ζ ζ

ζ ζ

0 1

0 0 1 1 0 1

1
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1

1
1
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1

1
= 





=
−





⇒

= + = − +

,  

ˆ ˆ , ˆ ˆ    y y y y

In the sum mode, both bunches oscillate in phase; in the
difference mode, the two bunches oscillate out of phase.
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The general case

Let there be M bunches in the machine, with the labels
y y yM0 1 1, ,..., − . Let the time separation between the bunches be

as shown below

mk
t

0 1

t 0k

nT
0

2 k m M-1

t

t
0m

Following from above, the force due to the mth bunch, is given
by
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F t
iNe

T
y iQ t t
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exp
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=−∞
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2
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The force on the kth bunch due to the mth bunch is
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in which
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t t tmk m k= −0 0

Using ˆ ( ) ˜ expy n y iQ n
t
Tm m y

m= − −












2 0

0

π , the force on the kth

bunch is
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The total force on the kth bunch is
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We now insert this into the betatron equation of motion for
bunch k. The unperturbed betatron equation for bunch k, written

in terms of turn number, has the form

dy
dn

iQ yk
y k

ˆ
ˆ  = −2π

The effect of the integrated force is to produce a change in ŷk

given by
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∆ ∆ˆ exp expy i y iQ
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the equation of motion becomes
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This is a set of M  coupled differential equations for the M
bunches.  In matrix form, it can be written as
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dy
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There will be a set of M  normal modes ζ m, for which the
equations of motion decouple:

r r
y = Sζ

S MS S MS
d
dn

d
dn

′ = ′ = =−
r

r
r

r rζ ζ ζ ζ ζ   1 Λ

The matrix Λ ij ij i= δ λ  contains the eigenvalues λi of the matrix

M.
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As in the two-bunch case, the normal mode frequencies are
given by the eigenvalues of M:

Ωi ii= λ

For any bunch spacing and impedance, the matrix given above
may be diagonalized numerically and the normal mode

frequencies obtained. However, a general analytical solution for
the normal mode frequencies for M bunches is only possible in

special cases.

For example, suppose that the M bunches are uniformly
distributed around the ring.
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Then, we can write

t
m

M
Tm0 0

1= −( )

and

Mkm y km
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N e
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m k
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By analogy with the 2-bunch case, the matrix which gives the
normal modes has the form

S
M

iab
Mab = 





1 2
exp

π

and the eigenvalue matrix is then
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Using the identity
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and the normal mode frequencies are
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The tune shift and damping rate for mode m are related to
Ωm yQ− 2π  by

Ω ∆m y m mQ Q i− = −2 2π π α
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and the damping rate is

12/3/01 USPAS Lecture 26 31

α
β

γ
ωm

y
y

r

NMe

m c T
Z rM m Q= + +( )( )





⊥

=−∞

∞

∑
2

0
2

0
1 02

Re

The eigenmodes are
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11 2
ˆ exp ˆ

The damping rate (or instability growth rate, if it is negative)
for the multibunch instability is proportional to the total number
of bunches, that is, the total current. The impedance is sampled
at frequencies spaced by Mω0, rather than ω0, as in the single

bunch case. If the frequency structure of the impedance is much
broader than Mω0, then the sparse sampling roughly cancels
the factor of M in front, and the damping or growth rates are

roughly the same for multiple bunches as for one bunch.
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(This is because the wakefields for a broadband impedance are
short range, and do not couple the bunches together).

But if the impedance is narrow-band compared to Mω0 (long-
range wakefield), then the bunches are strongly coupled and the
multibunch growth rates can be M times larger than for a single

bunch.

Example: the transverse resistive wall instability. The
impedance is (Lecture 19, p 23)

Z C
i

b

c
1 3

21
2

⊥ = − ( )
( )

sgnω ω
ωπ

ω µ
σ

The impedance enters the damping rate in the form
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Re Z pM m Q
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+ +∑ ∑ω
π

µ
ω σ

The multibunch mode which is most strongly driven will be the
one for which the denominator is the smallest. The denominator

is pM m n+ + + ∆β, in which n is the integral part of the tune.
Consider, for example, the Tevatron Collider, with M=36

bunches, and an integral tune of n=19. The denominator will be
36 19p m+ + + ∆β, which is just ∆β for p=-1 if the mode number

is m=17. Thus, the mode m=17 will be the dominant
multibunch mode. The snapshot mode pattern for m=17,

ˆ expy
ia

a
a

M

= 





=

−

∑1
6

17
180

1 π
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is shown below:

5 10 15 20 25 30 35

-0.15

-0.1

-0.05

0.05

0.1

0.15

This is a low frequency oscillation, which can be easily damped
with a narrow band feedback system.
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The damping rate per turn is
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in which f ∆β( ) is the function defined in Lecture 25. Taking

the fractional tune to be ∆β=-0.4, and with other parameters for

the Tevatron as follows:

 βy=100 m, N=1011, b=2.5 cm, γ=103, T0=21 µs,

σ=3.5x107 Ω-1m-1 (aluminum), we find a damping time of
T0 3 2
α

= − .  s. (a weak  instability). This is a gross overestimate,

in fact, since most of the Tevatron vacuum chamber is cold, and
the resistance is therefore much less than assumed above.
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