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LECTURE 24

Collective instabilities

Bunched beam instabilities driven by short-range
wakefields:

Head-tail instabilities in synchrotrons
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Collective instabilities

Bunched beam instabilities driven by short-range
wakefields:

Head-tail instabilities in synchrotrons

“Strong” head-tail instability

The “head-tail” instability is a transverse instability in which
the transverse wake field generated by the head of a bunch

exerts a force on the tail of the bunch. Such a condition may
lead to unstable motion of the tail, resulting in breakup of the

bunch.

It should be clear that such an instability will be driven most
easily by short-range wakefields, which extend over a distance

of order the length of the bunch.  As we have seen, such
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wakefields are generated by the relatively high frequency
impedance of broad band resonators. We will take a very

simple model for the wake function that drives the head tail
instability, namely:
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if bunch length

otherwise

The transverse wake potential generated by a total charge Q,
undergoing vertical motion with a dipole moment y , will then

be (Lect 24, p. 16)

F eQW yy =

(We’ll only discuss vertical oscillations here, but the treatment
for the horizontal case is essentially identical).
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We will use a “two-macroparticle” model for the beam. One
macroparticle, labeled “1”, will represent the head of the beam,
and the other, labeled “2”, will represent the tail of the beam.

Each macroparticle contains charge Ne 2.
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If we ignore wakefields, then each macroparticle can execute
free betatron oscillations about y=0.  If we focus on a particular
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point in the ring, then the transformation of y y  and ′  at this
point over n turns can be described by the matrix
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For simplicity, we’ve taken αy=0. Now let there be an

impedance at this point in the ring, which has the wake function
W.  Consider the effect of the wake field of particle 1 on
particle 2. The wake potential generated by particle 1 is

F
Ne

Wyy =
2

12
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This will cause a kick to particle 2 equal to

∆ ′ = =y
F
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m c
Wyy
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in which we’ve taken the particle velocity to be c. This
obviously represents a coupling between the motion of the two
particles via the wake function, and this will be the source of

the instability.

From the matrix transformation above, we have, in the absence
of wake fields,
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where we’ve assumed ′ =y1 0 0( )  for simplicity. Using
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we see that the wake fields modify the equation for 
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The solution of this equation, is
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The last term grows with n, and represents the resonant
response of the second particle to the driving force delivered by
the first particle. It would seem that the tail of the bunch would
rapidly be driven to large amplitudes and be lost. This, in fact,
is what happens in linacs, where this instability is referred to as

the beam breakup instability.



11/29/01 USPAS Lecture 24 9

In linacs, the instability can be controlled by arranging for the
head and the tail of the bunch to have different betatron

frequencies, so the resonant response is not realized. This is
done by introducing an energy spread into the beam, correlated

with position in the bunch. Chromaticity will then produce a
tune dependence on position in the bunch, and the growth of the
instability can be limited. This procedure is referred to as “BNS

damping”.

In a synchrotron, there is a natural mechanism for suppression
of the instability: synchrotron motion. The macroparticles 1 and
2 exchange places every 1/2 of a synchrotron period. This tends
to limit the growth of the instability. At large enough currents,

however, it can still occur.
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To see when the instability develops, we have to analyze the
coupled motion of the two macroparticle. Such an analysis can
be simplified by the following transformation. We define the

following complex variable

ỹ y i
dy

dn
Q

y i y
y

y= + = + ′
2π

β

In terms of this variable, the transformation through n turns (in
the absence of wakefields) can be written very simply as

˜( ) exp ˜( )y n inQ yy= −( )2 0π

So the motion of both macroparticles, ignoring the wake
effects, can be written in matrix form as
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In the presence of wakefields, we have solved for the motion of
particle 2 when it is in the tail of the bunch:
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We want to write this in terms of the ỹ variables. Using the
definition given above, we have
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If we retain only the resonant term (the one proportional to n),
which will dominate after many turns, then we have
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We can now write the solution for the motion of both
macroparticles, including the resonant term produced by the

wake field, in matrix form as
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As mentioned above, this will be correct for about 1/2 of a
synchrotron oscillation period; then the roles of particles 1 and
2 will reverse. Thus, we need to look at the above expression

for n
Qs

= 1
2

, where Qs is the synchrotron tune.  This is
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is a positive dimensionless parameter. For the second half of
the synchrotron period, particle 2 drives particle 1; so we have
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The overall matrix for one synchrotron period is the product:
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The requirement for stability over many synchrotron periods is
that the absolute value of the trace of the matrix should be less

than 2. So we have the requirement

11/29/01 USPAS Lecture 24 16

2 2
8

22
2

0
2− ≤ ⇒ = ≤Τ Τ

Ne W

Q m c
y

s

β
γ

If the single bunch intensity exceeds the threshold
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the beam will very rapidly become unstable. This type of
instability is referred to as the “strong head-tail instability”, or
sometimes the “transverse mode-coupling instability (TMCI)”.
The latter designation comes from the fact that at the instability

threshold, the oscillation frequencies of the normal modes of
the two macroparticles become equal.
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Example

 In Lecture 22, p 20, we estimated the transverse wake function
from a broad band resonator to be about 10 V/pC/m. Suppose
that there are 50 such objects in CESR. What is the threshold

intensity for the strong head-tail instability?

We’ll take βy=20 m, Qs =0.052, W=5x1014 V/C/m, γ=104. We

find Nth = 2.55x1012 (160 ma) per bunch.

Below threshold, the motion of the normal modes can be
complex. To see how the normal mode frequencies become
equal at the instability threshold, we must perform a normal

mode analysis.
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The normal modes are defined as those linear combinations of
( ˜ , ˜y y1 2) which are decoupled after every synchrotron oscillation

period. The normal modes, 
r r
ζ ζ1 2, , satisfy the equations
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r r
ζ λζi i i=

in which Λ = −S MS1 , and S is the matrix which diagonalizes
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This is

1 1 02 2− −( ) −( )+ =Τ Τλ λ

Since the matrix has a unit determinant, the diagonalized matrix
will also, so we have λ λ λ φ1 2 1 21= = ( ),   exp, mi
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The normal mode eigenvectors in the ( ˜ , ˜y y1 2) basis are
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˜
r r
y = Sζ

To find the normal mode frequencies, we must Fourier analyze
the time dependence of the eignemodes. The time evolution of
the eigenvectors can be obtained from the results given above.
Over the first half of a synchrotron period, the motion of ˜

r
y is

given by
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while over the second half of the period, we have
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The time evolution of the eigenvectors is then
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Thus, we can write in general that
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To see the spectral content of the normal mode oscillations, we
can Fourier analzye this expression. We use the general
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Thus, extending the range to all times 
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Each element of the matrix sum in brackets has the form
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So we have
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The general term has the form
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This defines the frequency structure of the normal mode
coupling matrix. After carrying out the integration, we find
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The Fourier components are at frequencies Q pQ
Q

y s
s− ± φ
π2

 for

the two modes. As we approach the instability, φ->π, and the

frequencies of the two modes approach each other (from
adjacent sidebands). Hence the term, “mode coupling

instability”. When both modes have the same frequency,
resonant growth is rapid. The instability growth time is of order

the synchrotron oscillation period.
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Head-tail instability

There is another, weaker form of head-tail instability, which is
referred to as simply the head-tail instability (without the

adjective “strong”). This phenomenon is similar to the one that
we have just described; however, it arises from the dependence

of the betatron tune on energy (through the chromaticity). In
contrast to the case for the “strong” head-tail instability, there is
no sudden onset of the instability at a particular intensity: rather

there is a characteristic growth time for the instability. This
growth time may be very long, in which case the instability will
never be seen. In practice, the growth time needs only be longer
than transverse damping times (from synchrotron radiation, or
from feedback systems) for the instability to be unimportant.
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The growth rate is proportional to the chromaticity of the
machine: hence, to suppress the instability, small values of the
chromaticity are desirable. The control of this instability is one
of the principal reasons for the use of sextupoles as chromatic

correctors in high-energy accelerators.

The dependence of the vertical betatron tune on relative
momentum deviation δ is

Q Qy y y( )δ ξ δ= +0

where ξy is the vertical chromaticity. Consider the two

macroparticles, representing the head and tail of the bunch.
These particles are undergoing synchrotron oscillations, so the
energy is a function of turn number, and hence so is the vertical

tune:
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Q n Q ny y y( ) = + ( )0 ξ δ

Ignore the wake field effects for the moment, and focus on the
motion of macroparticle 1. The equations of motion for a

constant tune have the form
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The solution can be written in matrix form as
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Or, in terms of the ỹ variable introduced earlier
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 The integral can be written as

11/29/01 USPAS Lecture 24 40
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From Lecture 10, p 15, we have
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for β=1 particles, in which z c tn= − ∆  is the longitudinal distance

from the synchronous particle. Then
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Let macroparticle 1 be undergoing a synchrotron oscillation of
the form
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z n z Q ns1 0 2( ) sin= ( )π .

Then

˜ ( ) ˜ ( )exp siny n y i Q n Q ny s1 1 00 2 2= − − ( )( )( )π χ π

in which χ
πξ
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We see that the betatron phase is modulated according to the
relative longitudinal position of the macroparticle. Typically,
the modulation amplitude χ (called the “head-tail phase”) is

small. For example, for z0=1 cm, ηC=0.01, C=750 m, and ξy = -

5, we have χ ≈ -0.04.

The modulation of the tune by the head-tail phase is the
mechanism behind the head-tail instability. The modulation
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allows a slow growth of unstable motion at any beam intensity,
despite the fact that the macroparticles exchange places during

the synchrotron oscillations.

Macroparticle 2 is undergoing a synchrotron oscillation also,
but it’s at the other end of the bunch; so

z n z Q ns2 0 2( ) sin= − ( )π

and the transverse motion of macroparticle 2 is

˜ ( ) ˜ ( )exp siny n y i Q n Q ny s2 2 00 2 2= − + ( )( )( )π χ π

From above, we have
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Now we want to include the wake field. From above,
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so the equation of motion for macroparticle 2 is
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To solve this equation, we use the result given above for ˜ ( )y n1 ,

˜ ( ) ˜ ( )exp siny n y i Q n Q ny s1 1 00 2 2= − − ( )( )( )π χ π

11/29/01 USPAS Lecture 24 44

and use y n y n y n1 1 1
1
2

( ) ˜ ( ) ˜ ( )*= +( )
Then we take as a trial solution for ˜ ( )y n2 the form

˜ ( ) ˆ ( )exp siny n y n i Q n Q ny s2 2 02 2= − + ( )[ ]( )π χ π

in which ˆ ( )y n2  is a slowly varying complex function of n. The
equation above then gives
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The second term is a rapidly varying function of n and may be
dropped. We then expand the exponential (since χ<<1) and

solve the differential equation
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The solution is
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The solution can be written in matrix form, for the first half of
the synchrotron period, as
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After 1/2 of a synchrotron oscillation period, we have
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For the second half of the synchrotron period, particle 2 drives
particle 1; so we have
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The overall matrix for one synchrotron period is the product:
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 Since the matrix has determinant=1, the eigenvalues of this
matrix have the formλ λ λ φ1 2 1 21= = ( ),   exp, mi , in which φ is
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complex. Following the same argument as in the discussion of
the strong head-tail instability, we conclude that
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For the case of Τ<<1, we have
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The real part, which is related to the modulation of the tune,
gives unstable growth of one of the eigenmodes (and damping

of the other). The growth rate per synchrotron period is 
4χ
π

Τ
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so the growth rate per unit time is
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Example:

We’ll take βy=20 m, χ=-0.04, W=5x1014 V/C/m, γ=104, C=750

m, T0=2.5 µs, N=2x1011.  We find τ= 6.3 ms.
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Although it appears that the growth rate is zero only for zero
chromaticity, in fact a more sophisticated analysis shows that

the growth rate of the (-) mode (corresponding to positive
chromaticity) is smaller than given by the above formula.
Hence most machines are operated with a small positive

chromaticity.


