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       LECTURE 22

Collective effects in multi-particle beams:

Longitudinal impedances in accelerators

Transverse impedances in accelerators

Parasitic Losses
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Longitudinal impedances in accelerators (continued)

The broad-band resonator model

The vacuum chamber of a typical accelerator is not a perfectly
smooth round pipe. Diagnostic devices, such as beam position
monitors, are typically sprinkled throughout the machine; these

devices may have pickup plates and thus deviate from a
cylindrical geometry. Special magnets, such as kickers and

septa for injection and extraction, or wigglers and undulators,
may have irregular apertures. Special devices such as

separators, and the transitions into and out of rf cavities, also
represent changes in the dimensions of the vacuum chamber.

A very crude model for these discontinuities in the vacuum
chamber’s dimensions is to consider them to be small resonant

cavities, of the following generic form
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2b

b

Such a cavity has a radius 2b  and a resonant frequency of order
ωR

c
b= . In travelling past this cavity, the beam wake fields

that penetrate the cavity are left behind as the beam exits the
cavity: this constitutes an energy loss to the beam. This may be
estimated by computing the stored energy in the cavity due to
the beam’s fields. A roughly equal amount of energy at ω>c/b

propagates down the pipe with the beam. Equating the total
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energy lost by the beam to the integrated power loss on the
cavity impedance gives a crude estimate of the cavity

impedance close to resonance: about 60 Ω. Examination of the

response of the beam to the cavity at low frequencies then
shows that the effective Q is close to 1. This is the basis of the

broad-band resonator model. In this model, the generic
“cavity” is treated as a single, low-Q resonator (Q=1), with a

resonant frequency ωR
c

b= , where b is the radius of the

vacuum chamber, and a shunt impedance Rs=60 Ω. From the

general form for a cavity resonator, the impedance is then
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A plot is given below, for the case b=3 cm:
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The impedance is peaked at a high frequency, about 2 GHz. It
tends to be mostly resistive there, and mostly inductive at low

frequencies. The wake function is
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It has quite a short range, because of the low Q. Its amplitude at
small z is comparable to the wake function from a narrow band

resonator.

The broad band resonator model is not very accurate for
frequencies above cutoff ω >> c

b ( z b<< ), so the details near

z=0 are wrong. Nevertheless, the model is useful for rough
estimates.
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We’ll see later (perhaps) that the effect of the longitudinal
impedance Z0

|| on the dynamics of the beam scales like
Z

n
0
|| ( )

( )
ω

ω , where n( )ω ω
ω=

0
, with ω0 being the revolution

frequency: ω π π
0

2 2= =T
c

C. A broad band resonator thus

gives a contribution to the total Z
n

0
||

of the machine equal to

Z
n

R b
Cbb
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≈ =ω
ω

Ω. A well-designed machine will

have a broad band impedance of no more than about
Z

n
0 1
||

max

 

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
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≈ Ω. Thus, the maximum number of generic

broad-band cavities allowed per unit length is about
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n

C b
bb cavity ≤ 1

377
.

For example, for b=3 cm, we need to have less than about 1
such cavity every 11 m. This gives a crude estimate of the
required “smoothness” of the machine’s vacuum chamber.

Impedance of the resistive wall

A relativistic point charge travelling through a vacuum chamber
with perfectly conducting walls leaves behind no wake fields,

since the fields do not penetrate the chamber. No energy is
dissipated in the walls. However, if the vacuum chamber walls
have a finite conductivity, then energy will be dissipated by the

beam’s induced currents, and a wake field will be produced.
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The full expression for the wake fields and wake potentials can
only be obtained by solving Maxwell’s equations in the

resistive pipe.  (See text, sec. 6.3.2) However, we can get a
crude estimate of the impedance of the wall in the following

simple picture:

b

δ
L

Let the conductivity of the wall be σ. The current flowing in a

section of the wall of length L passes through an area
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A b= 2π δ , where b is the pipe radius, and the skin depth

isδ
σµω

= 2 . Thus, the resistance per unit length is

R
L A b b
wall = = =1 1

2
1

2 2σ σ π δ π
µω
σ

The full solution for the fields shows that the impedance is
complex; the above is its real part. The complete expression, for

a machine of circumference C, is

Z C
i

b0
1

2 2
|| ( )

sgnω ω
π

µω
σ

= − ( )

The following plot shows the longitudinal resistive wall
impedance, for b=3 cm, an aluminum wall, and C=750 m.
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The associated wake field can be established by an inverse
Fourier transform and is given by the

equation ′ = −W z C
c
b

c

z
0 34

1
( )

π
µ

πσ

It is plotted in the next figure

11/27/01 USPAS Lecture 22 12

-50 -40 -30 -20 -10
z HcmL

-0.1

-0.08

-0.06

-0.04

-0.02

W0’HzL HVêpCL

The slow decay of the resistive wall wake function with z leads
to a long tail.

Total longitudinal impedance:

The next plot shows the total impedance Z
n

0
||





as a function

of frequency for 4 narrow band cavities at 500 MHz (with the
parameters given in the previous numerical example) and 50
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generic broad band resonators. The resistive wall impedance is
also included, although it is small: a few tenths of an ohm.

0.5 1 1.5 2
fHGHzL

-4

-2

2

4
Im

Z»»
ÅÅÅÅÅÅÅÅÅÅ
n

Re
Z»»
ÅÅÅÅÅÅÅÅÅÅ
n

11/27/01 USPAS Lecture 22 14

At high frequencies, the impedance is mostly resistive,
dominated by the broad band resonators. Near the frequency of

the rf cavities, they dominate. At low frequencies, the
impedance is mostly inductive, due to the broad band

resonators.

One type of longitudinal impedance that we have not discussed
here is the longitudinal space charge impedance. The wake
functions are derivable from the longitudinal space charge

forces, which result from variations in the longitudinal charge
density. Like transverse space charge forces, the wake functions

and the impedance decrease with 1/γ2, and so are

inconsequential for high energy electron machines, but may
play an important role in relatively low energy (1-10 GeV)

proton machine. Longitudinal space charge is discussed in the
text, sec 6.2.1.
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Transverse impedance in accelerators

The principal sources of transverse impedances in accelerators
are similar to the longitudinal ones that we have just discussed.

There will be transverse impedance associated with narrow
band rf cavities, broad band resonators, and the resistive wall.

Narrow-band transverse impedance

For any mode m, the transverse and longitudinal rf cavity
impedances are related by

Z
c

Zm m
|| ( ) ( )ω ω ω= ⊥

Thus
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in which the parameters R Qs R
⊥ ⊥ ⊥,   and ω  now refer to a

transverse cavity mode, that is, one for which the fields produce
transverse forces. A plot of the transverse impedance is:
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The wake function for this impedance can be obtained by
taking a Fourier transform. The result, for z<0, is

W z
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As for the longitudinal case, the wakefield oscillates in z with a
wavelength equal to λrf; it is damped to 1/e in a distance

Q
rf

⊥

π
λ .

Transverse broad-band resonators

We can model the transverse effects of a generic cavity in the
machine with the same broad-band resonator model we used in
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the longitudinal plane. To relate the transverse impedance of a
broad-band resonator to the longitudinal impedance, we use the

approximate result quoted in Lecture 24:

Z
cZ
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ω ω
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The broad-band transverse impedance is then
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A plot is given below, for the case b=3 cm:
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At low frequencies, the imaginary part dominates. The wake
function is
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It has quite a short range, because of the low Q.

Numerical example:

If a bunch passing through this broad band resonator has 2x1011

particles, and it is off-axis in the cavity by 2 cm in x, then the
transverse deflecting (integrated) force it produces at z~-5 cm is

F
e

Q W x Nex ≈ − = × × ×

≈ × × × × ×
≈

−

0 1
12

11 19 11

5 11 10 0 02
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The change in the x-trajectory slope of a particle following in
the wake is

∆ ′ = =x
F
pv

F

m c
x x

0
2 2β γ

For an electron in CESR, with γ=104, we find

∆ ′ =
× ×

=x
7

511 10 10
1 43 4

 

 
.  

keV

eV
radµ

This is the effective peak dipole kick applied to a trailing
particle by the wakefield of the bunch.
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Transverse impedance of the resistive wall

The resistive wall transverse impedance can be obtained from
the resistive wall longitudinal impedance using the approximate

relation from Lecture 24:

Z
cZ

b
1

0
2

⊥ ≈( )
( )||

ω ω
ω

Using the expression given above for the resistive wall
longitudinal impedance, we have for the transverse impedance,

for a machine of circumference C,

Z C
i
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c
1 3
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π
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ω σ
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in which an extra factor of has been inserted in the numerator
(the approximate relation given above is only good to a factor
of two in this case). The following plot shows the transverse
resistive wall impedance, for b=3 cm, an aluminum wall, and

C=750 m.
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This impedance is quite strong at low frequencies.

The associated wake field is given byW z
cC

b

c
z1 3

1
( ) = −

π
µ

πσ

It is plotted in the next figure
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The decay of the resistive wall transverse wake function with z
is even slower than that of the longitudinal resistive wall. The

11/27/01 USPAS Lecture 22 26

very long tail can be important in driving transverse instabilities
in which multiple bunches are coupled together.

Total impedance: The next plot shows the total impedance
Z1

⊥ as a function of frequency for 50 generic broad band
resonators, and the resistive wall. Narrow band cavities are not
included; generally they do not play an important role, unless

they have very strong transverse deflecting modes.

11/27/01 USPAS Lecture 22 27

0.5 1 1.5 2
fHGHzL

-400

-200

200

400
Im ZT HkWêmLRe ZT HkWêmL

The real part is dominated by broad band resonators at high
frequencies, and the resistive wall at low frequencies. The
imaginary part is mostly due to the broad band resonators

except at very low frequencies, where the resistive wall takes
off.

Transverse space charge can also be considered to be a source
of impedance. The wake functions are derivable from the
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transverse space charge forces, obtained in lecture 23. The
wake functions and the impedance decrease with 1/γ2, and so

are inconsequential for high energy electron machines, but may
play an important role in relatively low energy (1-10 GeV)

proton machines.

Parasitic Losses

When a bunch passes through a cavity or other source of
longitudinal impedance in a machine and generates longitudinal
wakefields, these fields will tend to decelerate the bunch itself.

Such energy losses are called parasitic losses. Consider an
extended charge distribution ρ( )s  passing through a cavity. An

increment of charge dq s ds1 = ρ( )  in the front of the bunch
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produces a longitudinal wake function ′W z0( ), which is seen by
an element of charge dq s ds2 = ′ ′ρ( ) later in the bunch.

s

ρ( )s dsρ( )′ ′s ds

z

The incremental wake potential seen by dq2 due to dq1 is

d F dq dq W zs
2

1 2 0= − ′( )

The total change in the energy of the bunch is

∆E d F ds s ds s W s ss
s

= − = ′ ′ ′ ′ −∫ ∫∫
′

∞

−∞

∞
2

0ρ ρ( ) ( ) ( )
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Suppose that the bunch is very, very short: much shorter than
the distance scale over which ′W z0( ) varies. Then

∆E W ds s ds s
s

≅ − ′ ′ ′−
′

∞

−∞

∞

∫∫0 0( ) ( ) ( )ρ ρ

in which ′ −W0 0( ) is the value of the longitudinal wake function
at a very small distance from z=0. Then, if we make the

substitution

u s s ds du s ds

u s ds q

s

( ) ( )     ( )

( ) ( )

′ = = − ′ ′

−∞ = =

′
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∫
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ρ
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where q is the total charge, then

ds s ds s udu
q

s q

′ ′ = − =
′

∞

−∞

∞

∫∫ ∫ρ ρ( ) ( )
0 2

2

and ∆E
q

W≅ − ′ −

2

02
0( )

We see that for a very short bunch (i.e., a point charge), the
energy lost in passing through an impedance is one-half of the
product of the charge squared with the longitudinal wake field

produced by the point charge at z=0_. This is called the
fundamental theorem of beam loading . For an rf cavity, from
the expression given above for the wake function, we have for
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the parasitic energy loss of a point charge in the cavity

∆E
q R

Q
q ks R= − = −

2
2

2
ω

in which k
R

Q
s R= ω
2

 is called the loss factor of the cavity. If the

cavity can oscillate in modes other than the fundamental, there
will be a k for each mode. Each k will give the energy deposited
into that mode by a point charge travelling through the cavity,
and will also be related, by 2 00k W= ′ −( ), to the wake function

associated with the impedance of that mode.

Example: consider the 500 MHz narrow-band rf cavity
discussed earlier. The loss factor is
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k
R

Q
R s= = × × ×

×
≈ × =ω π

2
10 8 10
2 32000

4 10 0 4
9 6

11 J

C

V
pC2 .

So a beam with a very short bunch and a charge of
2 10 1 6 10 3 2 1011 19 4× × × = ×−. .  pC will loose about 12.8 keV

in the cavity on each passage.

In general, for a bunch of finite length, the parasitic energy loss
will be less than for a point charge. The loss can be computed

from the relation given above

∆E ds s ds s W s s= − ′ ′ ′ ′ −
−∞

∞

−∞

∞

∫∫ ρ ρ( ) ( ) ( )0

in which the lower integration limit has been extended to −∞,
since W0(z)=0 for z>0. Then, introducing the longitudinal
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impedance Z
c

dzW z i
z

c0 0
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∫ , this expression

can be transformed into
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 where ˜ expρ ω ω ρ( ) = −( ) ( )
−∞

∞

∫ ds i s s  is the Fourier transform of

the longitudinal charge density. For a Gaussian bunch of charge
Ne and rms length σs, we have

˜ expρ ω ω σ( ) = −




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c

s
2 2
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11/27/01 USPAS Lecture 22 35

so the parasitic loss is

∆E
Ne

d
c

Zs= −( ) −




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( )( )
−∞

∞

∫
2 2 2

2 02π
ω ω σ ωexp Re ||

For a narrow band resonator in a synchrotron, the wake field
may last more than one revolution. In this case, the wake fields

from previous bunch passages must be included in the
calculation of the parasitic energy loss. The expression for the

energy loss in this case becomes

∆E ds s ds s W kC s s
k

= − ′ ′ ′ + ′ −
−∞

∞

−∞

∞

=−∞

∞
∫∫ ∑ρ ρ( ) ( ) ( )0
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where C is the circumference. For a point charge q, this is just

∆E q W kC
k

= − ′
=−∞

∞
∑2

0( ).

It turns out that this sum can be done analytically for the case of
a resonator wake function, as given in Lecture 24, p. 33, for the

case of Q>>1, and for the on-resonance case ωR = hω0:

∆E q
cR
C

h
Q

h
Q
h

Q
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2
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1

π
π

π

exp
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For 
πh
Q

<<1, this becomes just ∆E q
cR
C

s= − 2 2
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Example: for the 500 MHz narrow-band rf cavity discussed
earlier, if we evaluate the sum over wake functions on previous

turns, we find, for C h rf= λ , with h=1281, and with

q = ×3 2 104.  pC,

∆E q
cR
C

s= − ≈2 2
200  keV

So the effects of the previous turns’ wakes in the cavity in fact
is much larger than the k=0 term, which was estimated above at

about 12.8 keV.

The parasitic energy loss for a bunch of finite length, with
longitudinal charge density ρ(s), including the effect of multiple

turns, in terms of the impedance, is
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∆E p Z p
p

= − ( )
=−∞

∞
∑ω

π
ρ ω ω0

0
2

0 02
˜ ( ) Re ( )||

For a point charge q, this becomes

∆E q Z p
p

= − ( )
=−∞

∞
∑2 0

0 02
ω

π
ωRe ( )||

and for a narrow band impedance, with p=h, Q>>1 and h/Q<<1,
and hω0 = ωR, we have

∆E q
Rs= − 2 0ω

π
in agreement with the sum over wake functions given above.


