LECTURE 21

Collective effects in multi-particle Beams:Wake
functions and impedance

Wake fields and forces
Wake potentials and wake functions
Impedance; relation to wake functions
Longitudinal impedances in accelerators
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Wake fields and forces

We ve seen examples of the collective fields of the beam,
and the forces they exert on individual particles. We'd likea
general formalism to describe the effects of these collective
forces on the trgjectories of beam particles. This general
formalism is provided by the concepts of wake functions and
impedance.

In general, the collective force will be the Lorentz force
experienced by aparticlein the collective fields. Let us
consider the field produced by asingle, highly relativistic,
charged particle, of charge Q, traveling in the vacuum chamber
of an accelerator. If we can find the fields due to this particle,
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we can get the collective fields of the whole beam by
superposition.

Because of the requirement that the fields satisfy the
boundary conditions at the chamber walls, the general form of
the fields may be quite complex. Asit travels down the vacuum
chamber, the particle may leave some fields behind it: these are
often called its “wake fields’. (Example: the particle travels
through an rf cavity and excites it; the cavity continuesto ring
down after the particle has passed through. These beam-induced
cavity fields are wake fields).

Suppressing for the moment the transverse variables, let's
look at a specific component of the wake fields, the longitudinal
electric field Ey(s;t). Let the particle with charge Q be at s=0 at
t=0. It is being followed by another particle, of charge e,
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trailing adistance z behind. (zis defined to be negative for e
trailing Q. ) A cartoon of what happens is shown below:
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As Q enterstherf cavity, awake field develops behind it.
Thetrailing charge e feels that wake field. The wake field gets
bigger as Q gets further into the cavity, then drops off as Q
exits. During its passage through the cavity, the charge e has
felt awakefield that varies with time:

wake field seen by e

ES (ct+z,1) /\
I > t
0 1 2 3 4

Since the position of the charge Q is s,=ct, and eisaways a
distance —z behind it, z= s, —ct, and the charge e feels the
wakefield Eg(s.,t) = Eg(ct +zt), and experiences aforce
Fs(ct + zt) =eEg(ct +zt). The forces due to wakefields are
generally never strong enough that the detailed variation with
time will matter: they will be treated as impulses, and the only
quantity of interest will be the force integrated along the
tragjectory. If L isthe length of the rf cavity, then the integral
over the cavity of theforceis
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These integrated forces, which are only functions of the - [F -0 0B - [F =M p
distance z between atrailing charge and the source of the X Ho ™ BH= ot - o BH= Py

wakefields, are called wake potentials. We now wish to rewrite
Maxwell’ s equations in terms of wake potentials. Thiswill give
us general equations for the wake potentials, from which we'll
be able to draw some conclusions.

Maxwell’ s equations:
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Usethe Lorentz force F = e(E +V X B)to eliminateE:
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These may be ssmplified using vector identities and the fact that

A

V=cCS
_ N - e Ly o 0B
Ok (w B)=BeOv 908 B B)-B(1 v)=-—
0s
Thisfollowssincevisaconstant, so[lv3 ¥ 0, 3 B 0
0B

from Maxwell, and —v«[0B - c3[] - e
S
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inwhich(x ¥= 0 sinceV isaconstant.

Then, using Js = pc, we find

B 0B - [FO p 2> 10F _ 10F
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Now we form the wake potentials by integration of the forces.

In general, we have for any function g representing afield or
force component

- [FO
= oH
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Using the other form for the average (from p. 6)

L2

Cc
g(2) :i | dtg(ct +zt) , wehave
z

where g(o*l)(s,t) =

c
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L2

B2~ 4(0,-20)-g(L(L -2+ I: dtg™%)(ct +2,1)

_C
L2

_1 o) U g0 8720
= ] dtg"-*/(ct +z,t) = ] dsg %’TD
z -L/2
C
where g9 (s t) = ‘%Z’t) provided the wake fields go to zero
at the ends of the impedance, or are only a function of s-ct.
Then
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and we find
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More vector caculus; Since [x F= 0, we can write F = -[V,

where V isascalar potential. The transverse part of F isgiven
by F; = -0} V, and the longitudinal part by F = v,
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Panofsky-WentzeI theorem:

aFD__ o _ -
0z =k

This theorem relates the Iongltudl nal gradient of the transverse
wake potential to the transverse gradient of the longitudinal
wake potential.

Wake functions

Since s F=042% 0, thetransverse part of V is a solution
to the two-dimensional LaPlace equation. In (r,¢) cylindrical
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coordinates, if the boundary conditions are axisymmetric, the
solution for V can be written in the form

V(r,9,2) = ey Wy(2)r m(Qm cosm@+Qpsinm gé
with

2 00

Qn= [ dg [dr'r ™1 cosme 4t , @)
0 0

21 co

= [ d¢/[dr'r ™lsnme qr , v)
0 0

The coefficients W, (2) are called the wake functions. They
depend only on the details of the environment in which the
beam istravelling (e.g, structure of an rf cavity it may be
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passing through). The Q,, coefficients are the moments of the
charge distribution of the beam that is producing the
wakefields. If Q isthe total charge, then

2 Y

= [dgdrrAr, ¢)=Q
0 0

2m 0o

Q = [ d¢ [dr'r(F cosm@) dr', ¢) =Q(x)
0 0

2m co

Q= [ dg [dr'r(r snmg) dr', 9) =Qly)
0 0

and so on. In terms of the wake functions, the wake potentials
can be written as
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Fom=- a(;/m‘ —eWnL(2)r (chosmqo+(jmsinmq)

The index m describes the transverse variation of the wake
potentials. For the longitudinal potential, m=0 is constant, m=1
varies linearly with x and y, etc.

Fso = —eQW5(2)
Fo1 = ~eW(2)r(Q cosp+ Qi sin @ = -eQWI(D)((X)x +(y)y)
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For m=0, there is no transverse potential. For m=1, the
transverse potential is constant, but depends on the dipole
moments of the source beam:

Fo1= ‘eV\i(Z)(f(Ql cosp+Gysing - gQsin ¢-§ cos »
= -eW (2)( QX +G19) = ~eQW(D((X)% +(y)9)

The units of the wake functions depend on the index m. The
units of Wy are V/C, and of W' are V/(C-meter); the units of
W, are V/(C-meter®™?),

If we know the wake functions W_(2), then we can find al the

components of the integrated forces on a particle due to wake

fields, and we can construct the tragjectory equations and solve
for the particle’ s motion.
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The wake functions have a number of important general
properties, of which one of the most important is that
W,(2)=0 for z>0. Thisfollowsfrom causality: the wake
fields cannot exist in front of the particle.

There are some simple, crude scaling rules for wake potentials
associated with cavity structures of asize similar to the vacuum
chamber radiusb. Since W,, depends only on the environment
of the beam, and b isthe only dimension in that envirnoment,
W, must scale like %)Zm_l and W, as %Zm' The transverse

m-1
wake potentials scale roughly as %BZ , and the longitudinal

m
wake potentials scale roughly as %g , Where aisameasure
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of the beam size. Since typically a<<b, higher m potentials tend
to be less important.

The detailed determination of wake functions is a complex

business, usually only done numerically for realistic cases.

However, we can find the wake functions for some simple
situations by introducing the concept of impedance. In addition

to alowing estimate of wake functions, this concept is an

extremely useful way to understand the effects of wake fields
and collective effects in general. The connection between wake
functions and impedance is described in what follows.

Impedance

The impedance is related to the fields produced by a pure
harmonic current distribution. Any general current distribution
I(s;t) , can be Fourier decomposed into harmonics of the
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formlg(s,t) = Tp(k,w) exp(i(ks — at)). (The O subscript
corresponds to a current with no x-y dependence). Consider an
rf cavity, or other source of impedance, of length L, through
which this harmonic of the beam current flows. We define the
longitudinal impedance ZH(w) of that cavity as given by the
relation

E(st) = ~lo(s)Z(w)
where Eg(s,t) istheintegral over L of the longitudinal electric
wake field (i.e, the voltage), produced by the current I(s,t).

The wake potentials correspond to fields produced by a point
charge. How do we relate these to fields produced by a current,
such as 1(s,t)? Use the principle of superposition:
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The longitudinal wake potentia corresponding to m=0,
produced by an element of charge dQ, is

dF; = edE = -eWg(2)dQ
To find the integrated field for a current distribution I(s,t), we

need to write dQ intermsof 1,(st), and integrate over the
whole current distribution.

dQ=dt' | (s.t)
N

\_/‘\/\/():;

Focus on a particular longitudina position s. The element of
charge passing thispoint at time t’ is dQ = Ig(s,t")dt’. At alater
timet, (shown in the figure above), the wake function at s due
to this element of charge is W, (2), where zis the distance from
stothelocation of dQ att: z=c(t' —t). Thus, we have

dE = “W(c(t’ —t))lo(s,t')dt’

To find the total integrated longitudinal field, we integrate over
all earlier timest’

t 00
E(s1) = - [ dWB(o(t ~D)lo(st) = - [ dVip(a(t ~)lo(St)

z=c(t'-t)
S
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where we can extend the integral to +co since _ (k w) % man
Wy(2)=0 for z>0. Thenwe change variablesto z=c(t' —t) Es(st) = I dz\/\b(z)expa a(s wEb o

to get
Eafy=—1 ¢ doane z
Es(st) = C_jmdz\/\b(Z)lo(S,CH)

Now using the harmonic form 1o(s,t) = To(k, w) exp(i(ks - at)),
we find

11/27/01 USPAS Lecture 21 23

To(kw) . . j 42
_OT exp(i(ks —ai))__[o dg(2) eXpB_I ?S

O(S v I dz\/\b(z)exp —|—

Comparlng W|th the defining equatlon relating the integrated
field to the impedance, given above, we see that the impedance
isrelated to the wake function by

ZH(w)—f j a2t
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That is, the impedance isjust the Fourier transform of the wake
function. Similar discussions for m>0 (corresponding to
currents with some transverse spatial dependence) generalize
the above relation to

ZHW(w) = J’ A2\, (2) expp [z
Also, for m>0, we can def| ne atransverse |mpedance by
Fo(sit) =iel (s t)mr m_l(f cosm@— ¢gsinm (;)ZE( 2}

with 1,,(s,t) the mth moment of the current distribution. The
transverse impedance rel ates to the transverse wake function by

w)—f J’ dz\/\4.n(z)exp —|—
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If we know the impedance, then we can find the wake functions
by inverse Fourier transform:

Wi (2) = j dazh(a)exp{
i wz
W@ = _jm daZp(6)expel

from which we also see that Zl'n(w) = %Zrﬂ (w).
The fact that W,(2) isreal leadsto the following relations:

[Zh@)] =zh-0  [z8(a)] =-Zm(-0)
which in turn imply that
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Re[ZHn(w)] and Im[ZE](w)] areevenin w
Im[Zl'n(w)] and Re[ZnQ(w)] are odd in w

The longitudinal impedance associated with wake potentials
that do not vary withx and y is Zg(w). Thisis often referred to
as “the” longitudinal impedance. For m=0, the transverse wake
potentials are zero. The first nonzero transverse wake potentials

correspond to m=1. The corresponding transverse impedance,

ZE (w), is often referred to as “the” transverse impedance.
Typicaly, higher mimpedances are less important in machines
than the m=0 and m=1 pieces.
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For agiven general cavity structure, there is no precise genera

connection between Zﬂ(w) and ZlD (w). However, for cavity
structures of a size similar to the vacuum chamber radius b,

we' ve seen from dimensional analysisthat W, ~ %)mi S
zl
zl ~ Wn %Zm 1- Thus £ ZH %2ma50
Z(w) = ZH(“’)

From the relation given above between transverse and
longitudinal impedances, we get

Z}(w)
abz

Z1'(w) =
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The unit of longitudinal impedance an(a)) is Q/meter®™, and of
transverse impedance Z2 (w) is Q/meter™?

Longitudinal impedances in accelerators

RF cavities.

The longitudinal impedance of thiscircuit is

Thisistypically the dominant contribution to the longitudinal 1_1 + . i C
machine impedance. We can model an rf cavity as a parallel ZH R al
RLC circuit
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which can be written in terms of the resonant frequency ZH Ow %
Rs
WR = F the Q-value Q = wrl and the cavity shunt Plot of R R=vs o for Q=10
impedance R;: R
A= 1 e
1+iQHR - @ o e R
Eﬁ wRE 0.4

For large Q, thisimpedance is sharply peaked and real at .
For |w << wgy, it ismostly negative imaginary (“inductive”); for
W >> wry, it ismostly positive imaginary (*capacitive”).
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The wake function for this impedance can be obtained by
taking a Fourier transform of the impedance. The result, for
z<0, is
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0 .BA)RZfl 1DD
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()= ORRS o TRZTE Doz dec - a?tf
W@ ="1 exp%?@%“%c \ 4Q E+ Jac?-1 o

Plot of W(2)Q vs Z for Q=10.

WR rf
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MY \/ \j
R o — WORRs ZcosR?0
For Q>>1, this simplifiesto W6 (2) == exp%%@cosgc g

The wakefield oscillates in zwith awavelength equal to A itis

damped to 1/e in adistance 2/\”.
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Numerical example:

Suppose that | have a copper pillbox rf cavity in an accelerator,
with aresonant frequency of 500 MHz. For operation as an
accelerating cavity, the cavity radius should be R=23 cm, and
the length should be L=(2/3)R=15 cm, giving atransit time
factor of 0.9. Such a pillbox cavity has a Q of about 32,000, a
shunt impedance per unit length of about 52 MQ/m, and a shunt
impedance R, = 8 MQ. Thisis aso the value of the longitudinal

impedance, on resonance.
The wake function has an amplitude equal to
9 6
wrRs _ mx10” x8x10™ _ 79 x1011¥
Q 32000 C
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It decays from this value over alength of about
Q/\ _ 32000 x0.6 m=6km

—rf —

which is about 8 turnsin CESR.

If abunch passing through this cavity has 2x10" particles, the
longitudinal wake potential it createsin the rf cavity is

Fs

e
= (2 x10" x1.6 x1071%) x7.9 x10'! v
=25 kV

Thisisthe effective peak decelerating or accelerating voltage
applied to atrailing particle by the wakefield of the bunch.

= Qow?;s =(Ne) x7.9 ><1011\C/:
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