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       LECTURE 21

Collective effects in multi-particle Beams:Wake
functions and impedance

Wake fields and forces

Wake potentials and wake functions

Impedance; relation to wake functions

Longitudinal impedances in accelerators
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Wake fields and forces

We’ve seen examples of the collective fields of the beam,
and the forces they exert on individual particles. We’d like a
general formalism to describe the effects of these collective
forces on the trajectories of beam particles. This general
formalism is provided by the concepts of wake functions and
impedance.

In general, the collective force will be the Lorentz force
experienced by a particle in the collective fields. Let us
consider the field produced by a single, highly relativistic,
charged particle, of charge Q, traveling in the vacuum chamber
of an accelerator. If we can find the fields due to this particle,
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we can get the collective fields of the whole beam by
superposition.

Because of the requirement that the fields satisfy the
boundary conditions at the chamber walls, the general form of
the fields may be quite complex. As it travels down the vacuum
chamber, the particle may leave some fields behind it: these are
often called its “wake fields”. (Example: the particle travels
through an rf cavity and excites it; the cavity continues to ring
down after the particle has passed through. These beam-induced
cavity fields are wake fields).

Suppressing for the moment the transverse variables, let’s
look at a specific component of the wake fields, the longitudinal
electric field Es(s,t). Let the particle with charge Q be at s=0 at
t=0. It is being followed by another particle, of charge e,
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trailing a distance z behind. (z is defined to be negative for e
trailing Q. ) A cartoon of what happens is shown below:

s
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As Q enters the rf cavity, a wake field develops behind it.
The trailing charge e feels that wake field. The wake field gets
bigger as Q gets further into the cavity, then drops off as Q
exits. During its passage through the cavity, the charge e has
felt a wakefield that varies with time:

wake field seen by e

t
0 1 3 42

E (ct+z,t)
s
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Since the position of the charge Q is sQ=ct, and e is always a
distance –z behind it, z s cte= − , and the charge e feels the
wakefield E s t E ct z ts e s( , ) ( , )= + , and experiences a force
F ct z t eE ct z ts s( , ) ( , )+ = + . The forces due to wakefields are
generally never strong enough that the detailed variation with
time will matter: they will be treated as impulses, and the only
quantity of interest will be the force integrated along the
trajectory. If L is the length of the rf cavity, then the integral
over the cavity of the force is

F z
c

dtF ct z t dsF s
s z

cs s
z
c

L
z
c

s

L

( ) , ,= +( ) = −





−

−

∫ ∫
1

0
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These integrated forces, which are only functions of the
distance z between a trailing charge and the source of the
wakefields, are called wake potentials. We now wish to rewrite
Maxwell’s equations in terms of wake potentials. This will give
us general equations for the wake potentials, from which we’ll
be able to draw some conclusions.

Maxwell’s equations:

r r
r

r r r r r
r

r r
∇ × = − ∂

∂
∇ • = ∇ × = + ∂

∂
∇ • =E

B
t

E B J
c
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t

B       
ρ
ε

µ
0
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1

0

Use the Lorentz force 
r r r r
F e E v B= + ×( )to eliminate

r
E:
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These may be simplified using vector identities and the fact that
r
v cs= ˆ

r r r r r r r r r r r r r r
r

∇ × ×( ) = • ∇ − • ∇ + ∇ •( ) − ∇ •( ) = − ∂∂v B B v v B v B B v c
B
s

This follows since 
r
v  is a constant, so 

r r r∇ = ∇ • =v v 0,  
r r
∇ • =B 0

from Maxwell, and  − • ∇ = − • ∇ = − ∂
∂

r r r r r
r

v B cs B c
B
s

ˆ
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r r r r r r r r r r
r

r r
∇ • ×( ) = • ∇ × − • ∇ × = − • + ∂

∂
− ×











= − + ∂
∂







v B B v v B cs J
c t

F
e

v B

c J
ec

F
ts
s

ˆ µ

µ

0 2

0 2

1

1

in which
r r∇ × =v 0 since 

r
v  is a constant.

Then, using J cs = ρ , we find
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Now we form the wake potentials by integration of the forces.
In general, we have for any function g representing a field or

force component
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g z dsg s
s z

c
dg z

dz c
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where g s t
g s t

t
( , )( , )

( , )0 1 = ∂
∂

.

Using the other form for the average (from p. 6)

g z
c

dtg ct z t
z
c

L
z
c

( ) ,   = +( )
−

−

∫
1 , we have
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where g s t
g s t

s
( , )( , )

( , )1 0 = ∂
∂

, provided the wake fields go to zero

at the ends of the impedance, or are only a function of s-ct.

Then
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and we find

r r r r
∇ × = ∂

∂
+
∂
∂
= ∇ • =⊥ ⊥F

F
x
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More vector calculus: Since 
r r
∇ × =F 0, we can write 

r r
F V= −∇ ,

where V is a scalar potential. The transverse part of 
r
F  is given

by 
r r
F V⊥ ⊥= −∇ , and the longitudinal part by F

V
zs = −
∂
∂

.
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Panofsky-Wentzel theorem:

∂
∂
= −∇ ∂

∂
= ∇⊥

⊥ ⊥

r
r rF

z
V
z

Fs

This theorem relates the longitudinal gradient of the transverse
wake potential to the transverse gradient of the longitudinal

wake potential.

Wake functions

Since 
r r r
∇ • = ∇ =⊥ ⊥ ⊥F V2 0, the transverse part ofV is a solution

to the two-dimensional LaPlace equation. In (r,φ) cylindrical
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coordinates, if the boundary conditions are axisymmetric, the
solution for V can be written in the form

V r z e W z r Q m Q mm
m

m m
m

( , , ) cos ˜ sinφ φ φ= ( ) +( )∑

with

Q d dr r m r
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∞
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∞
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φ φ ρ φ

φ φ ρ φ

π

π
0

2

0

1

0

2

0

1

cos ( , )

˜ sin ( , )

The coefficients Wm(z) are called the wake functions. They
depend only on the details of the environment in which the
beam is travelling (e.g, structure of an rf cavity it may be
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passing through). The Qm coefficients are the moments of the
charge distribution of the beam that is producing the
wakefields. If Q is the total charge, then

Q d dr r r Q

Q d dr r r m r Q x

Q d dr r r m r Q y
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π
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cos ( , )
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and so on. In terms of the wake functions, the wake potentials
can be written as
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The index m describes the transverse variation of the wake
potentials. For the longitudinal potential, m=0 is constant, m=1

varies linearly with x and y, etc.
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For m=0, there is no transverse potential. For m=1, the
transverse potential is constant, but depends on the dipole

moments of the source beam:
r
F eW z r Q Q Q Q

eW z Q x Q y eQW z x x y y

⊥ = − +( ) − −( )( )
= − +( ) = − +( )

, ( ) ˆ cos ˜ sin ˆ sin ˜ cos

( ) ˆ ˜ ˆ ( ) ˆ ˆ

1 1 1 1 1 1

1 1 1 1

φ φ φ φ φ

The units of the wake functions depend on the index m. The
units of ′W0  are V/C,  and of ′W1  are V/(C-meter); the units of

Wm are V/(C-meter(2m-1)).

If we know the wake functions Wm(z),  then we can find all the
components of the integrated forces on a particle due to wake
fields, and we can construct the trajectory equations and solve

for the particle’s motion.
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The wake functions have a number of important general
properties, of which one of the most important is that

W z zm( )     .= >0 0for  This follows from causality: the wake
fields cannot exist in front of the particle.

There are some simple, crude scaling rules for wake potentials
associated with cavity structures of a size similar to the vacuum
chamber radius b.  Since Wm depends only on the environment
of the beam, and b is the only dimension in that envirnoment,
Wm must scale like 1

2 1b m−  and ′Wm as  1
2b m . The transverse

wake potentials scale roughly as 
a
b

m




−2 1
, and the longitudinal

wake potentials scale roughly as 
a
b

m




2
, where a is a measure
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of the beam size. Since typically a<<b, higher m potentials tend
to be less important.

The detailed determination of wake functions is a complex
business, usually only done numerically for realistic cases.
However, we can find the wake functions for some simple

situations by introducing the concept of impedance. In addition
to allowing estimate of wake functions, this concept is an

extremely useful way to understand the effects of wake fields
and collective effects in general. The connection between wake

functions and impedance is described in what follows.

Impedance

The impedance is related to the fields produced by a pure
harmonic current distribution. Any general current distribution
I(s,t) , can be Fourier decomposed into harmonics of the

11/27/01 USPAS Lecture 21 20

form I s t I k i ks t0 0( , ) ˜ ( , )exp= −( )( )ω ω .  (The 0 subscript
corresponds to a current with no x-y dependence). Consider an
rf cavity, or other source of impedance, of length L, through
which this harmonic of the beam current flows. We define the
longitudinal impedance Z0

|| ω( ) of that cavity as given by the
relation

E s t I s t Zs( , ) ( , ) ||= − ( )0 0 ω

where E s ts( , ) is the integral over L of the longitudinal electric
wake field (i.e, the voltage), produced by the current I s t0( , ).

The wake potentials correspond to fields produced by a point
charge. How do we relate these to fields produced by a current,
such as I s t0( , )? Use the principle of superposition:
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The longitudinal wake potential corresponding to m=0,
produced by an element of charge dQ, is

dF edE eW z dQs s= = − ′0( )

To find the integrated field for a current distribution I s t0( , ), we
need to write dQ in terms of I s t0( , ), and integrate over the

whole current distribution.

s

W (z)

z=c(t ' - t)

dQ=dt' I (s,t')0

0
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Focus on a particular longitudinal position s. The element of
charge passing this point at time ′t  is dQ I s t dt= ′ ′0( , ) . At a later
time t, (shown in the figure above), the wake function at s due
to this element of charge is W z0( ), where z is the distance from

s to the location of dQ at t: z c t t= ′ −( ). Thus, we have

dE W c t t I s t dts = − ′ ′ − ′ ′0 0( ( )) ( , )

To find the total integrated longitudinal field, we integrate over
all earlier times ′t

E s t dt W c t t I s t dt W c t t I s ts

t

( , ) ( ( )) ( , ) ( ( )) ( , )= − ′ ′ ′ − ′ = − ′ ′ ′ − ′
−∞ −∞

∞

∫ ∫0 0 0 0
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where we can extend the integral to +∞ since
W z z0 0 0( )     .= >for  Then we change variables to z c t t= ′ −( )

to get

E s t
c

dzW z I s
z
c

ts( , ) ( ) ( , )= − ′ +
−∞

∞

∫
1

0 0

Now using the harmonic form I s t I k i ks t0 0( , ) ˜ ( , )exp= −( )( )ω ω ,
we find
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E s t
I k

c
dzW z i ks

z
c

t

I k
c

i ks t dzW z i
z

c

I s t
c

dzW z i
z

c

s( , )
˜ ( , )

( )exp

˜ ( , )
exp ( )exp

( , )
( )exp

= − ′ − +
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
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
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
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∞

−∞

∞

∫

∫

∫

0
0

0
0

0
0

ω ω

ω ω ω

ω





Comparing with the defining equation relating the integrated
field to the impedance, given above, we see that the impedance

is related to the wake function by

Z
c

dzW z i
z

c0 0
1|| ( )expω ω( ) = ′ −




−∞

∞

∫
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That is, the impedance is just the Fourier transform of the wake
function. Similar discussions for m>0  (corresponding to

currents with some transverse spatial dependence) generalize
the above relation to

Z
c

dzW z i
z

cm m
|| ( )expω ω( ) = ′ −




−∞

∞

∫
1

Also, for m>0, we can define a transverse impedance by

r
F s t ieI s t mr r m m Zm

m
m⊥

− ⊥= −( ) ( )( , ) ( , ) ˆ cos ˆ sin1 φ φ φ ω

with I s tm( , ) the mth moment of the current distribution. The
transverse impedance relates to the transverse wake function by

Z
i
c

dzW z i
z

cm m
⊥

−∞

∞
( ) = −


∫ω ω

( )exp
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If we know the impedance, then we can find the wake functions
by inverse Fourier transform:

′ ( ) = 





( ) = − 





−∞

∞

⊥

−∞

∞

∫

∫

W z d Z i
z

c

W z
i

d Z i
z

c

m m

m m

1
2

2

π
ω ω ω

π
ω ω ω

|| ( )exp

( )exp

from which we also see that Z
c

Zm m
|| ( ) ( )ω ω ω= ⊥ .

The fact that Wm(z)  is real leads to the following relations:

Z Z Z Zm m m m
|| * || *

          ω ω ω ω( )[ ] = −( ) ( )[ ] = − −( )⊥ ⊥

which in turn imply that
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Re    Im  ||Z Zm mω ω( )[ ] ( )[ ]⊥and are even in ω

Im    Re  ||Z Zm mω ω( )[ ] ( )[ ]⊥and are odd in ω

The longitudinal impedance associated with wake potentials
that do not vary with x and y is Z0

|| ( )ω . This is often referred to
as “the” longitudinal impedance. For m=0, the transverse wake
potentials are zero. The first nonzero transverse wake potentials
correspond to m=1. The corresponding transverse impedance,

Z1
⊥ ( )ω , is often referred to as “the” transverse impedance.

Typically, higher m impedances are less important in machines
than the m=0 and m=1 pieces.
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For a given general cavity structure, there is no precise general
connection between Z0

|| ( )ω  and Z1
⊥ ( )ω . However, for cavity

structures of a size similar to the vacuum chamber radius b,
we’ve seen from dimensional analysis that ′W

bm m~ 1
2 ; so

Z
b
c

W
bm m m

|| ~ ~′ −
1

2 1. Thus 
Z

Z b
m

m

||

||
0

2
1≈ , so

Z
Z

b
1

0
2

||
||

( )
( )ω ω≈

 From the relation given above between transverse and
longitudinal impedances, we get

Z
cZ

b
1

0
2

⊥ ≈( )
( )||

ω ω
ω
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The unit of longitudinal impedance Zm
|| ( )ω  is Ω/meter2m , and of

transverse impedance Zm
⊥ ( )ω  is Ω/meter(2m-1)

Longitudinal impedances in accelerators

RF cavities.

This is typically the dominant contribution to the longitudinal
machine impedance.  We can model an rf cavity as a parallel

RLC circuit
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C R Ls

The longitudinal impedance of this circuit is

1 1

0Z R
i
L

i C
s

|| = + −
ω

ω
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which can be written in terms of the resonant frequency

ωR LC
= 1

, the Q-value Q
R

L
s

R
=
ω

 and the cavity shunt

impedance Rs:

Z
R

iQ

s

R

R

0

1

|| ( )ω
ω
ω

ω
ω

=
+ −





For large Q, this impedance is sharply peaked and real at ωR.

For ω ω<< R, it is mostly negative imaginary (“inductive”); for
ω ω>> R, it is mostly positive imaginary (“capacitive”).
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Plot of 
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The wake function for this impedance can be obtained by
taking a Fourier transform of the impedance. The result, for

z<0, is
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For Q>>1, this simplifies to ′ = 






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


W z
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Q
z

cQ
z

c
R s R R

0 2
( ) exp cos

ω ω ω

The wakefield oscillates in z with a wavelength equal to λrf; it is

damped to 1/e in a distance 
Q

rfπ
λ .
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Numerical example:

Suppose that I have a copper pillbox rf cavity in an accelerator,
with a resonant frequency of 500 MHz. For operation as an

accelerating cavity, the cavity radius should be R=23 cm, and
the length should be L=(2/3)R=15 cm, giving a transit time

factor of 0.9. Such a pillbox cavity has a Q of about 32,000, a
shunt impedance per unit length of about 52 MΩ/m, and a shunt

impedance Rs = 8 MΩ. This is also the value of the longitudinal

impedance, on resonance.

The wake function has an amplitude equal to
ω πR sR

Q
= × × × ≈ ×10 8 10

32000
7 9 10

9 6
11.

V
C
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It decays from this value over a length of about
Q

rfπ
λ

π
= × ≈32000

0 6.  m 6 km

which is about 8 turns in CESR.

If a bunch passing through this cavity has 2x1011 particles, the
longitudinal wake potential it creates in the rf cavity is
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25  kV

This is the effective peak decelerating or accelerating voltage
applied to a trailing particle by the wakefield of the bunch.


