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LECTURE 19

Beam cooling

Stochastic cooling

Electron cooling

Ionization cooling
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Stochastic cooling

Stochastic cooling is a method for increasing the phase space
density of a particle beam. It is usually applied to ion beams, rather
than electron beams, as the damping times are relatively long, and
cannot compete with radiation damping for high energy electrons.

The most extensive use of this technique has been in the collection
and storage of antiproton beams. These beams are produced with a
very low density, by high-energy proton bombardment of a heavy
target. Before they can be used in a proton-antiproton collider, the
beam phase space density must be increased by about 6 orders of

magnitude. This increase is accomplished through stochastic
cooling.
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Simon VanderMeer at CERN invented the technique in the late
1970’s. The required technology was developed there, and applied
to the CERN proton-antiproton collider. Subsequently, Fermilab

built its own antiproton source, which further developed and
refined this technique. The technique is applied to increase both

the transverse and the longitudinal density of the beam.

Transverse stochastic cooling: Conceptual system:

PICKUP

KICKER

AMPLIFIER
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"Single-particle" cooling: let there be only one particle in the ring,
with a betatron oscillation as shown

xT  = deviation of the particle from the dipole pickup center on turn
T
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xT +1 = deviation of the particle from the dipole pickup center on
turn T+1

The stochastic cooling system measures xT  at the pickup, and
delivers a kick (angular change θ) to the particle at the kicker such

that

x x gxT T T+ = −1

where gxT= effect of kicker at pickup; g is adjustable through the
amplifier gain.

g=1 removes the oscillation completely. The transverse momentum
is reduced to zero: The particle is "cooled" in one turn
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Now consider an unbunched beam of N particles in the ring

The cooling system treats as a single "sample" all beam particles
that pass under the pickup within the system time resolution

TS << T, the revolution period.

TS is related to the system bandwidth W

T
Ws = 1

2

Essentially, the beam is "divided" by the signal processing system

into S samples, where S
T
Ts

= . Each sample contains N
N
Ss =

particles.
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A single sample:

x

t

N   particless

x

S
T

Although the entire beam may have a mean position very close to
zero, a random subset of the beam containing NS particles will in

general have a mean
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 that may be non-zero, purely as a result of statistical fluctuations.
Averaged over many samples, the mean is zero x = 0, but the

variance in the mean is x
N

x

s

2
2

= σ
, where σx is the rms size of the

beam.

The cooling system measures the mean and corrects all particles in
the sample:

For particle i in the sample, the change in one turn is

x x gxi i→ −

11/26/01 USPAS Lecture 19 10

x x gx x gx x g x

x gx x g x

i i i i

i i

2 2 2 2 2

2 2 2

2

2

→ −( ) = − +

= − +∆

To see what this means, re-write
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where x
N

x
s

j
j
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Ns* =
− =

≠

−
∑1

1 1

1
 is the contribution to the mean due to all

the particles except the ith one. Substitute:
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This is what happens on one turn. On subsequent turns, let us
assume that the samples containing particle i are statistically

independent. This assumption will not be true in general, and we’ll
have to go back and correct this analysis later, but making the

assumption now makes it easier to understand what’s going on.

On each turn, then, a new sample is processed, and averaging over
many turns is equivalent to averaging over a collection of

statistically independent samples. In doing such an average, we

have x x x
N

x

s

* *,   = ( ) = =0
2 2

2σ
, so we get
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The first two terms correspond to "single-particle cooling": the net
result is ∆x xi i

2 2= −  for g=1 and Ns=1 which is the same result we
got before.

The last term is due to the other particles and "heats" particle i

This  "noise" due to other particles is called "Schottky noise"

Now average the above result over all the particles within a given
sample, with the (excellent) assumption that Ns>>1
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The beam mean square size changes with a rate

1 1 1
2

2

2

2
2

τ
σ

σ
x

x

x sT N T
g g= − = −∆

( )

Since

N
N

T
T WT

s s= = 1
2

 => 
1 2

2
2

2

τ
x

W
N

g g= −( )

The cooling rate for the beam size is
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1 1
2

2
2

2

τ τx x

W
N

g g= = −( )

The maximum cooling rate is obtained for g=1:

1
τ x

W
N,max

=

For example, 1 GHz of bandwidth cools 109
 particles at a rate of 1

Hz. The bandwidth dependence of the cooling rate motivates the
use of as high a frequency signal processing system as possible.

Modern systems operate in the range from 2 to 8 GHz.

Another way of writing the cooling rate

N
Nf
Ws =

2
, 

1
2τ x s

f
N,max

=
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shows that the smaller the number of particles in the sample, and
the higher the revolution frequency, the higher the cooling rate.

Two additional effects modify the cooling rate equation:

1. Thermal noise in the pickup/amplifier/kicker system introduces
an additional heating term. This is described by adding a term

−g
UW

N
2  to 

1
τ

,

where U= thermal noise power/"Schottky noise" power
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2. Statistical independence of the samples from turn to turn has
been assumed. Sample renewal from turn to turn is called

“mixing”.

 If there is no mixing, then after the first correction, cooling stops,
since the means of all the samples are zero.

The mechanism for mixing is the variation per turn ∆T in

revolution periods for different beam particles resulting from the
momentum spread within the beam. It takes M turns for complete

sample renewal, where

M
T
T W T
s= =

∆ ∆
1

2
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To find an expression for ∆T, consider those particles in the

sample, which all arrive at the pickup at the same time, but with a
momentum spread δ. The revolution period of these particles

depends on their momenta through

T
T C

0
1= −η δ

in which T0 is the revolution period for a particle with δ=0. On the

next turn, these particles will arrive at the center of the pickup over
a time spread

∆T T C= 0η δ .

The number of turns required for this effect to cause complete
sample renewal is

11/26/01 USPAS Lecture 19 18

M
W T

f
W C

= =1
2 2

0

∆ η δ

This effect increases the "Schottky noise" heating term by the
factor M.

Inclusion of these effects leads to the following equation for the
damping rate

1
2 2

τ x

W
N

g g M U= − +[ ]( )

Optimum cooling happens wheng
M U

=
+
1

and for this condition
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1 1
τ x

W
N M U,max

=
+

Cooling is still possible, even for very large M and U, although rate
is reduced.

Example: Fermilab Debuncher ring.

This is a storage ring with a revolution period of 1.7 µs. It collects

8 GeV antiprotons, produced in high energy proton interactions
with a copper target, and stochastically cools them for about 2 s
before transferring them to an accumulation ring. The cooling

system operates over the 2-4 GHz band, and the ring collects about
2x107 antiprotons on every cycle, with a momentum spread (after

the beam is debunched) of about δ=0.002. The ring has a slip

factor of ηC=0.006.
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The mixing parameter M  is

M
WT C

= =
× × × × × ×

=−
1

2
1

2 2 10 1 7 10 0 006 0 002
12

0
9 6η δ . . .

It thus takes about 12 turns for sample renewal. The microwave
pickup system for this ring has a noise figure of U=2 (i.e., the

amplifier noise power is twice that due to the beam signal).  The
optimum value for the cooling rate is then

1 1 2 10

2 10

1
12 2

1 4
9

7τ x

W
N M U

=
+





 = ×

× +




 = .  Hz

In 2 seconds, then, the beam size will be reduced by about a
factor of exp .2 1 4×( )~16
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Actually, the parameter U is not constant, because as the beam
cools the Schottky noise is reduced, so U increases. Eventually,

amplifier noise plus Schottky noise heating balances cooling, and
the beam reaches equilibrium size.

Longitudinal stochastic cooling

Similar to transverse--except that the pickup definition of "center"
is a little trickier:

Techniques to establish a "central energy":

 (1) a dipole (position-sensitive) pickup located in a region of the
machine in which there is a correlation between the beam's

position and its momentum
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Dipole pickup x=ηδ

Beam

 (2) a longitudinal ("sum") pickup that measures the frequency
distribution of the beam, together with an electronic "notch" filter,

which provides a frequency-dependent gain.
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Frequency

Beam frequency distribution

Notch filter attenuation

∆ ∆f
f

p
pC= −η
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Stochastic stacking

-a form of longitudinal stochastic cooling. A density gain factor of
about 105 is realized by a system like this in the Fermilab

Accumulator. Basic idea:

PICKUP

KICKER

AMPLIFIER

Collection ring Accumulation ring
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Pickup measures the energy of a sample ∆N of particles at energy
E Ek− ∆ ;

Kicker changes the sample's energy by ∆Ek; ∆Ek is adjusted to

produce a particle flux 
dN
dt

 along the energy axis

Energy 

dN/dE

Injected particles
from the collection ring

Stacked particles

Flux dN/dt
driven by the
cooling system

11/26/01 USPAS Lecture 19 26

Example: Fermilab Accumulator ring stack-tail system
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Electron Cooling

This is a method of cooling of ion beams (such as proton and
antiproton beams) in which a “cold”electron beam is brought into

contact with a “hot” ion beam. The beams exchange energy
through the Coulomb interaction, with the “hot” beam getting

colder and the electron beam warming up. The electron beam is
then disposed of, and a new “cold” beam supplied to continue the

cooling process. The necessary arrangement for overlap of the
beams is shown on the next page.
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The mechanism for energy exchange between the electrons and the
ions is the same as the one responsible for ionization energy loss.
The strength of this interaction is maximum when the ions and the
electrons are at rest with respect to each other: for two beams, this

requires that the beams have equal velocities:

p
m c

p
m c

e

e
e

ion

ion
ion= ( ) = = ( )βγ βγ

For example, the following plot shows the kinetic energy (Te) of
the electron beam needed to electron cool a proton (or antiproton)

beam of momentum pp
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Substantial electron energies (MeV) and currents (amps) are
required for high energy electron cooling, which is why it is

important to recover essentially all of the electron beam energy in
the collector.

In the common beam rest frame, the ion and electron beams appear
as a plasma that is far from thermal equilibrium. The energy

11/26/01 USPAS Lecture 19 31

exchange mechanism between the hot and cold components acts
like a drag force on the ions, which, like ionization energy loss,

varies as 
1

2
v*( )

 (v* is the relative electron-ion velocity in the rest

frame). Thus, it is not very effective unless there is substantial
overlap between the velocity distributions of the two components.
This means that electron cooling is least suitable for large phase
space beams, or high energy beams, which have large velocity

spreads.

The energy spread in the electron beam is determined (ideally) by
the temperature of the cathode; typical energy spreads are in the

range of 0.5 eV, leading to a velocity spread in the rest frame
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δβ δ
e

e
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m c
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.= = × ≈ × −2 2 0 5
511 000

1 4 102
3

Let’s compare this with the velocity spread of the ion beam.

Longitudinal cooling:

 If the ion longitudinal momentum in the lab frame is p, this
momentum is related to the rest frame momentum by

p p
c

E p mc= −



 ≈ −( )γ β γ β* * *

in which the rest frame momentum is p*, m is the ion mass, and β
and γ  refer to the beam velocity in the lab. A momentum spread
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δp in the lab appears in the rest frame as a momentum

spreadδ δ
γ

p
p* = , leading to a longitudinal velocity spread

δβ δ δ
γ γ

δ β δ
||
*

*
= = = =p

mc
p

mc
p
mc

p
p

p
p

For efficient cooling, we want

δβ βδ δβ δ
β||

* * .
.= ≈ ≈ × ⇒ ≈ ×−

−p
p

p
pe 1 4 10

1 4 103
3

For nonrelativistic ion beams with small β, large momentum

spreads of a few percent or more can be cooled: but for high
energy ion beams with β~1, energy spreads of more than a few

tenths of a percent will not be efficiently cooled.

11/26/01 USPAS Lecture 19 34

Transverse cooling:

In the laboratory frame, the spread in transverse momentum is
related to the beam divergence ′z  (where z refers to either x or y):

δp
p

zz ≈ ′

The transverse momentum is the same in the rest frame δp z pz
* ≈ ′ ,

so the spread in transverse velocity is

δβ δ βγ⊥ = = ′ = ′*
*p

mc
z p
mc

zz

For efficient cooling we need

δβ βγ δβ
βγ⊥

−
−

= ′ ≈ ≈ × ⇒ ′ ≈ ×* * .
.

z ze 1 4 10
1 4 103

3
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Again, for nonrelativistic ion beams with small β and γ=1, large

angular spreads of 10 mrad or more can be cooled: but for high
energy ion beams with β~1 and large γ, the situation is even worse

than in the longitudinal plane. For example, for βγ=10 (i.e., a 10

GeV proton beam), cooling is only effective for ′ ≈z 0 14.  mrad,
which corresponds to a beam which is already pretty dense.

The cooling rate is proportional to the electron density and is
independent of the ion density: hence, electron cooling is most

appropriate for enhancing the density of relatively cool, low
energy, intense ion beams.
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Ionization Cooling

This is a cooling method that makes use of the ionization energy
loss experienced by a particle beam when traversing matter. This

energy loss reduces both the transverse and longitudinal
components of the momentum of the particle. The longitudinal
component is then restored by an rf system; the net result is a

reduction of the emittance of the beam.
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Material:
Momentum
loss opposite
to momentum

RF cavity:
momentum gain purely
longitudinal

Beam

This scheme is only practical for weakly interacting, high mass
particles such as muons, which do not suffer from either nuclear
interactions or bremsstrahlung in the material. In addition to the
ionization energy loss which provides the cooling mechanism,

multiple Coulomb scattering will also take place, which is a
random process which produces heating.
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The emittance growth due to heating from multiple Coulomb
scattering follows from the discussions in Lecture 20, p. 33:

d
ds

d

ds
z mcsε β θ

=
2

2

The emittance reduction due to ionization energy loss is a
reduction in the normalized emittance:

d
ds

d
ds

d
ds

d
ds

nε βγε ε βγ βγ ε= ( ) = ( ) +

Using 
d
ds E

dE
ds

βγ βγ
β

( ) = − 2  , and the heating term from above, gives

d
ds E

dE
ds

d

ds
n n z mcsε ε

β
βγ β θ

= − +2

2

2
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From Lecture 20, pg. 34,

d

ds X pc
mcsθ

β
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So we have

d
ds E

dE
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A balance between the heating and cooling terms will eventually
be reached, resulting in the minimum value of the normalized

emittance
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To achieve the smallest minimum emittance with an ionization
cooling system, we want to have βz (the lattice function) small, X0

(the material’s radiation length) large (which means a very low
density, low Z material), and dE/ds large (which is contradictory to

the previous requirement). The best compromise is a low Z
material of intermediate density: liquid hydrogen. Very strong

focusing is favored to get the smallest possible βz.


