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LECTURE 18
Beam loss and beam emittance growth

Mechanisms for emittance growth and beam loss

Beam lifetime:

from residual gas interactions; Touschek effect; quantum lifetimes
in electron machines; Beam lifetime due to beam-beam collisions

Emittance growth:

 from residual gas interactions; intrabeam scattering; random noise
sources
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Mechanisms for beam loss

1. Scattering from atoms of the residual gas in the beam vacuum
chamber

Large angle Coulomb scattering-can cause beam loss if scattered
particle hits an aperture

Bremsstrahlung: (electrons only) Large radiative energy losses

Inelastic nuclear scattering (protons only): Beam loss through
nuclear reactions

2. Scattering of one particle by another particle in the bunch:

Coulomb scattering of one particle by another particle in the bunch
is called intrabeam scattering. Both the angle and the energy of
both particles can change in this process. If the energy change is
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large enough, the particles may find themselves outside the energy
aperture and be lost. This type of loss is called the Touschek effect.

3.  (Electron machines only): The quantum fluctuations due to
photon radiation can cause a particle to exceed the energy aperture
or physical aperture of the machine. The resulting lifetime is called

the “quantum lifetime”.

4. Beam loss at the interaction point in colliders

Electron-positron colliders: beam loss occurs through radiative
Bhabha scattering (e+ + e- -> e+ + e-

 + γ), in which the energy of one

of the electrons falls outside the energy aperture.

Hadron colliders: beam loss occurs through inelastic reactions

p p p hadrons+ − >( )   
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Mechanisms for emittance growth

1. Scattering from atoms of the residual gas in the beam vacuum
chamber

Elastic Coulomb scattering: Random, small angle scattering
(multiple Coulomb scattering) causes transverse emittance growth

2. Small angle intrabeam scattering of one particle by another
particle in the bunch:

Small angle scattering equalizes the beam temperature in all
dimensions: it causes a transfer of emittance from one dimension
to another. Above transition, the emittance in all three degrees of

freedom can grow.

3. Emittance growth from random noise sources:
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Random power supply noise, and ground motion, can cause
transverse emittance growth

Beam loss from residual gas interactions

We start by reviewing the concept of “cross section”. The cross
section for a particular reaction between two particles is the

effective area which one particle presents to the other. Consider the
volume element shown below, of infinitesimal length ∆s, area A,

containing a gas with atomic number density n. In this volume,
there are ∆ ∆N nA s0 =  atoms, which have a reaction cross section σ

with the incident beam particles.
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N

ρ

∆s
A

The probability of a reaction is

∆ ∆ ∆P N
A

n s= =0
σ σ

so the change in the number of beam particles is

∆ ∆ ∆N N P Nn s
dN
ds

Nn= − = − ⇒ = −σ σ
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If the beam is relativistic, then ds cdt=  and the change in N with
time is

dN
dt

Nnc
N= − = −σ
τ

This gives the equation for the beam lifetime τ
σ

= 1
nc

 associated

with beam loss when passing through the gas. The physics of the
interaction which causes the loss of beam is contained in the cross

section σ. We now consider the cross sections for the important

beam loss mechanisms. The equations for these cross sections, and
for many of the other formulae quoted in this lecture, have been
taken from “Handbook of Accelerator Physics and Engineering”,
A.Chao and M. Tigner, eds, World Scientific (1999). The course

web page has a link to the Handbook web page.
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Coulomb scattering

The differential cross section for Coulomb scattering of a
relativistic charge e, from a material whose nuclei have charge Ze,

for small angles, is
d
d

d
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in which θ is the polar angle.  (“Handbook”, p. 213) This is just the

Rutherford scattering formula. The angle θ α1
1 3= 





Z
m c

p
e ,

α=1/137, accounts for electron screening at small angles.

If a particle is scattered into a polar angle θ, at a point where the

lattice function is β, then the maximum excursion of the resulting
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betatron oscillation is zmax max=θ ββ 2 (for either plane). The
particle will be lost if z bmax > , where b is the radius of the

vacuum chamber at βmax. So for all angles θ θ
ββ

> =min
max

2b
, the

particle will be lost. The cross section for loss of a particle due to a
large angle Coulomb scatter, averaged around the ring, is

σ π σθ θ π
θ

β β π
θ
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e ed
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for the typical case of θ θ1 << min.
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Example: Z=7 (nitrogen gas-not a typical gas in an accelerator
vacuum system, but we’ll use it in this example). Take a vacuum
chamber with radius b=30 mm, and a machine with βmax=30 m,

β =15 m, and p=5 GeV/c. Then we find σCoulomb = 0 13.  barn,
where 1 barn=10-24 cm2.

Bremsstrahlung (electrons only)

The differential cross section for bremsstrahlung in the nuclear
field of a charge Z is

d
du

r
Z Z

Z

u u
u

σ α≈ +( ) 
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in whichu
E

E
= ∆

 is the relative energy lost to radiation.

(“Handbook”, p 213). If the energy aperture of the machine is ∆Ea,
then the cross section for particle loss due to bremsstrahlung is

σ σ α
Brem

u a

d
du

du
r

Z Z
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for u
E
Ea

a= ∆
 <<1.

Example: Z=7 and ua=0.003. We find σ Brem = 4  barn
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Nuclear scattering (protons only).

Protons can be lost through nuclear absorption reactions with
nuclei of the residual gas. Even most nuclear elastic scattering

reactions will cause losses, as the typical elastic scattering angles
are larger than the machine angular acceptance. Consequently, we

simply take the total proton-nucleus cross section σnuclear as the

cross section for proton loss. Curves are given in the “Handbook”,
p. 216. Typical values of σnuclear for protons on nitrogen are in the

range of 0.4 barn, roughly independent of energy from 3 GeV to
more than a TeV.
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Beam lifetime from residual gas interactions (protons)

For protons, we use σ σ σ= +Coulomb Nuclear in 
1
τ

σ= nc . The

molecular density of the (ideal) residual gas is given by n
p

kTmol = ,

with p=pressure, T=absolute temperature, and k=Boltzmann’s
constant. Numerically, this is

n
p

Tmol m
Torr

Ko
−[ ] = × [ ]

[ ]
3 249 66 10.

which gives for the lifetime, for a diatomic gas,

τ
σ

hr
K

nTorr barn

o

[ ] = [ ]
[ ] [ ]
0 474. T

p
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For proton storage rings, a typical requirement on the lifetime is τ
> 20 hrs. This implies a residual gas pressure

p
T

nTorr
K

barn

o

[ ] ≤ [ ]
[ ]

0 474

20

.

σ
Examples: Fermilab antiproton accumulator p=8 GeV/c. Then

σCoulomb = 0 08.  barn, σ Nuclear = 0 4.  barn, T=293o K=> p<1.7 x10-8

Torr

Fermilab Tevatron p=1000 GeV/c. Then σCoulomb is negligible,
σ Nuclear = 0 4.  barn, T=4o K=> p<2.3x10-10 Torr.
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Beam lifetime from residual gas interactions (electrons)

For electrons, we use σ σ σ= +Coulomb Brem. The equation for the
lifetime is more complicated than for protons, because of

photodesorption. The synchrotron radiation photons produced by
the electrons, striking the walls of the vacuum chamber, desorb

substantial quantities of gas. This amounts to a contribution to the
residual gas density that is proportional to the beam intensity:

n n GN= +0

in which n0 is the atomic gas density due to beam-unrelated gas
sources, such as thermal outgassing, and G is the density produced

by photodesorption by one electron. The equation for beam loss
then becomes
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dN
dt

Nnc Nc n GN= − = − +( )σ σ 0

The lifetime at t=0, τ
σ

= = +1
0 0n c

n n GN
eff

eff, , depends on the

initial beam intensity N0. For electron storage rings, a typical
requirement on the lifetime is τ > 10 hrs. This implies a residual

gas pressure

p
T

eff nTorr
K

barn

o

[ ] ≤ [ ]
[ ]

0 474

10

.

σ
in which p kTneff eff= 2 includes the effects of the photodesorbed

gas (assumed to be diatomic).
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Example: CESR p=5 GeV/c. Then σCoulomb = 0 13.  barn, σ Brem = 4
barn, T=293o K=> peff<3.4 x10-9 Torr

2. Loss due to scattering of one particle by another particle in the
bunch (Touschek effect):

In an elastic Coulomb scattering event between two particles in the
same bunch, there may be an exchange of transverse momenta for

longitudinal momenta.
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x
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p
x

-p
x

p
s

-p
s

The above figure is in the rest frame of the bunch. In the laboratory
frame, the momenta in the s direction get Lorentz boosted to

γ γ γp p x ps x≈ ≈ ′ .

If γ ′ >x
E
E

a∆
, the relative energy acceptance of the machine, the

particles will be lost.

The expression for the Touschek lifetime is quite complex. It
depends on the details of the lattice, the machine energy

acceptance, the particle energy, and the emittance of the beam. The
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formula for the lifetime is given in “Handbook”, p. 125-126. The
basic structure is

1 0
2

4τ γ ε ε ε
β β ε ε δ η

Touschek

b

x y L
x y x y x a

r cN
f E E∝ ( ), , , , , ,∆

The following is a plot of the Touschek lifetime for the CESR
operating parameters, as a function of the relative energy

acceptance ∆Ea/E:
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  (Electron machines only): quantum lifetime

The quantum fluctuations due to photon radiation may cause a
particle to exceed the energy aperture or physical aperture of the
machine. The resulting lifetime is called the “quantum lifetime”.

Let’s look at the loss process in the horizontal transverse plane
first. When we discussed synchrotron radiation damping, we saw
that the balance between damping and quantum excitation (due to

photon emission in dispersive regions) led to an equilibrium
horizontal emittance. The process which leads to this equilibrium
involves the random emission of large numbers of photons; such a
random process lead to a Gaussian distribution, in both x and ′x .

In phase-amplitude variables (r,φ), the Gaussian phase space

distribution can be written as
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dN
rdrd

N r
φ πε ε

= −
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exp ,

in which ε is the rms equilibrium horizontal emittance.

Integrating over φ, the number of electrons in an interval of

amplitude squared dr 2 is 
dN

dr
dr2

2 , where 
dN
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N r
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Consider the following plot of 
dN

dr2 :
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dN/dr 2
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w

dN/dt (damping)

dN/dt (fluctuations)

The number of particles per unit time (the particle flux) crossing a
line at r rw

2 2=  due to damping is given by

dN
dt

dN

dr
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dtdamping r dampingw

= 2
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2
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in which 
dr
dt

r r

damping r r
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But since the distribution is in equilibrium, the total

dN
dt

dN
dt

dN
dtfluctuations damping

= + =0. Thus, we know that
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Now imagine that we have an aperture limit at rw. Since there are
no particles at r>rw, there will no longer be an inward damping

flux, only the outward flux due to fluctuations, which constitutes
beam loss. The distribution function must go to zero at this point,

so it will not longer be Gaussian. However, if rw
2>>ε, the

distribution will not change very much, and we can use the above
expression to estimate the rate of beam loss:

dN
dt

Nr r Nw

x

w

q
≈ − −









 = −

2 2

2ετ ε τ
exp

which gives for the quantum lifetime τq

τ τ ε
εq x

w

w

r

r=








2

2

2
exp



11/26/01 USPAS Lecture 18 25

This can be written in terms of the limiting value of the aperture,
x ra w

2 2= β , and the mean square horizontal beam size σ βε2 = , as

τ τ σ
σq x

a

a

x
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Note the extremely rapid dependence of the lifetime on the ratio
xa

2

2σ
. To obtain quantum lifetimes of 10 hours, for typical damping

times of order 10 ms, we need to have
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Going below this limit reduces the lifetime extremely rapidly. In
this regime, the lifetime will be very sensitive to the aperture.
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Usually one designs for xa ≥ 10σ  to provide adequate safety
margin.

The equivalent set of considerations with regard to energy
fluctuations leads to the following result for the quantum lifetime

due to energy fluctuations:

τ τ σ
σεq

E

a

a

EE

E=










2

2

2

22∆
∆

exp

in which τε is the energy damping time, σΕ  is the rms energy

spread, and ∆Ea is the energy aperture (due either to the bucket

height, or to aperture limits at a dispersive point). Again, one
typically designs for ∆Ea E≥ 10σ .
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4. Beam loss at the interaction point in colliders

Electron-positron colliders: beam loss occurs through radiative
Bhabha scattering (e+ + e- -> e+ + e-

 + γ), in which the final energy

of one of the electrons falls outside the energy aperture.

The differential cross section for radiative Bhabha scattering is
given in “Handbook”, p. 220. When integrated to give the cross
section corresponding to an energy loss sufficient to leave the
machine, the result is a slowly varying function of the relative

energy aperture and the beam energy. For a wide range of energies
and apertures, the cross section is in the range of

σ RBS ≈ − × −2 3 10 25 cm2.

The lifetime for beam loss from this process depends on the
luminosity, since the loss occurs due to beam-beam collisions.
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From the definition of the luminosity, the loss rate for one species
of particle will be

  
dN
dt RBS= Lσ

Since   L = kN2, where k is a constant if the cross sectional areas of
the beams don’t change, we have

  

d
dt

kN
dN
dt

kN RBS
L L L

L
= = = −2 2 σ

τ

which gives for the initial luminosity lifetime   τ L,

  
τ

σ σL L
= =1

2 20

0

kN
N

RBS o RBS
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in which   L0 is the initial luminosity, and N0 is the initial number of
particles.

Example: Consider a high luminosity electron-positron collider, for
which   L0=3x1034 cm-2 s-1, and for which N0 = 5x1013. The

luminosity lifetime due to radiative Bhabha scattering will be
about an hour.

Hadron colliders: beam loss occurs through inelastic reactions

p p p hadrons+ − >( )   

At very high energies, this cross section is slowly varying with
energy, and is about σ pp ≈ 100 mbarn = 10-25 cm2. The luminosity

lifetime will be
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τ

σL L
= N

o pp

0

2

Example: The LHC, for which   L0=1034 cm-2 s-1, and for which N0 =
3.6x1014. The luminosity lifetime due to pp collisions will be about

50 hours.

Mechanisms for emittance growth

1. Scattering from atoms of the residual gas in the beam vacuum
chamber
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Elastic Coulomb scattering: Random, small angle scattering
(multiple Coulomb scattering) causes transverse emittance growth

To discuss this, we will start by deriving a general relation for
amplitude growth from any source of random angular kicks

delivered to the beam.

Let θn be an angular kick delivered to a particle at a particular

location in the ring, on the nth turn. Let’s look at the change in the
phase-amplitude variables at that point in the ring.

Let the initial values of the phase-amplitude variables on turn n be
rn and φn, with corresponding Floquet variables ξn and ξ̇n. When ′x

changes by θn, the change in Floquet coordinate is ∆ξ̇ βθ= Q n.

We add this to the original Floquet coordinate and propagate this
around the ring once, to find
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Then we look at the change in the amplitude

dr
dn

r r r rn n n n n n

2
2

1
2 2 22= = − = − ++∆ β θ φ βθsin

In general, this will depend on the value of θn.. But if we average

over many turns, and the kicks θn are truly random from turn to

turn, then the piece linear in θn  averages to zero, and we will have

d r

dn

2
2= β θ
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that is, the amplitude (and emittance) will grow proportional to the
average of the square of the kick angle. Let us now apply this to

the case of multiple Coulomb scattering.

The average scattering angle squared for Coulomb scattering, due
to passage through a distance s in a medium, is given in the

“Handbook”, p 213, as

θ
β

2
2

0

13 6≈ 





.  MeV
pc

s
X

The quantity X0 is called the radiation length; a formula is also
given on the same page in the “Handbook”
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Using these expressions in the formula for the amplitude growth
above due to Coulomb scattering in the residual gas, and

integrating around the ring, gives

d r

dn
s

pc
C
X

2 2

0

13 6= 





β
β

( )
.  MeV

in which C= machine circumference.

This emittance growth is generally consequential only in proton
machines, for which there is no natural damping mechanism.

2. Coulomb scattering of one particle by other particles in the
bunch:

This is called intrabeam scattering.
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Small angle Coulomb scattering equalizes the beam temperature in
all dimensions: it causes a transfer of emittance from one

dimension to another. Above transition, the emittance in all three
degrees of freedom can grow. The relations for the growth time are

quite complex: they are given in p 125-127 of the “Handbook”.
The growth times have a form very similar to that of the Touschek

lifetime:

1 0
2

4T
r cN

f
x y p

b

x y L
x y p x y x y x

, ,
, , , , , , ,

∆
∆∝ ( )

γ ε ε ε
β β ε ε δ η

3. Emittance growth from random noise sources:

Random power supply noise, and ground motion, can cause
transverse emittance growth

The general relation
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d r

dn

2
2= β θ

is applicable. The source of the random kicks could be dipole
power supply noise, producing random field noise with a mean

square value ∆B( )2 :

θ
ρ

2
2 2

0
2=

( )

( )
∆B L

B

Random ground motion, with a mean square amplitude ∆x( )2 ,

will produce angular kicks (by misaligning quadrupoles) given by

θ2
2

2=
( )∆x

f
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in which f is the focal length of the quadrupole in question.

Example: If a machine has a revolution period T, then the rms
emittance growth rate per unit time due to random quadrupole

motion will be

d
dt T

x

f

ε β=
( )1

2

2

2

∆

Consider the Tevatron collider, in which the rms emittance is
approximately 2x10-9 m-rad, and for which T=21 µs. Let a

quadrupole with a focal length of 5 m, at a β of 50 m, suffer

random noise vibrations. Let the rms amplitude be 1 nm, and
assume that all this vibration is directly reflected in the field. How

long will it take for the emittance to double?
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Plugging in the numbers, such a vibration would produce an
emittance growth time of about 5x10-14 m/s. Thus, the emittance

would increase by 2x10-9 in about 11 hours. Since this is a typical
store length, this would be a serious problem.


