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LECTURE 17
Linear coupling (continued)

Coupling coefficients for distributions of skew quadrupoles
and solenoids

Pretzel Orbits

Motivation and applications

Implications
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Linear coupling (continued)

Coupling coefficients for distributions of skew quadrupoles
and solenoids

The previous discussion focused on a single skew quadrupole, for
simplicity. Actual machines typically have a distribution of skew
quadrupoles, and also may include solenoids.  The axial solenoid
field couples to the slope of the trajectory; the end fields couple to

the trajectory itself: (c.f., Lecture 3, p 10:)
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Let’s see how to calculate the coupling coefficient for an arbitrary
distribution of skew quadrupole and solenoid strength around the

ring.

We’ll call the location at which we want to evaluate the trajectories
s=0. At some other point in the ring, ′s , let the skew quadrupole

strength be ˜( )k s′ , and the solenoid strength Τ ( )′s . For the moment,
we assume that this is the only point of coupling in the ring. At the
end of the discussion, we’ll integrate over the whole ring to get the

result for a distribution of strengths.

The incremental kick delivered to a trajectory at this point by these
fields, which extend a distance ∆ ′s , is
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In Floquet coordinates, we have
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in which everything is evaluated at the point ′s .

There are similar equations for y, in which y and x are
interchanged, and T->-T.
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Now consider a trajectory which starts at s=0, with phase space
coordinates
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at that point. It travels to ′s , at which the betatron phase is
′ = ′Φ Φ( )s . The phase space coordinates there are
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The changes in the Floquet coordinates at this point are then
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We then continue from this point to s=C, where we started. The
Floquet coordinates at s=C are given by
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with a similar equation for y.
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We then calculate the changes in the phase-amplitude variables
over the turn, using
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In the following results, the parameters κ are assumed to be small,

so only the linear terms are retained. The trigonometric functions
have also been expanded, only terms driving the difference

resonance have been retained, and the change of variables to the
rotating coordinate system has been made. The resulting equations

are
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with δQ Q Qx y= − . There are similar equations for y, obtained by
interchanging x and y .

At this point, we can generalize to a distribution of skew
quadrupole and sextupole strength around the ring. The above

equations give the contribution from an element of length ∆ ′s  at ′s :
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for a distribution of skew quadrupole and solenoid strength around
the ring, we make the following replacements:
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As before, we now introduce the complex quantities
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w r i w r ix x x y y y= ′( ) = ′( )exp    expφ φ

The result is the pair of complex equations
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The equivalent matrix equation is
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Substituting from above, we can write the matrix as
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in which

ε
πδ

= Θ
2 Q

The minimum tune split, on the difference resonance, is

Q Q2 1 2
−( ) =
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Correction of coupling.

For a difference resonance corresponding to Q Q m Qx y− = +δ , we
can approximate

Φ Φx y x ys s Q Q m Q( ) ( )′ − ′ ≈ −( ) = +( )θ θ δ θ
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in which θ π= 2 s
C

 is the azimuthal angle. Then, for small δQ,

the coupling coefficients become
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The coefficients which drive the Q Q mx y− =  difference resonance
are the mth Fourier components of the coupling strength.

To correct a general set of coupling errors, at least two correctors
are needed, to cancel the two Fourier harmonics (real and
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imaginary parts of Θ). If the coupling errors and the lattice

functions have superperiodicity N,  this will suppress Fourier
harmonics which do not satisfy m jN= , for integral j.

Pretzel Orbits

Motivation and applications

The term “pretzel orbits” refers to the deliberate introduction of
closed orbit distortions, through the use of electric fields, in order
to provide orbit separation at undesired collision points in multiple

bunch particle-antiparticle colliders.

Pretzel orbits were invented and first developed at CESR. They are
now in use here, and also in LEP at CERN, and in the Tevatron at

Fermilab, to allow multiple bunch operation and higher luminosity.
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Why do more bunches give higher luminosity?

Recall, Lecture 1, p 38, luminosity formula:

  
L = f

N
c

b
2

24πσ
Here Nb=number of particles per colliding bunch, and fc=collision

frequency. If there are B bunches per species, then f fBc = , where f
is the revolution frequency, and so

  
L = f

BNb
2

24πσ
If there is some limit on Nb  (e.g, the beam-beam limit, which is

proportional to Nb), then more bunches will give more luminosity.
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If, however, I can make Nb as big as I want, but have a fixed total
number of particles N BNb= , then I can write

  
L = ( ) =f

B

BN f
B

Nb1

4 4

2

2

2

2πσ πσ
and I want to make B as small as I can (i.e., 1) to maximize

luminosity.

The typical situation in particle-antiparticle colliders is operation at
the beam-beam limit, and we want to have as many bunches as
possible. However, B bunches have 2B collision points, while
typically there are only one or two detectors. At each collision

point, we suffer from the beam-beam interaction, so we want to
minimize the number of collision points. Thus, we want to separate

the bunches everywhere in the machine, so they do not collide,
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except at the collision points where we have detectors. This is the
purpose of “pretzel orbits”.
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The figure above illustrates a possible ideal realization of the basic
idea, providing two collision points with 8 bunches. Two closed
orbit distortions are generated, of wavelength λ and amplitude p.

The bunch spacing is equal to λ. The bunches are arranged as

shown, so that while two are at the collision points, the others are
at the pretzel antinodes. The orbit distortion is generated using

electric fields (typically electrostatic separators), so that the
oppositely charged, counter-rotating bunches follow an orbit with
the opposite sign. The bunches passing at the pretzel antinodes are

separated by a separation 2p, while those at the collision points
collide.

The scheme accommodates B C= λ  bunches, where λ is the

betatron wavelength. Since Q C≈ λ , the value of the tune sets the
maximum number of bunches.

12/3/01 USPAS Lecture 17 20

This limitation has been overcome at CESR and LEP by using
trains of bunches, with a spacing much smaller than λ. The trains

must be short enough to fit in the region of pretzel antinode. A
small crossing angle is introduced in the straight sections to

prevent undesired collisions for bunches in a single train.

The pretzel shown above is symmetric about each collision point.
An antisymmetric pretzel is also possible, and in fact desireable:
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The following figures illustrate the orbit separation scheme.
(Animations of these figures are available in the animations

folder).
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Left: collisions at two points, other bunches at pretzel antinodes

Right: after collision, most bunches at pretzel nodes.

 

Left: All bunches near pretzel antinodes
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Right: two collisions, other bunches at pretzel antinodes.

Implications:

There are a number of issues associated with pretzel orbit
operation.

•  Long-range beam-beam collisions. The long-range collisions
cause closed orbit errors, tune shifts, beta function distortion, and
resonance excitation. The need to limit these effects sets the size
of the pretzel amplitude p, upon which all other effects depend.

•  Aperture. The deformed orbits, plus betatron oscillations around
them, must fit into the good field region of the magnet apertures.
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•  Pretzel closure. If the orbit deformation “leaks” into the collision
regions, the colliding bunches may fail to collide head-on, or

even miss each other.

•  Dispersion. The deformed closed orbit generates dispersion; this
will be vertical dispersion if the pretzel is vertical, and will

contribute to quantum excitation of the vertical emittance in an
electron machine.

•  Path length changes. The path length on the deformed orbit will
change. This can result in an energy difference between the

colliding beams.

•  Sextupole effects:

If the pretzel is horizontal: The closed orbit deformation in the
sextupoles causes horizontal dipole errors, which will modify the
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closed orbit. It also causes quadrupole errors in both planes, which
in turn result in tune shifts, beta function distortion, and second

order resonance enhancement.

If the pretzel is vertical: The closed orbit deformation in the
sextupoles causes horizontal dipole errors, and skew quadrupole

errors in both planes, which increases the coupling.

•  Particle-antiparticle energy differences: If the pretzel is present
in the rf cavities, and the rf field varies with position, there may
be energy differences between the two beams.

•  Nonlinear resonances from field errors. The large amplitude
excursions of the beams may allow them to enter nonlinear field

regions, increasing the sensitivity to resonances.
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•  Injection. During the damped betatron oscillations which occur
after injection, the separation between the bunches may be

reduced, potentially leading to beam loss.

•  Electrostatic separators. The requirements on these devices are
challenging. In addition to having to provide high electric fields

(typically > 100 kV/cm), for high current electron-positron
machines, they must have low impedance. For proton-antiproton
colliders, they must be very reliable, as sparks often cause loss of

the stored beam.

Machines that operate with flat beams must strictly limit the
amount of vertical dispersion and coupling, in order to minimize

the vertical emittance. Vertical pretzel closure errors at the
collision point are also very damaging, because of the small
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vertical beam size. Hence, electron colliders typically choose the
pretzel to be in the horizontal plane.

Let’s examine some of these effects quantitatively, for the case of
horizontally separated orbits.

Long-range beam-beam collisions.

To estimate the effect of these collisions, we need to know the
fields produced by a bunch. Imagine the bunch to have a length
L along the direction of motion. We will be seeking the “long-

range” fields, at a distance from the bunch large compared to its
transverse size. So, we imagine the bunch to have a very small

transverse size.
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The bunch is taken to be composed of ultra-relativistic point
charges, which have “flattened” fields that are directed

perpendicular to the direction of motion (see figure above).

To find the electric field at a point a distance r from the bunch,
we surround the bunch with a Gaussian surface as shown:
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Applying Gauss’ Law to find the field gives
r r
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To find the magnetic field at r, use Ampere’s Law
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Now consider a point charge -e, moving opposite to the bunch, at
the point r . The effect of the long-range fields of the bunch on

the trajectory of this particle is given by (see Lect 2, p. 35):
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For small θ, we have
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So the total change in slopes of the trajectory produced by the
fields of the bunch is
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For a bunch with Nb particles of charge e, the angular kicks are
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in which

From the figure to
the right, we see
that ∆s=L/2: the

effective length of
the fields seen by
the particle is half
the bunch length.

12/3/01 USPAS Lecture 17 34

r
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=2.82x10-15 m is the classical electron radius.

On pretzel orbits, the beams are separated by a distance 2p. Hence,

we have r p x y= +( ) +2 2 2 , where x  and y measure the betatron
oscillations about the pretzel orbit.  Thus
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+ +
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...

and to lowest order in (x,y) we have
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The first term in parentheses in the x-equation corresponds to a
dipole error. Since it is linear in p, the errors will have different
signs for particles and antiparticles, resulting in differential orbit

changes and pretzel closure errors. In principle, this can be
corrected by adjusting the separators. The second term in x, and the
only term in y, is a quadrupole error. The effective focal length is

1

2
0

2f
x
x

N r

px

b= − ′ = −∆
γ

defocusing for both types of particles, in x, and focusing in y. For B
bunches, producing 2B-1 long-range crossings, the tune shift due

to the long-range crossings is
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in which βx is a typical lattice function at the crossings. For a given

tolerable tune shift, the required pretzel amplitude is

p
B N r

Q
b x

LR x
= −2 1

4 2
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π γ
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∆ ,

Example: We want ∆QLR to be small compared to a typical

maximum head-on tune shift, which might be ∆QHO =0.05. Taking

∆QLR to be 0.005, for CESR parameters β=30 m, B=30, Nb=1011,

γ=104, we have p = 16 mm, which requires a full aperture of 32

mm plus room for betatron oscillations.
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In practice, it is not this tune shift itself which causes problems, but
rather smaller, higher order nonlinear effects which are difficult to
correct. Nevertheless, this simple estimate correctly sets the scale

of the required pretzel separation.

Sextupole effects of horizontal pretzel orbits

The vertical field of a sextupole is B
B

x yy = ′′ +( )
2

2 2 . Let the

closed orbit deformation produced by the pretzel be p(s). Then, on
the pretzel, the sextupole field is
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in which (x,y) now refer to betatron oscillations about the pretzel
orbit. We see that the effect of the sextupoles is to produce a dipole

field error 
′′B p2

2
, which is the same for both species. This error can

be corrected with standard correction dipoles. There is also a tune

shift due to the quadrupole error ∆k
B p
B

mp= ′′
( ) =

0ρ
, in which m is

the sextupole strength. The total tune shift, integrated around the
ring, is

∆Q dsm s s p sx x

C

= ∫
1

4 0π
β( ) ( ) ( ).
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The tune shift per unit pretzel amplitude  is called the tonality.

This tune shift will have opposite signs for particles and
antiparticles. If the ring has superperiodicity two, and the pretzel is

antisymmetric about the symmetry point, ( p s
C

p s+
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The tonality is zero to lowest order. The quadrupole errors produce
a lattice function distortion (from Lect 8, p 21)
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For tunes near a half-integer, this perturbation is maximally
antisymmetric about C/2. The tonality, calculated using the

perturbed lattice functions, will thus be non-zero in next to lowest
order in pretzel amplitude.
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Path length changes.

In one of the homework problems, it was shown that a dipole error
θ at a location where the dispersion is η produces a path length

change ∆C = ηθ . If the separators that produce the pretzel are
located at dispersive points, then the path length change on the

pretzel will be

∆C s si
i

i= ( ) ( )∑η θ

where the sum is over all the pretzel kicks. This change is opposite
for the two species of particles. Since the circumference is fixed by
the rf wavelength and harmonic number, the path length change on

the pretzel results in an energy change given by δ
α

= ∆C
CC

. The two
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species will then have different energies, which can be a problem if
there is residual vertical dispersion at the interaction point.

To lowest order in the pretzel amplitude (i.e., neglecting the
changes in η due to the pretzel itself) ∆C is zero for an

antisymmetric pretzel in a superperiod 2 lattice


