LECTURE 16

Linear coupling

Two coupled harmonic oscillators

Equations of linear coupling

Difference resonances
Sum resonances

The equations of motion for the masses are

$$
\begin{aligned}
& m \ddot{x}=-k_{1} x-k(x+y) \\
& m \ddot{y}=-k_{2} y-k(x+y)
\end{aligned}
$$

This can be written in matrix form as

$$
\begin{aligned}
& \ddot{\bar{z}}+\mathbf{M} \vec{z}=0, \quad \vec{z}=\binom{x}{y}, \\
& \mathbf{M}=\frac{1}{m}\left(\begin{array}{cc}
k_{1}+k & k \\
k & k_{2}+k
\end{array}\right)=\left(\begin{array}{cc}
\omega_{1}^{2} & q^{2} \\
q^{2} & \omega_{2}^{2}
\end{array}\right)
\end{aligned}
$$

The standard technique for a solution is to find the normal modes of the motion. The normal modes $\vec{\zeta}$ are linear combinations of x and y, given by the transformation matrix \mathbf{S} :

Two coupled harmonic oscillators

The motion of a particle in an accelerator may exhibit coupling between the two transverse planes. Such motion is very similar to the motion of two coupled simple harmonic oscillators. The position of one oscillator is analogous to the particle's x-motion, while that of the other oscillator is analogous to the y-motion.

$$
\vec{z}=\mathbf{S} \vec{\zeta}
$$

The normal modes are uncoupled, so that

$$
\ddot{\bar{\zeta}}+\mathbf{S}^{-1} \mathbf{M S} \vec{\zeta}=0
$$

in which the matrix $\mathbf{S}^{-1} \mathbf{M S}=\boldsymbol{\Lambda}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ is diagonal. The quantities $\sqrt{\lambda_{1}}$ and $\sqrt{\lambda_{2}}$ are the normal mode frequencies.
To find the normal modes and frequencies, we want to find the matrix \mathbf{S} which makes $\boldsymbol{\Lambda}=\mathbf{S}^{-1} \mathbf{M S}$ diagonal.
This problem is equivalent to that of finding the eigenvalues and eigenvectors of the matrix \mathbf{M}. If the two eigenvectors are
\vec{e}_{1} and \vec{e}_{2}, and eigenvalues are λ_{1} and λ_{2}, the eigenvector equation is $\mathbf{M} \vec{e}_{k}=\lambda_{k} \vec{e}_{k}$.

Then

$$
\left(\mathbf{M}-\mathbf{I} \lambda_{k}\right) \vec{e}_{k}=0
$$

For these linear homogeneous equations to have a solution, the determinant $\left|\mathbf{M}-\mathbf{I} \lambda_{k}\right|=0$: this is called the secular equation. It provides a set of equations for the eigenvalues λ_{k}. Given these, the solutions to $\left(\mathbf{M}-\mathbf{I} \lambda_{k}\right) \vec{e}_{k}=0$ can be found, which yield the eigenvectors. If we construct a matrix $S_{i k}=\left(e_{i}\right)_{k}$ (that is, with the k th column of \mathbf{S} equal to the k th eigenvector), then the eigenvector equation becomes

$$
\mathbf{M} \vec{e}_{k}=\lambda_{k} \vec{e}_{k} \Rightarrow \mathbf{M S}=\mathbf{S} \boldsymbol{\Lambda} \Rightarrow \mathbf{S}^{-1} \mathbf{M S}=\boldsymbol{\Lambda}
$$

$$
\begin{aligned}
& \zeta_{1}=A_{1} \exp \left(i \sqrt{\lambda_{1}} t+\phi_{1}\right)=S_{11}^{-1} x+S_{12}^{-1} y \\
& \zeta_{2}=A_{2} \exp \left(i \sqrt{\lambda_{2}} t+\phi_{2}\right)=S_{21}^{-1} x+S_{22}^{-1} y
\end{aligned}
$$

The following figures show a numerical example, for $\omega_{2}=3 \mathrm{~Hz}$, $q=1 \mathrm{~Hz}$. The normal mode frequencies, and the coupling matrix elements, are plotted as a function of ω_{l} (in Hz).

which shows that, if we find the eigenvalues and eigenvectors of \mathbf{M}, we will know the normal mode frequencies, and the transformation from the (x, y) to the normal modes.

Let's carry this out for the two masses above. Solving the secular equation gives

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}\left[\omega_{2}^{2}+\omega_{1}^{2}-\sqrt{4 q^{4}+\left(\omega_{1}^{2}-\omega_{2}^{2}\right)}\right] \\
& \lambda_{2}=\frac{1}{2}\left[\omega_{2}^{2}+\omega_{1}^{2}+\sqrt{4 q^{4}+\left(\omega_{1}^{2}-\omega_{2}^{2}\right)}\right]
\end{aligned}
$$

The eigenvectors determine the matrix \mathbf{S}. In terms of this matrix, the conversion from normal modes to (x, y) is

For $\omega_{1}<\omega_{2}, \sqrt{\lambda_{1}} \approx \omega_{1}$ and $\sqrt{\lambda_{2}} \approx \omega_{2}$. The situation is reversed for $\omega_{1}>\omega_{2}$. Note that the normal mode frequencies are never equal, even for $\omega_{1}=\omega_{2}$. Coupling: left, mode 1 ; right, mode 2

For $\omega_{1}<\omega_{2}, \zeta_{1} \approx-x, \zeta_{2} \approx y$; For $\omega_{1}>\omega_{2}, \zeta_{1} \approx y, \zeta_{2} \approx x$. For $\omega_{1}=$ $\omega_{2}, \zeta_{1} \approx \frac{1}{\sqrt{2}}(y-x), \zeta_{2} \approx \frac{1}{\sqrt{2}}(y+x)$.

Equations of linear coupling

With this introduction to coupled oscillators, let's see how the coupled trajectory equations of motion can be understood in terms of coupled oscillators. For simplicity, we're only going to consider the coupling resulting from a single skew quadrupole, located at a position s_{0} in the ring. This simplifies the math, while maintaining the essential physical features of coupling.
From Lecture 3, p 9: the coupling produced by a skew quadrupole is given by

$$
x^{\prime \prime}=y \tilde{k} ; \quad y^{\prime \prime}=x \tilde{k}
$$

in which $\tilde{k}=\frac{\tilde{B}^{\prime}}{B_{0} \rho}$ is the skew quadrupole strength. For a thin lens of length L_{s}, these equations become

$$
\begin{aligned}
& \Delta r_{x}^{2}=-2 r_{x} r_{y} \kappa \sin \phi_{x} \cos \phi_{y} \\
& \Delta r_{y}^{2}=-2 r_{x} r_{y} \kappa \sin \phi_{y} \cos \phi_{x}
\end{aligned}
$$

For the changes in the phase, we have

$$
\begin{gathered}
\tan \phi=-\frac{\dot{\xi}}{Q \xi} \Rightarrow \Delta \phi=-\cos ^{2} \phi \frac{\Delta \dot{\xi}}{Q \xi}=-\cos \phi \frac{\Delta \dot{\xi}}{Q r}, \text { so } \\
\Delta \phi_{x}=-\frac{r_{y}}{r_{x}} \kappa \cos \phi_{x} \cos \phi_{y} \\
\Delta \phi_{y}=-\frac{r_{x}}{r_{y}} \kappa \cos \phi_{x} \cos \phi_{y}
\end{gathered}
$$

Now we' ve assumed only one coupling element in the ring. For the motion in all the rest of the ring, r_{x} and r_{y} do not change, and ϕ_{x} and
ϕ_{y} advance by $2 \pi \mathrm{Q}_{\mathrm{x}}$ and $2 \pi \mathrm{Q}_{\mathrm{y}}$ respectively. So, we can write differential equations for the changes of the phase and amplitude per turn ($\mathrm{n}=$ turn number)

$$
\begin{aligned}
& \frac{d r_{x}^{2}}{d n}=-2 r_{x} r_{y} \kappa \sin \phi_{x} \cos \phi_{y} \\
& \frac{d r_{y}^{2}}{d n}=-2 r_{x} r_{y} \kappa \sin \phi_{y} \cos \phi_{x} \\
& \frac{d \phi_{x}}{d n}=2 \pi Q_{x}-\frac{r_{y}}{r_{x}} \kappa \cos \phi_{x} \cos \phi_{y} \\
& \frac{d \phi_{y}}{d n}=2 \pi Q_{y}-\frac{r_{x}}{r_{y}} \kappa \cos \phi_{x} \cos \phi_{y}
\end{aligned}
$$

Difference resonances

We now expand the trigonometric functions to identify the resonant coupling terms:

$$
\sin \phi_{x} \cos \phi_{y}=\frac{1}{2}\left[\sin \left(\phi_{x}-\phi_{y}\right)+\sin \left(\phi_{x}+\phi_{y}\right)\right]
$$

If $Q_{x} \approx Q_{y}$, then the first term is slowly varying and can drive resonant coupling. This condition is referred to as the difference resonance. In this case, we can neglect the second term, which will be rapidly varying, and the coupled equations of motion become

$$
\begin{aligned}
& \frac{d r_{x}}{d n}=-\frac{r_{y}}{2} \kappa \sin \left(\phi_{x}-\phi_{y}\right) \\
& \frac{d r_{y}}{d n}=\frac{r_{x}}{2} \kappa \sin \left(\phi_{x}-\phi_{y}\right) \\
& \frac{d \phi_{x}}{d n}=2 \pi Q_{x}-\frac{r_{y}}{2 r_{x}} \kappa \cos \left(\phi_{x}-\phi_{y}\right) \\
& \frac{d \phi_{y}}{d n}=2 \pi Q_{y}-\frac{r_{x}}{2 r_{y}} \kappa \cos \left(\phi_{x}-\phi_{y}\right)
\end{aligned}
$$

Combining the first two equations gives

This is a change of variables to a rotating coordinate system, rotating with a frequency corresponding to the tune $\frac{Q_{x}+Q_{y}}{2}$. The equations of motion become

$$
\begin{aligned}
& \frac{d r_{x}}{d n}=-\frac{r_{y}}{2} \kappa \sin \left(\phi_{x}^{\prime}-\phi_{y}^{\prime}\right) \\
& \frac{d r_{y}}{d n}=\frac{r_{x}}{2} \kappa \sin \left(\phi_{x}^{\prime}-\phi_{y}^{\prime}\right) \\
& \frac{d \phi_{x}^{\prime}}{d n}=\pi \delta Q-\frac{r_{y}}{2 r_{x}} \kappa \cos \left(\phi_{x}^{\prime}-\phi_{y}^{\prime}\right) \\
& \frac{d \phi_{y}^{\prime}}{d n}=-\pi \delta Q-\frac{r_{x}}{2 r_{y}} \kappa \cos \left(\phi_{x}^{\prime}-\phi_{y}^{\prime}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{d \vec{w}}{d n}+i \pi \delta Q \mathbf{M} \vec{w}=0, \quad \mathbf{M}=\left(\begin{array}{cc}
-1 & \varepsilon \\
\varepsilon & 1
\end{array}\right) \\
\text { in which } \varepsilon=\frac{\kappa}{2 \pi \delta Q}
\end{gathered}
$$

The normal modes of the motion will be given by $\vec{\zeta}$, where

$$
\vec{w}=\mathbf{S} \vec{\zeta}
$$

The equation of motion of the normal modes is

$$
\frac{d \vec{\zeta}}{d n}+i \pi \delta Q \mathbf{S}^{-1} \mathbf{M S} \vec{\zeta}=\frac{d \vec{\zeta}}{d n}+i \pi \delta Q \boldsymbol{\Lambda} \vec{\zeta}=0
$$

in which the matrix $\mathbf{S}^{-1} \mathbf{M S}=\boldsymbol{\Lambda}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ is diagonal.
in which $\delta Q=Q_{x}-Q_{y}$. These can be reduced to the form of two complex linear coupled first order equations with the substitution

$$
w_{x}=r_{x} \exp \left(i \phi_{x}^{\prime}\right) \quad w_{y}=r_{y} \exp \left(i \phi_{y}^{\prime}\right)
$$

The result is the pair of complex equations

$$
\begin{aligned}
\frac{d w_{x}}{d n} & =i\left(\delta Q \pi w_{x}-\frac{\kappa}{2} w_{y}\right) \\
\frac{d w_{y}}{d n} & =-i\left(\delta Q \pi w_{y}+\frac{\kappa}{2} w_{x}\right)
\end{aligned}
$$

We can now solve these equations just as we did for the coupled harmonic oscillators earlier in the lecture. Written as a matrix
equation, the pair of equations above is

The solutions are

$$
\begin{aligned}
& \zeta_{1}(n)=\zeta_{10} \exp \left(i \pi \delta Q \lambda_{1} n\right) \\
& \zeta_{2}(n)=\zeta_{20} \exp \left(i \pi \delta Q \lambda_{2} n\right)
\end{aligned}
$$

The normal modes frequencies and the normal modes are the eigenvalues and the eigenvectors of the matrix \mathbf{M}. Since the matrix is pretty simple, the eigenvalues and eigenvectors are relatively
simple also. The eigenvalues are

$$
\lambda_{1}=-\sqrt{1+\varepsilon^{2}} \quad \lambda_{2}=\sqrt{1+\varepsilon^{2}}
$$

so the normal mode solutions are

$$
\begin{aligned}
& \zeta_{1}(n)=\zeta_{10} \exp \left(-i \pi \delta Q \sqrt{1+\varepsilon^{2} n}\right) \\
& \zeta_{2}(n)=\zeta_{20} \exp \left(i \pi \delta Q \sqrt{1+\varepsilon^{2}} n\right)
\end{aligned}
$$

These solutions have been found in the rotating coordinate system. Therefore, we have to add back $\pi\left(Q_{x}+Q_{y}\right) n$ to get the motion in the usual phase space. The tunes of the normal modes are then

$$
Q_{1,2}=Q_{x}+\frac{\delta Q}{2} \pm \frac{1}{4 \pi} \sqrt{\kappa^{2}+4 \pi^{2} \delta Q^{2}}
$$

Example: $Q_{x}=0.48, \kappa=0.05$

Normal mode orientations:

$$
\vec{\zeta}=\mathbf{S}^{-1} \vec{w} \text { implies that }
$$

$$
\begin{aligned}
& \zeta_{1}=S_{11}^{-1} w_{x}+S_{12}^{-1} w_{y}=w_{x} \cos \alpha_{1}+w_{y} \sin \alpha_{1} \\
& \zeta_{2}=S_{11}^{-1} w_{x}+S_{22}^{-1} w_{y}=w_{x} \cos \alpha_{2}+w_{y} \sin \alpha_{2}
\end{aligned}
$$

These angles are given by from the eigenvectors by

$$
\tan \alpha_{1}=\frac{1-\sqrt{1+\varepsilon^{2}}}{\varepsilon} \quad \tan \alpha_{2}=\frac{1+\sqrt{1+\varepsilon^{2}}}{\varepsilon}
$$

The following is a plot of the angles, for $\kappa=0.05$, as a function of $\delta \mathrm{Q}$:

The tune split between the two normal modes is

$$
Q_{1}-Q_{2}=\frac{1}{2 \pi} \sqrt{\kappa^{2}+(2 \pi \delta Q)^{2}}
$$

The minimum tune split, on the difference resonance at $\delta Q=0$, is

$$
\left(Q_{2}-Q_{1}\right)_{\min }=\frac{\kappa}{2 \pi}=\frac{\sqrt{\beta_{x} \beta_{y}}}{2 \pi \tilde{f}}
$$

Example: 1 mrad rotation of CESR permanent magnet quadrupole: focal length $0.8 \mathrm{~m}: 1 \mathrm{mrad}$ roll $\Rightarrow \tilde{f}=0.8 / 0.002=400 \mathrm{~m} . \beta_{\mathrm{x}}=10$

$$
\mathrm{m}, \beta_{\mathrm{y}}=84 \mathrm{~m} . \text { Then }
$$

$$
\Delta Q_{\min }=\frac{\sqrt{84 \times 10}}{2 \pi \times 400}=0.011
$$

Left: $\delta \mathrm{Q}<0$. Right: on resonance (for $\delta Q \leq 0$).

Emittance exchange:

The amplitude of the motion in the x and y planes oscillates: The transformation from w to ζ is given by $\vec{w}=\mathbf{S} \vec{\zeta}$. In terms of the angles α_{1} and α_{2} defined above,

$$
\begin{aligned}
\mathbf{S} & =\operatorname{sgn} \varepsilon\left(\begin{array}{cc}
-\sin \alpha_{2} & \sin \alpha_{1} \\
\cos \alpha_{2} & -\cos \alpha_{1}
\end{array}\right) \\
r_{x}^{2} & =\left|w_{x}\right|^{2}=\left|-\sin \alpha_{2} \zeta_{1}+\sin \alpha_{1} \zeta_{2}\right|^{2} \\
r_{y}^{2} & =\left|w_{y}\right|^{2}=\left|\cos \alpha_{2} \zeta_{1}-\cos \alpha_{1} \zeta_{2}\right|^{2}
\end{aligned}
$$

Using $\zeta_{i}(n)=\zeta_{i 0} \exp \left(\mp i \pi \delta Q \sqrt{1+\varepsilon^{2}} n\right)$, (i=1,2), and simplifying to the case of real $\zeta_{i 0}$, we have

$$
\begin{aligned}
& r_{x}^{2}=\zeta_{20}^{2} \sin ^{2} \alpha_{1}+\zeta_{10}^{2} \sin ^{2} \alpha_{2} \\
& -2 \zeta_{10} \zeta_{20} \sin \alpha_{1} \sin \alpha_{2} \cos \left(2 \pi \delta Q \sqrt{1+\varepsilon^{2}} n\right) \\
& r_{y}^{2}=\zeta_{20}^{2} \cos ^{2} \alpha_{1}+\zeta_{10}^{2} \cos ^{2} \alpha_{2} \\
& -2 \zeta_{10} \zeta_{20} \cos \alpha_{1} \cos \alpha_{2} \cos \left(2 \pi \delta Q \sqrt{1+\varepsilon^{2}} n\right)
\end{aligned}
$$

So that the amplitude squared is modulated with a period of $n_{\kappa}=\frac{1}{\delta Q \sqrt{1+\varepsilon^{2}}} \approx \frac{2 \pi}{\kappa}$ near the resonance. This corresponds to about 100 turns in our previous example.

Thus, x -amplitude appears as y -motion; the peak value of the y emittance is

$$
\frac{\varepsilon_{y}}{\varepsilon_{x}}=\frac{r_{y}^{2}}{w_{x 0}^{2}}=\frac{\varepsilon^{2}}{1+\varepsilon^{2}}=\frac{\kappa^{2}}{\kappa^{2}+(2 \pi \delta Q)^{2}}
$$

For example, with $\kappa=0.05$, and $\delta \mathrm{Q}=0.003$, we have

$$
\frac{\varepsilon_{y}}{\varepsilon_{x}} \approx 0.066
$$

This would be unacceptably large for an electron-positron collider operating with flat beams.

Sum resonances

Returning to our trig expansion

$$
\sin \phi_{x} \cos \phi_{y}=\frac{1}{2}\left[\sin \left(\phi_{x}-\phi_{y}\right)+\sin \left(\phi_{x}+\phi_{y}\right)\right]
$$

If $Q_{x} \approx m-Q_{y}$, then the second term is slowly varying and can drive resonant coupling. This condition is referred to as the sum resonance. In this case, we can drop the first term, which will be rapidly varying, and the coupled equations of motion become

$$
\begin{aligned}
& \frac{1}{r_{y}} \frac{d r_{x}}{d n}=\frac{1}{r_{x}} \frac{d r_{y}}{d n} \Rightarrow \frac{d r_{x}^{2}}{d n}-\frac{d r_{y}^{2}}{d n}=0 \\
& r_{x}^{2}-r_{y}^{2}=a_{x}^{2}-a_{y}^{2}=\text { constant }
\end{aligned}
$$

In this case, the amplitude of the motion is unbounded, as both r_{x} and r_{y} may grow, provided their difference is bounded. Unstable motion can result from a sum resonance. A complete analysis shows that one of the eigenmodes will have an n dependence of the form

$$
\exp \left(-i \pi n \sqrt{(\delta Q)^{2}-\left(\frac{\kappa}{2 \pi}\right)^{2}}\right)
$$

$$
\begin{aligned}
& \frac{d r_{x}}{d n}=-\frac{r_{y}}{2} \kappa \sin \left(\phi_{x}+\phi_{y}\right) \\
& \frac{d r_{y}}{d n}=-\frac{r_{x}}{2} \kappa \sin \left(\phi_{x}+\phi_{y}\right) \\
& \frac{d \phi_{x}}{d n}=2 \pi Q_{x}-\frac{r_{y}}{2 r_{x}} \kappa \cos \left(\phi_{x}+\phi_{y}\right) \\
& \frac{d \phi_{y}}{d n}=2 \pi Q_{y}-\frac{r_{x}}{2 r_{y}} \kappa \cos \left(\phi_{x}+\phi_{y}\right)
\end{aligned}
$$

Combining the first two equations gives
with $\delta Q=m-\left(Q_{x}+Q_{y}\right)$. If $\delta Q<\frac{\kappa}{2 \pi}$, this gives exponential growth, independent of the initial amplitude: all particles are unstable. This is the stopband width of the linear sum resonance.

