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LECTURE 15

Non-linear transverse motion

Phase-amplitude variables

Second –order (quadrupole-driven) linear resonances

Third-order (sextupole-driven) non-linear resonances
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Phase-amplitude variables

Although the perturbation approach discussed in the previous
lecture allows a general discussion of the conditions for resonance,
to analyze the motion in phase space near a resonance in detail, we

have to go back to the full equation of motion:

Lecture 16, p. 16:
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To solve this equation, we have to make two more changes of the
phase space variables. The phase space variables associated with

the Floquet coordinates are (ξ ξ
,

˙

Q
). For purely linear motion, the

phase space is a circle:

ξ

ξ̇
Q

a
ψ-Q

We will change to polar co-ordinates (r,φ) in phase space, where
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These are sometimes called “phase-amplitude” variables, because
for purely linear motion

r a=
the invariant amplitude of the motion, and
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 the betatron phase.
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r

−φ

ξ̇
Q

ξ

A particle executing purely linear motion has constant r, and
φ advances by 2πQ every revolution. The conversion from (r,φ) to

Floquet coordinates is

ξ φ ξ φ= = −r Qrcos    ˙ sin  

We will now proceed to transform the equation of motion into
phase-amplitude variables. Then we will identify the resonance
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driving terms, and ignore all other terms. When we are done, we
will have an equation that we can integrate to get the trajectories in
phase space.

For the radial coordinate, we have
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Eliminating the Floquet coordinates gives
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We’ll now specialize to a particular type of field error.
We’ll start with quadrupole errors, for which the motion remains
linear.
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Second-order (quadrupole-driven) resonances

A quadrupole-driven resonance corresponds to n=1. The
equations of motion are
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For a single resonance, only one value of m will be important.
For that value of m, we have
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Combining the positive and negative values of m gives
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These are the harmonic coefficients that will drive the
resonance. The equations of motion become
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We expand out the trig functions:
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Recall that a quadrupole can only drive a second order
resonance: this is reflected in the term with argument
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, which drives the second order resonance
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2

. (The terms with arguments 2φ ψ+ m  do not drive any

resonances, since Q is always positive: they correspond to rapidly
oscillating terms that may be neglected).
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A similar treatment of the equation for φ gives
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The terms with cosmψ and sinmψ will oscillate rapidly, and can be

neglected. The m=0 term corresponds to the quadrupole-induced
tune shift:
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The tune shift is
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which we can recognize from our previous work (Lecture 8, p
19)

We need to make one more manipulation: we can simplify the
arguments of the trig functions by introducing the angle

′ = −φ φ ψm
2

Then the two equations for phase and amplitude become
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Combining these equations gives us a differential equation for the
phase space trajectories, that is, an equation for r as a function of

′φ
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This equation can be integrated relatively easily. The result is
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where a is a constant of integration; it can be interpreted as the
value of r2 far from the resonance, when the denominator of the

resonant term Q Q
m+ −∆
2

 is large.

To understand this result, we simplify it by taking Bm1=0, and m=1.

Then, if we let δQ Q Q
m= + −∆
2

,

r
a

A
Q

m

2
2

11
4

2
=

+ −( )
πδ

φ ψcos

This is a family of ellipses in Floquet coordinate phase space, for
various values of a. Let’s plot some of these, for δQ=0.001,
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Am2=0.02, and for a ranging from 0.5 to 3.5. The left figure is for
ψ=0, the right for ψ=π/4.
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All the phase space trajectories are elliptical, even for the smallest
value of a. The elliptical shape reflects the fact that a quadrupole
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perturbation changes the lattice functions, and hence changes the
Floquet transformation. We could restore the circular shapes in
phase space if we redid the Floquet transformation, but used the
new values of the lattice functions, after the introduction of the

quadrupole errors.

This motion is linear and stable for all amplitudes. However, if we
inspect the equation for the phase spaces ellipses, we see that, for a

physical solution valid for all φ, we must have
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This is the second-order resonance stopband width.

Note: if we had not assumed Bm1=0, we would have found for the
stopband width

δ
π

Q
A Bm m≥

+1
2

1
2

4

If the tune shift is larger than this value, then the motion is unstable
for all amplitudes: The next two figures show the phase space just
outside the stopband (bounded (stable) motion, left figure) and just

inside the stopband (unbounded (unstable) motion, right figure).
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Third-order (sextupole-driven) resonances

A sextupole-driven resonance corresponds to n=2. The
equations of motion are
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For a single resonance, only one value of m will be important.
For that value of m, we have
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Combining the positive and negative values of m gives
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These are the harmonic coefficients that will drive the
resonance. The equations of motion become
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We expand out the trig functions:
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The various terms in the expansion correspond to different
resonance orders. Recall that a sextupole can drive first order or
third order resonances: this is reflected in the term with argument

3 3
3

φ ψ ψ− ≈ −



m Q

m
, which drives the third order resonance at

Q
m≈
3

, and the term with argument φ ψ ψ− ≈ −( )m Q m , which

drives the first order resonance at Q m≈ . (The terms with
arguments 3φ ψ φ ψ+ +m m and   do not drive any resonances,
since Q is always positive: they correspond to rapidly oscillating
terms that may be neglected).

Since we are only interested in the terms that drive the third
order resonance, we have
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A similar treatment of the equation for φ gives
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As before, we simplify the arguments of the trig functions by
introducing the angle

′ = −φ φ ψm
3

Then the two equations for phase and amplitude become
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Combining these equations gives us a differential equation for the
phase space trajectories, that is, an equation for r as a function of

′φ
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This equation can be integrated! The result gives the phase space
trajectories in the vicinity of a third-order resonance:
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where a is a constant of integration; it can be interpreted as the
value of the invariant far from the resonance, when the

denominator of the resonant term Q
m−
3

 is large. To understand

this result, we simplify it by taking Bm2=0, and look at the point in

the ring where ψ=0. Then, if we let δQ Q
m= −
3

,
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a r r
A

Q
m2 2 3 2 3
12

= + cos φ
πδ

This is a family of curves in Floquet coordinate phase space, for
various values of a. Let’s plot some of these, for δQ=0.001,

Am2=0.004, and for a ranging from 0.5 to 3.9
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The circular trajectories in the center correspond to linear motion
with small a. As the amplitude of the motion a increases, the

trajectories distort from circular into triangular shapes,
characteristic of a third-order resonance. The separatrix, the
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boundary of stable motion, is the heavy triangular line. Motion
within the separatrix is stable. Just outside the separatrix, the

motion tends to be chaotic: that is, small changes in the initial
conditions for the motion can lead to large changes after many

turns. Numerical turn-by turn simulation of motion near the third-
order resonance:
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The corners of the triangle are the three fixed points.

r

rsep

φ

The radial distance rsep to the separatrix is a measure of the
maximum amplitude of stable motion. From geometry, on the

vertical separatrix, we have
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r
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A
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, where asep is the value of a

corresponding to the separatrix. So,
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Equating the coefficients of cos φ and cos 3φ gives

a
Q

Asep
m

= 8
3 2

πδ

Since a2 corresponds to the emittance of the particle, we have an
expression for the third-order resonance width for a particle of

emittance ε:
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Note: we ignored the Bm2 coefficient, for simplicity. Including this
coefficient, the resonance width is given by

2 3
4
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2
δ ε

π
Q

A Bm m=
+

.

The resonance widths may be controlled through the azimuthal
distribution of the sextupoles. With two families of sextupoles at
appropriate locations, both the Am2 and Bm2 coefficients may be

minimized.

Example:
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500 m model accelerator, with FODO lattice. From Lecture 8, p
37, we saw that we could compensate the natural chromaticity by
placing two sextupoles in the lattice: a sextupole of strength mD=-

105 m-3 at any D quad, where βx,D = 4.8 m,  and a sextupole of

strength mF = 59 m-3 at the adjacent F quad, where βx,F = 16.8 m.

What is the third-order resonance width produced by these
sextupoles, for a beam of emittance ε=10-6 m-rad?

The sextupoles had length Ls = 0.1 m. Using m
B

B
= ′′

0ρ
, the

resonance width in the x-plane is

2
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
, , cos
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 where µ=1.178 is the phase advance per cell.

Plugging in the numbers gives 2 0 029δQx = . .

Note: this is an underestimate, since we have ignored the Bm2

coefficient.

As for the second order resonance, the orientation of the phase
space orbits for a third order resonance in Floquet coordinates
depends on the azimuthal location at which the particles are
observed. The following figure shows phase space at ψ=π/4

instead of ψ=0.
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In resonant extraction, the region of stable phase space is
gradually driven to zero, typically by increasing the strength of the

nonlinear fields driving the resonance. This causes all particles
eventually to flow along the separatrices. A magnetic or
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electrostatic septum is placed at an appropriate azimuth to intercept
the particles flowing along the separatrix, and they are diverted

into a magnetic extraction channel.


