LECTURE 14

Non-linear transverse motion

Floquet transformation
Harmonic analysis-one dimensional resonances
Two-dimensional resonances

Non-linear terms can arise in the trajectory equations from a variety of sources:

- Sextupoles introduced to control the chromaticity.
- Errors in dipole and quadrupole magnets
- Higher multipole fields (e.g., octupoles), that, like the sextupoles, are introduced into the machine to control certain machine parameters.

$$
\text { in which } z=x \text { or } y \text {. }
$$

Non-linear transverse motion

Non-linear field terms in the trajectory equation:
Trajectory equation from Lecture 3, p 7, keeping only lowest order terms in the field errors ΔB :

$$
z^{\prime \prime}+K(s) z=-\frac{\Delta B(x, y, s)}{B_{0} \rho}
$$

Nonlinear driving terms on the right-hand side can drive resonances in the transverse plane, leading to chaotic and ultimately unstable motion.

- Coherent fields produced by the beam itself, such as space charge
- The beam-beam interaction, which, for a colliding beam machine, is usually the dominant source of nonlinear fields

Nonlinear fields are often deliberately introduced in order to manipulate the beam in transverse phase space: the most common example of this is resonant extraction, a technique used to extract the beam slowly from an accelerator.

Floquet transformation

The sensitivity of the beam to a nonlinear resonance depends on the magnitude and azimuthal distribution of the nonlinear fields that drive the resonance, the emittance of the beam, and the exact value of the fractional part of the tune.

In order to understand this quantitatively, we will solve the differential equation of motion with the nonlinear terms, using a perturbation method. To simplify the solution, we first make a change of variables.

$$
\xi=\frac{z}{\sqrt{\beta}} \text { and } \psi=\frac{\Phi(s)}{Q}=\frac{1}{Q} \int \frac{d s}{\beta}
$$

Interpretation of the Floquet coordinates (ξ, ψ):
For $\Delta B=0$, the solution to the trajectory equations is

$$
\begin{aligned}
& z=a \sqrt{\beta} \cos (\Phi(s)+\phi) \\
& z^{\prime}=-\frac{a}{\sqrt{\beta}}(\alpha \cos (\Phi(s)+\phi)+\sin (\Phi(s)+\phi))
\end{aligned}
$$

The invariant is
$a^{2}=\xi^{2}+\left(\frac{\dot{\xi}}{Q}\right)^{2}$
which corresponds to a circle in $\left(\xi, \frac{\dot{\xi}}{Q}\right)$ phase space, for all s.

$$
\mathbf{M}=\left(\begin{array}{cc}
\cos 2 \pi Q & \frac{\sin 2 \pi Q}{Q} \\
-Q \sin 2 \pi Q & \cos 2 \pi Q
\end{array}\right)
$$

If I know the coordinates $\xi, \dot{\xi}$, then the real space coordinates can be obtained from

$$
\begin{gathered}
z=\xi \sqrt{\beta} \\
z^{\prime}=\frac{d}{d s}(\xi \sqrt{\beta})=\sqrt{\beta} \frac{d \xi}{d s}-\xi \frac{\alpha}{\sqrt{\beta}} \\
=\sqrt{\beta} \frac{d \xi}{d \psi} \frac{d \psi}{d s}-\xi \frac{\alpha}{\sqrt{\beta}}=\frac{1}{Q \sqrt{\beta}}(\dot{\xi}-\alpha Q \xi)
\end{gathered}
$$

$$
z^{\prime \prime}=\frac{\ddot{\xi}-Q^{2} \xi\left(\alpha^{2}+\beta \alpha^{\prime}\right)}{Q^{2} \beta^{3 / 2}}
$$

Then the trajectory equation is

$$
z^{\prime \prime}+K z=\frac{\ddot{\xi}-Q^{2} \xi\left(\alpha^{2}+\beta \alpha^{\prime}-K \beta^{2}\right)}{Q^{2} \beta^{3 / 2}}=-\frac{\Delta B(x, y, s)}{B_{0} \rho}
$$

Recall: Lecture 5, p 22: in the derivation of Hill's equation, we found a differential equation for $\sqrt{\beta}$:
oscillations can be very large: this is a resonance. The resonance condition in this case is $Q= \pm \nu$.

This is the basic idea behind non-linear resonances in accelerators. Since the structure of the driving term is a more complex than a single harmonic function, a bit more analysis is required to get the details right.

Harmonic Analysis

Return to the trajectory equation in Floquet coordinates:

$$
\ddot{\xi}+Q^{2} \xi=-Q^{2} \beta^{3 / 2} \frac{\Delta B}{B_{0} \rho}
$$

Let us consider x motion, and a general nonlinear field of the form

$$
\Delta B(x, s)=b_{n}(s) x^{n}
$$

where b_{n} represents some field derivative: e.g, for $n=2$ (a sextupole field), $b_{2}=\frac{B^{\prime \prime}}{2}$. If we plug this in to the driving term in the trajectory equation, that term becomes

$$
-Q^{2} \beta^{3 / 2} \frac{b_{n} x^{n}}{B_{0} \rho}
$$

Unfortunately, we don't know x, since that's what we're solving for. To go further, we make the approximation that the driving term is a small correction (a perturbation) to the motion, so we can approximate $x=\xi \sqrt{\beta}$ by using the linear motion result $\xi(\psi)=a \cos Q \psi$. Then, we have for the driving term, written as a function of ψ,

1. A single field error at location s_{0}, of length L. We can choose Φ to be zero at this point: then

$$
C_{m, n}=\frac{1}{2 \pi Q} \beta\left(s_{0}\right)^{(1+n) / 2} \frac{b_{n}\left(s_{0}\right) L}{B_{0} \rho}
$$

is independent of m : all values of m are present in the Fourier spectrum.
2. A machine with superperiodicity N : The lattice functions and the field errors are periodic in s with period $\frac{C}{N}$, where C is the circumference. For example, a machine made entirely of N FODO cells has superperiodicity N. In this case,
$C_{m, n}=\left\{\frac{N}{2 \pi Q} \int_{0}^{\frac{C}{N}} d s^{\prime} \beta\left(s^{\prime}\right)^{(1+n)} / 2 \frac{b_{n}\left(s^{\prime}\right)}{B_{0} \rho} \exp \left[-i m \frac{\Phi\left(s^{\prime}\right)}{Q}\right]\right.$ for $\left.m=j N\right\}$ where j is any integer.
The Fourier coefficients are non-zero only for

$$
m=0, \pm N, \pm 2 N, \pm 3 N, \ldots
$$

Actual machines typically have low values of the superperiodicity, e.g, 1 (no symmetry), 2 (half-ring symmetry), 6 (six-fold symmetry), etc. A high value of N is very desirable, because of the elimination of many of the resonance-driving Fourier coefficients.

The value of $|1-k|$ is called the order of the resonance.
We can make the following table, which covers resonances due to dipole, quadrupole, sextupole and octupole field errors:

Field error type	n	k	$\begin{aligned} & \text { Order } \\ & \|1-k\| \end{aligned}$	Resonant values of the tune $\begin{aligned} & Q_{\text {res }}=\frac{m}{1-k}, \\ & m=0,1,2, \ldots \end{aligned}$
dipole	0	0	1	$m: 1,2,3,4, \ldots$
quadrupole	1	1	0	tune shift: $m=0$
quadrupole	1	-1	2	$\frac{m}{2}: \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$

sextupole	2	2	1	$m: 1,2,3,4, \ldots$
sextupole	2	0	1	$m: 1,2,3,4, \ldots$
sextupole	2	-2	3	$\frac{m}{3}: \frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \ldots$
octupole	3	3	2	$\frac{m}{2}: \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$
octupole	3	1	0	tune spread: $m=0$
octupole	3	-1	2	$\frac{m}{2}: \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$
octupole	3	-3	4	$\frac{m}{4}: \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \ldots$

Example: CESR, with $Q_{y}=9.588$. The operating tune lies between the second order resonance at $9.5=19 / 2(m=19, k=-1)$, and the third order resonance at $9.667=29 / 3(m=29, k=-2)$. The second order resonance will be driven by the term

$$
-\left(\frac{a}{2}\right) \frac{Q}{2 \pi} \int_{0}^{C} d s^{\prime} \beta\left(s^{\prime}\right) \frac{b_{1}\left(s^{\prime}\right)}{B_{0} \rho} \cos \left[\Phi(s)-2 \Phi\left(s^{\prime}\right)\right]
$$

The third order resonance will be driven by

$$
-\left(\frac{a}{2}\right)^{2} \frac{Q}{2 \pi} \int_{0}^{C} d s^{\prime} \beta\left(s^{\prime}\right)^{3 / 2} \frac{b_{2}\left(s^{\prime}\right)}{B_{0} \rho} \cos \left[\Phi(s)-3 \Phi\left(s^{\prime}\right)\right]
$$

Since CESR has approximate superperiodicity 2 , both of these driving terms, having m odd, are suppressed by the ring symmetry.

Hence, any breaking of that symmetry by a field error will tend to strength these two nearby resonances.

Two-dimensional resonances

When we consider both transverse planes together, not only do we have possible resonances in both planes, but we also have the possibility of coupling the motion from one plane into the other. The general resonance conditions, including both planes together,
can be written as

$$
k_{x} Q_{x}+k_{y} Q_{y}=m
$$

Example: third order resonances

$$
\begin{array}{lc}
3 Q_{x}=m & \\
2 Q_{x}+Q_{y}=m & 2 Q_{x}-Q_{y}=m \\
Q_{x}+2 Q_{y}=m & Q_{x}-2 Q_{y}=m \\
3 Q_{y}=m &
\end{array}
$$

To keep track of all this, we usually use a graphical tool called a working diagram. This is a two dimensional plot of the vertical and horizontal tunes (the tune plane). Lines are drawn on this plot corresponding to the values of the tunes that satisfy the resonance conditions. One then plots the design machine tune on this diagram, and can immediately see how close the operating point is to resonance conditions.

First and second order resonance lines

Resonance lines to 7th order; CESR tunes are shown as a dot

