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LECTURE 14

Non-linear transverse motion

Floquet transformation

Harmonic analysis-one dimensional resonances

Two-dimensional resonances
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Non-linear transverse motion

Non-linear field terms in the trajectory equation:

Trajectory equation from Lecture 3, p 7, keeping only lowest order
terms in the field errors ∆B:

′′ + = −z K s z
B x y s

B
( )

( , , )∆
0ρ

in which z= x or y.

Nonlinear driving terms on the right-hand side can drive
resonances in the transverse plane, leading to chaotic and

ultimately unstable motion.
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Non-linear terms can arise in the trajectory equations from a
variety of sources:

•  Sextupoles introduced to control the chromaticity.

•  Errors in dipole and quadrupole magnets

•  Higher multipole fields (e.g., octupoles), that, like the sextupoles,
are introduced into the machine to control certain machine

parameters.
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•  Coherent fields produced by the beam itself, such as space
charge

•  The beam-beam interaction, which, for a colliding beam
machine, is usually the dominant source of nonlinear fields

Nonlinear fields are often deliberately introduced in order to
manipulate the beam in transverse phase space: the most common
example of this is resonant extraction, a technique used to extract

the beam slowly from an accelerator.
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The sensitivity of the beam to a nonlinear resonance depends
on the magnitude and azimuthal distribution of the nonlinear
fields that drive the resonance, the emittance of the beam, and

the exact value of the fractional part of the tune.

In order to understand this quantitatively, we will solve the
differential equation of motion with the nonlinear terms, using a
perturbation method. To simplify the solution, we first make a

change of variables.
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Floquet transformation

The general trajectory equation of motion is

d z

ds
K s z

B x y s
B

2

2
0

+ = −( )
( , , )∆

ρ

in which z stands for x or y, and ∆B is a general nonlinear field.

We want to make a change of variables: from (z,s) to (ξ,ψ), where,
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ξ
β

ψ
β

= = = ∫
z s

Q Q
ds

   
( )

and
Φ 1

Interpretation of the Floquet coordinates (ξ,ψ):

For ∆B=0, the solution to the trajectory equations is

z a s

z
a

s s

= +( )

′ = − +( ) + +( )( )

β φ

β
α φ φ

cos ( )

cos ( ) sin ( )

Φ

Φ Φ
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and the Courant-Snyder invariant is

a z zz z2 2 22= + ′ + ′γ α β

which corresponds to an ellipse in (z z, ′ ) phase space, with a shape
and orientation which is a function of s.

In terms of Floquet coordinates:

ξ ψ
β

ψ φ( )  cos= = +( )z
a Q

˙ sinξ ξ
ψ

ψ φ= = − +( )d
d

Qa Q
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The invariant is

a
Q

2 2
2

= +






ξ ξ̇

which corresponds to a circle in (ξ ξ
,

˙

Q
) phase space, for all s.

ξ

ξ̇
Q

a
ψ-Q
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In one turn, ψ advances by 2π, and the particle travels around the

circle Q times per revolution.

The cosinelike and sinelike trajectories are very simple in these
coordinates:

C Q S
Q

Q

C Q Q S Q

( , ) cos    ( , )
sin

( , ) sin    ( , ) cos

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

0 0 0
0

0 0 0 0

= −( ) =
−( )

′ = − −( ) ′ = −( )

The one-turn matrix for these coordinates is the same everywhere
in the machine, and is given by
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M =
−











cos
sin

sin cos

2
2

2 2

π π

π π

Q
Q

Q
Q Q Q

If I know the coordinates ξ ξ, ˙, then the real space coordinates can
be obtained from

z = ξ β

′ = ( ) = −

= − = −( )

z
d
ds

d
ds

d
d

d
ds Q

Q

ξ β β ξ ξ α
β

β ξ
ψ

ψ ξ α
β β

ξ α ξ1 ˙
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The purpose of introducing these coordinates is that the linear,
unperturbed motion is very simple in these coordinates.

When we introduce perturbations, they will deform the motion
from that of a circle. To see how this happens, we must rewrite the

general trajectory equation of motion in terms of the Floquet
coordinates.

Differentiate ′z  given above and simplify:
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′′ =
− + ′( )

z
Q

Q

˙̇ξ ξ α βα

β

2 2

2 3
2

Then the trajectory equation is

′′ + =
− + ′ −( )

= −z Kz
Q K

Q

B x y s
B

˙̇ ( , , )ξ ξ α βα β

β ρ

2 2 2

2 3
2 0

∆

Recall: Lecture 5, p 22: in the derivation of Hill’s equation, we
found a differential equation for β :
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1
03β β

β
( )

+ +( )′′ =K

This can be expanded to

2 4 1 0

1

2 2

2 2

ββ β β

βα α β

′′ − ′ + −( ) = ⇒

′ + = −

K

K

So the trajectory equation simplifies to

˙̇ξ ξ β
ρ

+ = −Q Q
B

B
2 2 3

2

0

∆

as we would expect, since we know the solution, for ∆B=0, is

ξ ψ ψ φ( ) cos= +( )a Q
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This is the equation of a driven oscillator.

For a general driving force of the form A iexp νψ[ ]
˙̇ expξ ξ νψ+ = [ ]Q A i2

the inhomogeneous solution to this equation has the form

ξ ψ νψ( ) exp= [ ]a i

Substituting this in the driven oscillator equation, we have

− [ ] + [ ] = [ ] ⇒

=
−

a i Q a i A i

a
A

Q

ν νψ νψ νψ

ν

2 2

2 2

exp exp exp

If the frequency of the driving force is very close to the natural
frequency Q of the oscillator, the amplitude a of the driven
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oscillations can be very large: this is a resonance. The
resonance condition in this case is Q = ±ν .

This is the basic idea behind non-linear resonances in accelerators.
Since the structure of the driving term is a more complex than a
single harmonic function, a bit more analysis is required to get

the details right.

 Harmonic Analysis

Return to the trajectory equation in Floquet coordinates:

˙̇ξ ξ β
ρ

+ = −Q Q
B

B
2 2 3

2

0

∆

Let us consider x motion, and a general nonlinear field of the form

∆B x s b s xn
n( , ) ( )=
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where bn represents some field derivative: e.g, for n=2 ( a

sextupole field), b
B

2 2
= ′′

.  If we plug this in to the driving term in

the trajectory equation, that term becomes

−Q
b x
B
n

n
2 3

2

0
β

ρ

Unfortunately, we don’t know x, since that’s what we’re solving
for. To go further, we make the approximation that the driving

term is a small correction (a perturbation) to the motion, so we can
approximatex = ξ β  by using the linear motion result

ξ ψ ψ( ) cos= a Q . Then, we have for the driving term, written as a
function of ψ,
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− ( )( ) ( )( )





+( )
Q s

b s

B
a Q

n
n n n2

3
2

0
β ψ ψ

ρ
ψcos

The quantity in brackets is a periodic function of s with period C,
which means it is a periodic function of ψ with period 2π. So, it

can be expressed as a Fourier expansion

β ψ ψ
ρ

ψs
b s

B
C im

n
n

m n
m

( )( ) ( )( ) = [ ]
+( )

=−∞

∞
∑

3
2

0
, exp

where
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C d s
b s

B
im

d
ds

ds s
b s

B
im

Q
ds s

b

m n

n
n

n
n

C

n

, exp

exp

= ′ ′( )( ) ′( )( ) − ′[ ]

= ′
′

′ ′( )( ) ′( )( ) − ′[ ]

= ′ ′( )

+( )

+( )

+( )

∫

∫

1
2

1
2

1
2

3
2

00

2

3
2

00

1
2

π
ψ β ψ ψ

ρ
ψ

π
ψ β ψ ψ

ρ
ψ

π
β

π

nn
C s

B
im

s
Q

′( ) − ′



∫

00 ρ
exp

( )Φ

is the mth azimuthal Fourier coefficient for the field error bn(s).
The Fourier coefficients describe how the field error (weighted by

the appropriate power of β and phase advance) is distributed

around the ring.

Examples:
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1. A single field error at location s0, of length L. We can choose Φ
to be zero at this point: then

C
Q

s
b s L

Bm n

n
n

, = ( ) ( )+( )1
2 0

1
2 0

0π
β

ρ

is independent of m: all values of m are present in the Fourier
spectrum.

2. A machine with superperiodicity N: The lattice functions and

the field errors are periodic in s with period 
C
N

, where C is the

circumference.  For example, a machine made entirely of N FODO
cells has superperiodicity N.  In this case,
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C
N
Q

ds s
b s
B

im
s

Q
m jN

m jN

m n

n
n

C

N

, exp
( )

  

     

= ′ ′( ) ′( ) − ′





=

≠

















+( )
∫2

0

1
2

00π
β

ρ
Φ

for

for

where j is any integer.

The Fourier coefficients are non-zero only for
m N N N= ± ± ±0 2 3, , , ,...

Actual machines typically have low values of the superperiodicity,
e.g, 1 (no symmetry), 2 (half-ring symmetry), 6 (six-fold

symmetry), etc. A high value of N is very desirable, because of the
elimination of many of the resonance-driving Fourier coefficients.
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The driving term can now be written as

− [ ]
=−∞

∞
∑Q C im a Qm n

m

n n2
, exp cosψ ψ

We want to get this in the form of a series of exponentials. We use
the identity

cos expn
n

k n
k

n
Q

n
n k ikQψ ψ= −







( )

=−
=

∑1

2 2
2∆

where 
n

m
n

m n m






=
−( )
!

! !
is the binomial coefficient. Then the

driving term has the form
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− 





−






+( )[ ]

=−
=

=−∞

∞
∑ ∑Q

a n
n k C i m Qk

n

k n
k

n

m n
m

2

2

2 2
∆

, exp ψ

This is a sum of terms, each of which has the form of an
exponential driving term. For each term in the sum, there is a

possible resonance condition, given by

Q m Qk

Q k m m n k n k

= ± +( ) ⇒
( ) = ± − ∞ ≤ ≤ ∞ − ≤ ≤ =1 2m ,  , ,∆

For a particular resonance, associated with the pair of integers
(m,k), the driving term’s strength is proportional to

−





−






′ ′( ) ′( ) − − ′[ ]

+( )
∫

a n
n k Q

ds s
b s
B

s k s
n n

n
C

2 2 2
1

1
2

00π
β

ρ
cos ( ) ( ) ( )Φ Φ
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The value of 1− k  is called the order of the resonance.

We can make the following table, which covers resonances due to
dipole, quadrupole, sextupole and octupole field errors:

Field error
type

n k Order

1− k

Resonant values of the tune

Q
m

k
m

res =
−

=
1

0 1 2

,

, , ,...

dipole 0 0 1 m:   , , , ,...1 2 3 4

quadrupole 1 1 0 tune shift: m=0

quadrupole 1 -1 2 m
2

1
2

1
3
2

2
5
2

: , , , , ,...
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sextupole 2 2 1 m:   , , , ,...1 2 3 4

sextupole 2 0 1 m:   , , , ,...1 2 3 4

sextupole 2 -2 3 m
3

1
3

2
3

1
4
3

: , , , ,...

octupole 3 3 2 m
2

1
2

1
3
2

2
5
2

: , , , , ,...

octupole 3 1 0 tune spread: m=0

octupole 3 -1 2 m
2

1
2

1
3
2

2
5
2

: , , , , ,...

octupole 3 -3 4 m
4

1
4

1
2

3
4

1
5
4

: , , , , ,...
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Example: CESR, with Qy=9.588. The operating tune lies between
the second order resonance at 9.5=19/2 (m=19, k=-1), and the third

order resonance at 9.667=29/3 (m=29, k=-2). The second order
resonance will be driven by the term

−



 ′ ′( ) ′( ) − ′[ ]∫

a Q
ds s

b s
B

s s
C

2 2
21

00π
β

ρ
cos ( ) ( )Φ Φ

The third order resonance will be driven by

−



 ′ ′( ) ′( ) − ′[ ]∫

a Q
ds s

b s
B

s s
C

2 2
3

2 3
2 2

00π
β

ρ
cos ( ) ( )Φ Φ

Since CESR has approximate superperiodicity 2, both of these
driving terms, having m odd, are suppressed by the ring symmetry.
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Hence, any breaking of that symmetry by a field error will tend to
strength these two nearby resonances.

Two-dimensional resonances

When we consider both transverse planes together, not only do we
have possible resonances in both planes, but we also have the

possibility of coupling the motion from one plane into the other.
The general resonance conditions, including both planes together,

can be written as

k Q k Q mx x y y+ =

11/26/01 USPAS Lecture 14 28

Here k kx y  and  are integers; the order of the resonance is

k kx y+ . m  is a positive integer, related to the Fourier harmonic of

the errors, as in 1 dimension. If either k kx y  or  is zero, we have a
one-dimensional resonance. If k kx y  and  both have the same sign,
the resonance is called a sum resonance. Such resonances are just
as dangerous as one-dimensional resonances, and can cause beam

loss. If k kx y  and  have opposite signs, then the resonance is called
a difference resonance. Difference resonances represent conditions

of energy exchange from one plane to another, and generally do
not lead to beam loss. In electron machines requiring flat beams,
however, these resonances will lead to an increase in the vertical

beam dimension.
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Example: third order resonances

3

2 2

2 2

3

Q m

Q Q m Q Q m

Q Q m Q Q m

Q m

x

x y x y

x y x y

y

=
+ = − =

+ = − =

=

     

       

To keep track of all this, we usually use a graphical tool called a
working diagram. This is a two dimensional plot of the vertical and

horizontal tunes (the tune plane). Lines are drawn on this plot
corresponding to the values of the tunes that satisfy the resonance

conditions. One then plots the design machine tune on this
diagram, and can immediately see how close the operating point is

to resonance conditions.
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Examples: In these figures, red lines are sum resonances; black
lines are difference resonances
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First and second order resonance lines
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First, second and third order resonance lines
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Resonance lines to 7th order; CESR tunes are shown as a dot


