LECTURE 13

Transition Crossing in Proton synchrotrons

Synchrotron radiation: transverse effects

Vertical damping

Horizontal damping and quantum excitation
Equilibrium horizontal emittance

Possible problems which can occur at transition:

- Beam loss at high dispersion points due to the increased energy spread
- Transverse and longitudinal emittance growth due to chromatic nonlinear effects
- Increased susceptibility to various forms of beam instabilities due to loss of phase focusing
- Maintenance of beam loading compensation during the rf phase jump

Synchrotron radiation: transverse effects

In addition to the damping and quantum excitation effects in longitudinal phase space, synchrotron radiation also has important consequences for transverse beam dynamics. These effects are

1. A damping of both horizontal and vertical betatron oscillations.
2. Quantum excitation of horizontal betatron oscillations, leading to an equilibrium rms horizontal emittance.

In the absence of vertical dispersion, there are no quantum excitation effects in the vertical plane. Consequently, the vertical
beam size typically damps to a much smaller value than the equilibrium horizontal beam size. Beams in electron machines are
thus typically "flat", with a very different aspect ratio in the vertical and horizontal directions. The limit to the vertical beam size is typically set by effects like small coupling between the planes, and residual vertical dispersion. The vertical beam dimension is typically 10 percent of the horizontal dimension.

We will find two important results, which can be stated very simply:

1. The sum of the damping rates in all three planes (horizontal, vertical, and longitudinal) is a constant:

$$
\frac{1}{\tau_{\varepsilon}}+\frac{1}{\tau_{x}}+\frac{1}{\tau_{y}}=\frac{2 U_{s}}{E_{s} T_{s}}
$$

This is called Robinson's theorem. Although we will verify this by calculating $\frac{1}{\tau_{x}}$ and $\frac{1}{\tau_{y}}$ individually, and combining with $\frac{1}{\tau_{\varepsilon}}$ from the previous lecture, in fact Robinson's theorem can be proved for a very general case, including arbitrary $x-y$ coupling and vertical dispersion, for arbitrary lattice configurations.
For a separated function lattice, $\tau_{x} \approx \tau_{y}$ and $\tau_{\varepsilon} \approx T_{s} \frac{E_{s}}{U_{s}}$. In this

$$
\text { case, } \tau_{x} \approx \tau_{y} \approx 2 \tau_{\varepsilon}
$$

2. The equilibrium rms horizontal beam size is approximately the square root of the number of photons emitted during one damping time, times the average orbit offset (dispersion times energy offset divided by energy) which would be caused by an energy offset equal to the rms photon energy.
feature of synchrotron radiation, which we have not considered before. This is the fact that the photons that are emitted by an accelerated charged particle are emitted in a cone of half-angle $1 / \gamma$, around the direction of motion of the particle.

We'll start with a description of the vertical synchrotron radiation damping. Suppose that we have a collection of particles in vertical phase space, all having the same value of the vertical emittance, but distributed randomly around the ellipse:

The solution of the trajectory equations for the i th particle is

$$
\begin{aligned}
& y_{i}=a \sqrt{\beta} \cos \left(\Phi(s)+\psi_{i}\right) \\
& y_{i}^{\prime}=-\frac{a}{\sqrt{\beta}}\left(\alpha \cos \left(\Phi(s)+\psi_{i}\right)+\sin \left(\Phi(s)+\psi_{i}\right)\right)
\end{aligned}
$$

Now let each particle radiate a photon of energy u_{i}. The energy of the particle changes according to $\varepsilon_{i} \rightarrow \varepsilon_{i}-u_{i}$. What happens to the position and slope of the trajectory? The answer: nothing, to a very good approximation. Why? The change in energy clearly does not
momentum change is opposite to that of the momentum, the slope of the trajectory also does not change.

However: the energy which is lost must be restored by the rf, on every turn. The electric field in the rf cavity exerts a force on the particle in the s direction, causing a momentum change in that direction. If the particle is undergoing a betatron oscillation, this
momentum change is not parallel to the particle's momentum and does result in a change in the slope.

The change in the slope is given by

$$
y^{\prime}=\frac{p_{y}}{p} ; y^{\prime}+\Delta y^{\prime}=\frac{p_{y}}{p+\Delta p} \approx \frac{p_{y}}{p}\left(1-\frac{\Delta p}{p}\right)
$$

$$
\Delta y^{\prime}=-y^{\prime} \frac{\Delta p}{p} \approx-y^{\prime} \frac{\Delta E}{E}
$$

For the i th particle, the energy change (the energy restored by the rf) is equal to the sum of the energies emitted by all the photons emitted on one turn, which is the total energy loss per turn, U_{s}. Thus, the change in slope at the rf is

$$
\Delta y_{i}^{\prime}=-y_{i}^{\prime} \frac{U_{S}}{E_{s}}
$$

The amplitude of the y-oscillation is given by

$$
a^{2}=\gamma_{i}^{2}+2 \alpha y_{i} y_{i}^{\prime}+\beta y_{i}^{\prime 2}
$$

The change in this amplitude is
$\Delta a^{2}=2 \alpha y_{i} \Delta y_{i}^{\prime}+2 \beta y_{i}^{\prime} \Delta y^{\prime}=-\frac{2 U_{s}}{E_{s}}\left(\alpha y_{i} y_{i}^{\prime}+\beta y_{i}^{2}\right)$
$=-\frac{2 U_{s}}{E_{s}}\binom{-\alpha a^{2} \cos \left(\Phi(s)+\psi_{i}\right)\left(\alpha \cos \left(\Phi(s)+\psi_{i}\right)+\sin \left(\Phi(s)+\psi_{i}\right)\right)}{+a^{2}\left(\alpha \cos \left(\Phi(s)+\psi_{i}\right)+\sin \left(\Phi(s)+\psi_{i}\right)\right)^{2}}$

To get the amplitude change for the whole beam, average over the random phases ψ_{i}. Averages of cosine squared and sine squared become $1 / 2$, while averages of products of sine and cosine are zero. After doing the average, we get

$$
\Delta a^{2}=-\frac{U_{s}}{E_{s}}\left(-\alpha^{2} a^{2}+a^{2}\left(1+\alpha^{2}\right)\right)=-a^{2} \frac{U_{s}}{E_{s}}
$$

This is the change in the amplitude for one turn: so

$$
\frac{d a^{2}}{d t}=-a^{2} \frac{U_{s}}{T_{s} E_{s}}
$$

Since $\left\langle y^{2}\right\rangle=\sigma_{y}^{2}=\frac{a^{2}}{2}$, we have

$$
\begin{aligned}
& \frac{d \sigma_{y}^{2}}{d t}=2 \sigma_{y} \frac{d \sigma_{y}}{d t}=-\sigma_{y}^{2} \frac{U_{s}}{T_{s} E_{s}} \Rightarrow \\
& \frac{d \sigma_{y}}{d t}=-\sigma_{y} \frac{U_{s}}{2 T_{s} E_{s}}=-\frac{\sigma_{y}}{\tau_{y}}
\end{aligned}
$$

So we see the damping time in y is

$$
\tau_{y}=2 T_{s} \frac{E_{s}}{U_{s}}
$$

Horizontal Damping

Horizontal synchrotron radiation damping is a little more complicated. Suppose that we have a collection of particles in horizontal phase space, all having the same value of the horizontal emittance, but distributed randomly around the ellipse.

The solution of the trajectory equations for the i th particle is

$$
\begin{aligned}
& x_{i}=x_{\beta, i}+\eta \frac{\varepsilon_{i}}{E_{s}} \\
& x_{i}^{\prime}=x_{\beta, i}^{\prime}+\eta^{\prime} \frac{\varepsilon_{i}}{E_{s}}
\end{aligned}
$$

in which the betatron motion is given by

$$
\begin{aligned}
& x_{\beta, i}=a \sqrt{\beta} \cos \left(\Phi(s)+\psi_{i}\right) \\
& x_{\beta, i}^{\prime}=-\frac{a}{\sqrt{\beta}}\left(\alpha \cos \left(\Phi(s)+\psi_{i}\right)+\sin \left(\Phi(s)+\psi_{i}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
\Delta a^{2}=\gamma\left(x_{\beta, i}+\Delta x_{\beta, i}\right)^{2}+2 \alpha\left(x_{\beta, i}+\Delta x_{\beta, i}\right)\left(x_{\beta, i}^{\prime}+\Delta x_{\beta, i}^{\prime}\right) \\
+\beta\left(x_{\beta, i}^{\prime}+\Delta x_{\beta, i}^{\prime}\right)^{2}-\left(\gamma x_{\beta, i}^{2}+2 \alpha x_{\beta, i} x_{\beta, i}^{\prime}+\beta x_{\beta, i}^{\prime 2}\right) \\
=\frac{2 u_{i}}{E_{s}}\left(\alpha\left(\eta^{\prime} x_{\beta, i}+\eta x_{\beta, i}^{\prime}\right)+\eta \gamma x_{\beta, i}+\beta \eta^{\prime} x_{\beta, i}^{\prime}\right)+\left(\frac{u_{i}}{E_{s}}\right)^{2} \mathrm{H} \\
\text { in which } \\
\mathrm{H}=\eta^{2} \gamma+2 \alpha \eta \eta^{\prime}+\beta \eta^{\prime 2}
\end{gathered}
$$

The instantaneous rate of change of the betatron amplitude squared is obtained by multiplying by the photon emission rate \dot{N} :

$$
\frac{d a^{2}}{d t}=\frac{2 P_{i}}{E_{S}}\left(\alpha\left(\eta^{\prime} x_{\beta, i}+\eta x_{\beta, i}^{\prime}\right)+\eta \gamma x_{\beta, i}+\beta \eta^{\prime} x_{\beta, i}^{\prime}\right)+\dot{N}\left(\frac{u_{i}}{E_{s}}\right)^{2} \mathrm{H}
$$

in which we've used $P_{i}=\dot{N} u_{i}$. This quantity will vary around the ring; we're interested in the average over one turn:

$$
\begin{aligned}
& \frac{d a^{2}}{d t}=\frac{1}{T_{s}} \oint_{\text {turn }} d t \frac{d a^{2}}{d t} \\
& =\frac{2}{T_{s} E_{S}} \oint_{\text {turn }} d t P_{i}\left(\alpha\left(\eta^{\prime} x_{\beta, i}+\eta x_{\beta, i}^{\prime}\right)+\eta x_{\beta, i}+\beta \eta^{\prime} x_{\beta, i}^{\prime}\right) \\
& +\frac{1}{T_{s} E_{s}^{2}} \oint_{\text {turn }} d t \dot{N} u_{i}^{2} \mathrm{H}
\end{aligned}
$$

To get the amplitude change for the whole beam, average over all the particles.

$$
\begin{aligned}
& \frac{d a^{2}}{d t}=\frac{2}{T_{s} E_{s}} \oint_{\text {turn }}\left\langle d t P_{i}\left(\alpha\left(\eta^{\prime} x_{\beta, i}+\eta x_{\beta, i}^{\prime}\right)+\eta \gamma x_{\beta, i}+\beta \eta^{\prime} x_{\beta, i}^{\prime}\right)\right\rangle \\
& +\frac{1}{T_{s} E_{s}^{2}} \oint_{\text {turn }} d t\left\langle\dot{N} u^{2}\right\rangle \mathrm{H}
\end{aligned}
$$

in which we understand that a^{2} corresponds to the one-turn average of the amplitude squared.
For a large number of particles, the average over the ensemble of particles $\left\langle\dot{N} u_{i}^{2}\right\rangle$ is the same as averages over the photon energy distribution, so $\left\langle\dot{N} u_{i}^{2}\right\rangle=\left\langle\dot{N} u^{2}\right\rangle$, so we have made this replacement in the second term on the right. To evaluate the first term on the right, we must write out the explicit dependence on $x_{\beta, i}$ and $x_{\beta, i}^{\prime}$, substitute in for these quantities from the trajectory solutions, and

$$
\begin{aligned}
& x_{\beta, i}=a \sqrt{\beta} \cos \left(\Phi(s)+\psi_{i}\right) \\
& x_{\beta, i}^{\prime}=-\frac{a}{\sqrt{\beta}}\left(\alpha \cos \left(\Phi(s)+\psi_{i}\right)+\sin \left(\Phi(s)+\psi_{i}\right)\right)
\end{aligned}
$$

Averages of cosine squared and sine squared become $1 / 2$, while averages of products of sine and cosine are zero. After doing the average, we get

$$
\begin{aligned}
& \oint_{\text {turn }}\left\langle d t P_{i}\left(\alpha\left(\eta^{\prime} x_{\beta, i}+\eta x_{\beta, i}^{\prime}\right)+\eta \gamma x_{\beta, i}+\beta \eta^{\prime} x_{\beta, i}^{\prime}\right)\right\rangle \\
& =\frac{a^{2}}{2 c} \int_{0}^{C} d s P_{s} \frac{\eta}{\rho}\left(1+2 K \rho^{2}\right)=\frac{a^{2} U_{s}}{2} \frac{\int_{0}^{C} d s \frac{\eta}{\rho^{3}}\left(1+2 K \rho^{2}\right)}{\int_{0}^{C} \frac{d s}{\rho^{2}}}=\frac{a^{2} U_{s}}{2} \mathrm{D}
\end{aligned}
$$

The equation for a^{2} then becomes

$$
\frac{d a^{2}}{d t}=\frac{a^{2} U_{s}}{T_{s} E_{s}} \mathrm{D}+\frac{1}{T_{s} E_{s}^{2}} \oint_{\text {turn }} d t\left\langle\dot{N} u^{2}\right\rangle \mathrm{H}
$$

We now have to include the effect of the energy restoration by the rf cavities. The argument here is identical to that given for the vertical damping: we get an extra contribution equal to

$$
\begin{gathered}
\frac{d a^{2}}{d t}=-a^{2} \frac{U_{s}}{T_{s} E_{s}} \\
\frac{d a^{2}}{d t}=-\frac{a^{2} U_{s}}{T_{s} E_{s}}(1-\mathrm{D})+\frac{1}{T_{s} E_{s}^{2}} \oint_{\text {turn }} d t\left\langle\dot{N} u^{2}\right\rangle \mathrm{H}
\end{gathered}
$$

The first term on the right represents the amplitude reduction due to damping. Note that, for $\mathrm{D} \ll 1$, as in a separated function lattice, essentially all the damping comes from the rf cavity energy

The final value is called the equilibrium rms beam size.
The equilibrium beam size is proportional to the mean square fluctuations in the energy of the synchrotron radiation photons. Because the radiation is a statistical process, the final distribution in position will be Gaussian, with $\sigma_{x, \infty}^{2}$ as its mean square.

Example: damping of an injected electron beam.
This proceeds just as we described the energy damping of an injected beam with an energy offset. If an electron beam is injected
off-axis, with a coherent betatron oscillation, the centroid oscillation will damp to the reference orbit with the damping rate given above, while the beam size damps to the equilibrium beam size at the same rate.
In the following figures, a round beam damps to a flat one. The damping time is $\tau=10$ time units.

Equilibrium horizontal emittance

The equilibrium rms horizontal emittance is

$$
\varepsilon_{x, \infty}=\frac{\sigma_{x, \infty}^{2}}{\beta}=\frac{\oint_{t u r n} d t\left(\dot{N} u^{2}\right\rangle \mathrm{H}}{2 U_{s} E_{s}(1-\mathrm{D})}
$$

Evaluation of the equilibrium emittance:
Using $\dot{N}=\frac{15 \sqrt{3}}{8} \frac{P}{u_{c}}, \quad\left\langle u^{2}\right\rangle=\frac{11}{27} u_{c}^{2}, \quad u_{c}=\frac{3}{2} \frac{\hbar \gamma^{3} c}{\rho}$, we get

$$
\oint_{\text {turn }} d t\left\langle\dot{N} u^{2}\right\rangle \mathrm{H}=\frac{55}{16 \sqrt{3}} \frac{e^{2} \hbar c \gamma^{7}}{6 \pi \varepsilon_{0}} \int_{0}^{C} d s \frac{\mathrm{H}}{\rho^{3}}
$$

Note that the equilibrium emittance increases with the square of the energy, and decreases with the size of the ring.
A crude estimate of $\varepsilon_{x, \infty}$ can be obtained for a separated function machine by using the approximation

$$
\int_{0}^{C} d s \frac{\mathrm{H}}{\rho} \approx\langle\mathrm{H}\rangle \int_{0}^{C} \frac{d s}{\rho} \approx 2 \pi\left\langle\frac{\eta^{2}}{\beta}\right\rangle
$$

then, using $\langle\boldsymbol{\eta}\rangle \approx \alpha_{C} R,\langle\beta\rangle \approx \frac{R}{Q_{x}}$, where $R=\frac{C}{2 \pi}$ is the mean radius
of the machine, we have

$$
\varepsilon_{x, \infty} \approx \gamma_{s}^{2} \frac{C_{q}}{\rho}\left\langle\frac{\eta^{2}}{\beta}\right\rangle \approx C_{q} \gamma_{s}^{2} \frac{R}{\rho} \alpha_{C}^{2} Q_{x} \approx C_{q} \gamma_{s}^{2} \frac{R}{\rho} \frac{1}{Q_{x}^{3}}
$$

Because of the absence of quantum excitations in the vertical plane, the vertical equilibrium rms emittance will typically be much smaller than the horizontal emittance. It is usually
determined by the typically small coupling between horizontal and vertical motion that exists in any real accelerator. Usually, the coupling is described in terms of a coupling coefficient κ, defined such that the sum of the horizontal and vertical emittances is equal

$$
\text { to } \varepsilon_{x, \infty} \text { : }
$$

$$
\varepsilon_{x}=\varepsilon_{x, \infty} \frac{1}{1+\kappa} \quad \varepsilon_{y}=\varepsilon_{x, \infty} \frac{\kappa}{1+\kappa}
$$

In an uncorrected machine, κ can be as large as 10%; with effort, it can be reduced to 1% or so.

The numbers in the "true" column take into consideration the nonisomagnetic "hard" and "soft" bends near the interaction point in CESR. The coupling is taken as $\kappa=0.016$.

Parameter	Isomag. model	True	Units
τ_{x}	38	24	ms
τ_{y}	38	24	ms
ε_{x}	55	201	$\mathrm{~nm}-\mathrm{rad}$
ε_{y}	0.9	3.1	$\mathrm{~nm}-\mathrm{rad}$
$\sigma_{\mathrm{E}} / \mathrm{E}$	456	673	$\mathrm{x} 10^{-6}$
$\sigma_{\mathrm{x}}(\mathrm{avg})$	1.0	1.83	mm
$\sigma_{\mathrm{y}}(\operatorname{avg})$	0.107	0.2	mm

