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LECTURE 13

Transition Crossing in Proton synchrotrons

Synchrotron radiation: transverse effects

Vertical damping

Horizontal damping and quantum excitation

Equilibrium horizontal emittance
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Transition Crossing in Proton synchrotrons

When γ passes through γt, the slip factor
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growth in the energy spread, and a reduction in the time spread, of
the bunch.
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Numerical simulation of transition crossing:
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Possible problems which can occur at transition:

•  Beam loss at high dispersion points due to the increased energy
spread

•  Transverse and longitudinal emittance growth  due to chromatic
nonlinear effects

•  Increased susceptibility to various forms of beam instabilities
due to loss of phase focusing

•  Maintenance of beam loading compensation during the rf phase
jump
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Synchrotron radiation: transverse effects

In addition to the damping and quantum excitation effects in
longitudinal phase space, synchrotron radiation also has important

consequences for transverse beam dynamics. These effects are

1. A damping of both horizontal and vertical betatron oscillations.

2. Quantum excitation of horizontal betatron oscillations, leading
to an equilibrium rms horizontal emittance.

In the absence of vertical dispersion, there are no quantum
excitation effects in the vertical plane. Consequently, the vertical

beam size typically damps to a much smaller value than the
equilibrium horizontal beam size. Beams in electron machines are
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thus typically “flat”, with a very different aspect ratio in the
vertical and horizontal directions. The limit to the vertical beam
size is typically set by effects like small coupling between the

planes, and residual vertical dispersion. The vertical beam
dimension is typically 10 percent of the horizontal dimension.

We will find two important results, which can be stated very
simply:

1. The sum of the damping rates in all three planes (horizontal,
vertical, and longitudinal) is a constant:

1 1 1 2
τ τ τε
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x y

s

s s

U
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This is called Robinson’s theorem. Although we will verify this by

calculating
1 1

τ τx y
  and  individually, and combining with 

1
τ ε

 from

the previous lecture, in fact Robinson’s theorem can be proved for
a very general case, including arbitrary x-y coupling and vertical

dispersion, for arbitrary lattice configurations.

For a separated function lattice, τ τx y≈  and τ ε ≈ T
E
Us

s

s
.  In this

case, τ τ τ εx y≈ ≈ 2

2. The equilibrium rms horizontal beam size is approximately the
square root of the number of photons emitted during one damping
time, times the average orbit offset (dispersion times energy offset

divided by energy) which would be caused by an energy offset
equal to the rms photon energy.
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time. The dispersion is about 1.5 m. The equilibrium beam size is
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Let’s now see how to get more accurate estimates for these
quantities. Before we begin, we have to understand an important
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feature of synchrotron radiation, which we have not considered
before. This is the fact that the photons that are emitted by an

accelerated charged particle are emitted in a cone of half-angle 1/γ,

around the direction of motion of the particle.

electron
orbit

ρ 1 /γ

Cone of radiation

photon

Electron recoil momentum
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For relativistic particles, 1/γ is very small. Thus the direction of the

recoil momentum change of the electron is almost exactly opposite
to the electron’s momentum:δr

p p∝ − ˆ

Vertical Damping

We’ll start with a description of the vertical synchrotron radiation
damping. Suppose that we have a collection of particles in vertical
phase space, all having the same value of the vertical emittance,

but distributed randomly around the ellipse:
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The solution of the trajectory equations for the ith particle is
y a s
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Now let each particle radiate a photon of energy ui. The energy of
the particle changes according to ε εi i iu→ − . What happens to the
position and slope of the trajectory? The answer: nothing, to a very
good approximation. Why? The change in energy clearly does not
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change the position of the particle. Since the direction of the recoil
momentum change is opposite to that of the momentum, the slope

of the trajectory also does not change.

s

y

p

∆p

However: the energy which is lost must be restored by the rf, on
every turn. The electric field in the rf cavity exerts a force on the

particle in the s direction, causing a momentum change in that
direction. If the particle is undergoing a betatron oscillation, this
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momentum change is not parallel to the particle’s momentum and
does result in a change in the slope.
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The change in the slope is given by
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For the ith particle, the energy change (the energy restored by the
rf) is equal to the sum of the energies emitted by all the photons
emitted on one turn, which is the total energy loss per turn, Us .

Thus, the change in slope at the rf is

∆ ′ = − ′y y
U
Ei i

s

s
The amplitude of the y-oscillation is given by

a y y y yi i i i
2 2 22= + ′ + ′γ α β

The change in this amplitude is
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To get the amplitude change for the whole beam, average over the
random phases ψi.. Averages of cosine squared and sine squared

become 1/2, while averages of products of sine and cosine are
zero. After doing the average, we get

∆a
U
E

a a a
U
E

s

s

s

s

2 2 2 2 2 21= − − + +( )( ) = −α α

This is the change in the amplitude for one turn: so
da
dt

a
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2
2= −
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a

y
2 2
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2
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Horizontal synchrotron radiation damping is a little more
complicated. Suppose that we have a collection of particles in

horizontal phase space, all having the same value of the horizontal
emittance, but distributed randomly around the ellipse.

The solution of the trajectory equations for the ith particle is
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in which the betatron motion is given by
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. Now let each particle radiate a photon of energy ui. The energy of
the particle changes according to ε εi i iu→ − . What happens to the
position and slope of the trajectory? The answer is still “nothing”,
but in this case, because of the dispersion at the site of the photon

emission, the betatron motion will change according to

    

∆ ∆

∆ ∆

x x
u
E

x x
u
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i i
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s

i i
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s

= = −

′ = = ′ − ′

0

0

β

β

η

η

,

,

Essentially, what has happened is that, since the energy has
changed, the orbit with respect to which betatron motion is

measured has changed. But since the particle itself is still in the
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same place, it is now a different distance from that orbit, so its
betatron motion has changed.

η
x

β xβ+ ∆∆∆∆x
β

εεεε////ΕΕΕΕ

η((((εεεε−−−−u )////ΕΕΕΕ η u////ΕΕΕΕ        ====∆∆∆∆xβ

The amplitude of the x betatron oscillation is given by
a x x x xi i i i

2 2 22= + ′ + ′γ α ββ β β β, , , ,

The change in this amplitude is
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The instantaneous rate of change of the betatron amplitude squared
is obtained by multiplying by the photon emission rate Ṅ :
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in which we’ve used P Nui i= ˙ . This quantity will vary around the
ring; we’re interested in the average over one turn:
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To get the amplitude change for the whole beam, average over all
the particles.
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in which we understand that a2 corresponds to the one-turn average
of the amplitude squared.

For a large number of particles, the average over the ensemble of
particles  Ṅui

2  is the same as averages over the photon energy

distribution, so ˙ ˙Nu Nui
2 2= , so we have made this replacement

in the second term on the right. To evaluate the first term on the
right, we must write out the explicit dependence on x xi iβ β, ,  and ′ ,

substitute in for these quantities from the trajectory solutions, and
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average over the random phases of the particles. Using
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The dependence of the power on x iβ,  comes through the field:
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Plug this in; then use
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Averages of cosine squared and sine squared become 1/2, while
averages of products of sine and cosine are zero. After doing the

average, we get
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The equation for a2 then becomes
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We now have to include the effect of the energy restoration by the
rf cavities. The argument here is identical to that given for the

vertical damping: we get an extra contribution equal to
da
dt

a
U

T E
s

s s

2
2= −

  

da
dt

a U
T E T E

dt Nus

s s s s turn

2 2

2
21

1= − −( ) + ∫D H˙

The first term on the right represents the amplitude reduction due
to damping. Note that, for D<<1, as in a separated function lattice,

essentially all the damping comes from the rf cavity energy
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restoration. The second term represents the amplitude growth due
to fluctuations in photon energy in dispersive regions.

 We can integrate this equation to find the time dependence of the
average amplitude squared:

  

a t a
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The position x ai ∝ 2  damps at half the rate:
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We see explicitly that the Robinson Theorem is verified:
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and that, for small D, τx=τy=2τε.

 The final mean square value of the position spread will be
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The final value is called the equilibrium rms beam size.
The equilibrium beam size is proportional to the mean square

fluctuations in the energy of the synchrotron radiation photons.
Because the radiation is a statistical process, the final distribution

in position will be Gaussian, with σ x,∞
2  as its mean square.

Example: damping of an injected electron beam.
This proceeds just as we described the energy damping of an

injected beam with an energy offset. If an electron beam is injected
off-axis, with a coherent betatron oscillation, the centroid

oscillation will damp to the reference orbit with the damping rate
given above, while the beam size damps to the equilibrium beam

size at the same rate.
In the following figures, a round beam damps to a flat one. The

damping time is τ=10 time units.
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Equilibrium horizontal emittance

The equilibrium rms horizontal emittance is

  
ε

σ
βx
x turn

s s

dt Nu

U E,
,
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2

2 1

H

D

Evaluation of the equilibrium emittance:

Using ˙ ,    ,   N
P
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and so

    

ε γ ρ
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.  m (for electrons).

For an isomagnetic lattice, this simplifies to
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Note that the equilibrium emittance increases with the square of
the energy, and decreases with the size of the ring.

A crude estimate of εx,∞ can be obtained for a separated function
machine by using the approximation

  
ds

dsC C

0 0

2
2∫ ∫≈ ≈H H

ρ ρ
π η

β

then, using η α β≈ ≈C
x

R
R

Q
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2π

 is the mean radius

of the machine, we have

ε γ
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2
2 2 2

3
1

Because of the absence of quantum excitations in the vertical
plane, the vertical equilibrium rms emittance will typically be

much smaller than the horizontal emittance. It is usually
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determined by the typically small coupling between horizontal and
vertical motion that exists in any real accelerator. Usually, the

coupling is described in terms of a coupling coefficient κ, defined

such that the sum of the horizontal and vertical emittances is equal
to εx,∞:

ε ε
κ

ε ε κ
κx x y x=

+
=

+∞ ∞, ,     
1

1 1

In an uncorrected machine, κ can be as large as 10%; with effort, it

can be reduced to 1% or so.
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With κ=1%, the vertical beam size will be about 10% of the

horizontal beam size: the beam will have a 10 to 1 horizontal to
vertical aspect ratio, and will be “flat”.

Deliberate introduction of coupling can give κ=1; this is a “round

beam”.

Control of κ is crucial to the performance of colliding beam

machines operating with “flat” beams, since the vertical beam size
at the collision point directly determines the luminosity.

Example: transverse beam sizes in CESR

We’ll use the following approximations:
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Take the lattice to be a separated function isomagnetic lattice with
ρ=98 m. Using the results above, and the crude approximation for

the equilibrium emittance (with αC=0.01077, Qx=9.55), we get the

following table. The “true” column gives the correct numbers
including the hard and soft bend regions. The average beam sizes

are calculated from

σ σ η σ ε β η σ
β

ε ε= + 





≈ + 





2 2
2

2
2

E Es s

with η α β≈ ≈C
x

R
R

Q
,   .
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The numbers in the “true” column take into consideration the non-
isomagnetic “hard” and “soft” bends near the interaction point in
CESR. The coupling is taken as κ=0.016.

Parameter Isomag.
model

True Units

τx 38 24 ms

τy 38 24 ms

εx
55 201 nm-rad

εy 0.9 3.1 nm-rad

σΕ/Ε 456 673 x10-6

σx(avg) 1.0 1.83 mm

σy(avg) 0.107 0.2 mm


