## LECTURE 11

## Linear Accelerator Dynamics: <br> Electron Linacs

Prebunching

## Longitudinal dynamics in synchrotrons <br> Acceleration

Matching and filamentation
Longitudinal "gymnastics":
Debunching and Bunch rotation

## Synchrotron radiation: introduction

USPAS Lecture 11

What happens in the regime before the beam becomes relativistic? To address this question, we must go back to the original equations of motion: we can no longer treat $\Delta \mathrm{E}$ as a small quantity, since a particle's energy will be changing by large fractions of itself in this regime. We'll consider the case of an electron travelling wave linac, and write the equations in terms of the continuous variable $s$, corresponding to the continuous acceleration in a travelling wave

## linac.

Return to Lecture 10, p. 8:

$$
\begin{aligned}
& t_{n+1}-t_{n}=L \frac{d t}{d s}=T(s)-T_{p}(s) \\
& T(s)=\frac{L}{\beta c}=>\frac{d t(s)}{d s}=\frac{1}{c}\left(\frac{1}{\beta}-\frac{1}{\beta_{p}}\right)
\end{aligned}
$$ damping relations, it would appear that $\Delta E$ would get very large, and $\Delta t$ would get very small. This does not happen, because the synchrotron frequency goes to zero for large $\gamma_{s}$. In electron linacs, the synchrotron motion becomes "frozen" very rapidly as the beam is accelerated. Particles remain at the same values of phase and energy. The time spread $\Delta t$ and energy spread $\Delta E$ remain essentially constant, and the relative energy spread $\Delta E / E$ decreases

$$
\text { as } 1 / E
$$

In this equation, $\mathrm{T}_{\mathrm{p}}(\mathrm{s})$ is the transit time, and $\beta_{p}$ is the (constant) phase velocity, of the travelling electromagnetic wave.

The energy equation, from Lecture 10, p. 7, becomes

$$
\frac{d E(s)}{d s}=e E_{0} \sin \omega t(s)
$$

We'd like to get a relation between $E$ and $\phi=\omega t$, which will represent the motion in longitudinal phase space.

Using the chain rule

$$
\frac{d E}{d \phi}=\frac{d E}{d s} \frac{d s}{d t} \frac{d t}{d \phi}
$$

$$
\begin{aligned}
& \text { we get } \\
& \frac{d E}{d \phi}=\frac{c e E_{0}}{\omega} \sin \phi\left(\frac{1}{\beta}-\frac{1}{\beta_{p}}\right)^{-1} \\
& d E\left(\frac{1}{\beta}-\frac{1}{\beta_{p}}\right)=\frac{c e E_{0}}{\omega} \sin \phi d \phi
\end{aligned}
$$

This can be written in terms of perfect differentials as

$$
\begin{aligned}
& d\left[E\left(\beta-\frac{1}{\beta_{p}}\right)\right]=\frac{c e E_{0}}{\omega} d[-\cos \phi] \\
& \text { which integrates to } \\
& \frac{\omega}{c e E_{0}} E\left(\beta-\frac{1}{\beta_{p}}\right)=\cos \phi_{0}-\cos \phi
\end{aligned}
$$

The following figure shows the phase space trajectories for the case of the CESR Linac, for which $\lambda=10.5 \mathrm{~cm}, E_{0}=11 \mathrm{MV} / \mathrm{m}$


The separatrix corresponds to the trajectory with $\cos \phi_{\infty}= \pm 1$. The minimum injection energy on this trajectory is for $\phi=0$, for which

$$
\sqrt{m^{2} c^{2}+p_{\min }^{2}}-p_{\min }=\frac{e E_{0} \lambda}{\pi c}
$$

For the CESR linac case, $p_{\min }=164 \mathrm{keV} / \mathrm{c}$ (kinetic energy about 26 keV ). Ideally, injection should occur at $\phi=0$, but at an energy well above the minimum, close to the trajectory with an asymptotic phase of $90^{\circ}$.
This provides maximum acceleration and minimum phase spread at the output.

The figures below show the evolution of a series of points in phase
space in the beginning of the CESR linac. The points are at successive values of $s$, from 0 to 3 m , in steps of 0.1 m . The input
phase space is a uniform distribution in $\phi$ from $-34^{\circ}$ to $34^{\circ}$ (full time spread 66 ps ) and in kinetic energy from 225 to 275 keV .


The output phase space has a full energy spread of about 1 MeV , and a full phase spread of about $15^{\circ}(14 \mathrm{ps})$.

Longitudinal phase space just after the 214 MHz prebuncher


Note that the phase spread about $\phi=0$ at injection is manifested as an energy spread at the output. Consequently, it's important to have a minimum phase spread at injection. Very short pulses can be obtained from photoinjectors, but thermionic DC guns with pulsed grids give nanosecond time scale pulses. A prebuncher is usually required to reduce the time spread further.


The beam from the gun is injected into the prebuncher cavity so that the early particles are decelerated, and the late ones accelerated.


Longitudinal phase space just before the linac


Projection on the time axis

## Longitudinal dynamics in synchrotrons

The longitudinal dynamics discussion in lecture 11, which was given for (non-relativistic) linacs, applies directly, as long as the appropriate value for $\eta_{C}$ is used. For a synchrotron, we must use

> the result from lecture 6, p. 32:

$$
\eta_{C}=\alpha_{C}-\frac{1}{\gamma^{2}}=\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}
$$

where $\alpha_{C}=\frac{1}{C} \oint_{C} \frac{\eta(s)}{\rho(s)} d s=\frac{1}{\gamma_{t}^{2}}$ is the momentum compaction factor. In contrast to linacs, $\eta_{C}$ can be positive, and in fact it can change from negative to positive during acceleration if the machine crosses transition, i.e., the $\gamma$ of the beam goes from below $\gamma_{t}$ to

Typically more than 1 rf cavity is present in a synchrotron. Nevertheless, the harmonic number $h$ in a synchrotron is taken to be the number of rf cycles per revolution (rather than per cavity).

Hence, for example, in our matrix equation

$$
\left.\binom{\Delta t}{\Delta E}\right|_{n}=\left.\left(\begin{array}{cc}
\cos 2 \pi Q_{s} n & \beta_{L} \sin 2 \pi Q_{s} n \\
-\frac{1}{\beta_{L}} \sin 2 \pi Q_{s} n & \cos 2 \pi Q_{s} n
\end{array}\right)\binom{\Delta t}{\Delta E}\right|_{0}
$$

$n$ refers to the turn number, and the $V$ in $Q_{s}^{2}=-\frac{e V h \eta_{C} \cos \phi_{s}}{2 \pi E_{s} \beta_{s}^{2}}$, and in the expression for $\beta_{L}$, refers to the total voltage per turn (summed over all cavities).
above $\gamma_{t}$. What happens at transition crossing is a special topic to be discussed later.
Above transition, the condition on $\phi_{s}$ for phase stability changes:
Since we always need to have

$$
Q_{s}^{2}=-\frac{e V h \eta_{C} \cos \phi_{s}}{2 \pi E_{s} \beta_{s}^{2}}>0,
$$

if $\eta_{C}$ is positive, $\cos \phi_{s}$ must be negative, i.e., $\frac{\pi}{2} \leq \phi_{s} \leq \frac{3 \pi}{2}$.
Note that above transition, higher energy particle take more time to
go around the machine than lower energy particles. This is
sometimes referred to as the "negative mass" effect: the revolution time increases for faster particles. We will see later that this can, in some cases, lead to a form of unstable motion.

USPAS Lecture 11

The shape of the rf buckets are "reversed" above transition (the pointy end is at small values of $\phi$ ):


There are $h$ such buckets around the machine, and there may be $h$ synchronous particles at the center of each one. Thus the machine can contain at most $h$ bunches.


The rf bucket corresponding to $\phi_{s}=\pi$, for which there is no acceleration, is called a stationary bucket.

12/4/01
USPAS Lecture 11

$$
\frac{d p_{s}}{d t}=e E_{0} \sin \phi_{s}=\frac{e V}{C} \sin \phi_{s}
$$

Using $p_{s}=e \rho B_{0}$, we get

$$
\frac{d B_{0}}{d t}=\frac{V \sin \phi_{s}}{\rho C}
$$

This stipulates how $V \sin \phi_{s}$ must change during acceleration. If the magnetic field has a uniform ramp rate, with $\frac{d B_{0}}{d t}=$ constant, then $V \sin \phi_{s}$ can remain constant during acceleration.

## Example: the Cornell synchrotron

This machine accelerates a 300 MeV electron beam to 5200 MeV in about 8 msec , corresponding to a cycle frequency of 60 Hz . It uses a fixed-frequency 714 MHz rf system, operating at a harmonic number of $h=1800$, corresponding to a circumference of about 756 m . The momentum compaction factor is $\alpha_{C}=0.0096$.
The synchronous phase is roughly constant during acceleration, at about $150^{\circ}$. The rf voltage per turn has a roughly sinusoidal dependence on time, with $V=1 \mathrm{MV}$ at the beginning and end of the cycle. In mid-cycle, at the maximum value of $d p / d t$, the required voltage, from the above equation, works out to about 4.7 MV. The injected longitudinal emittance is $\varepsilon_{\mathrm{L}}=6.6 \mathrm{eV}-\mu \mathrm{s}$. Synchrotron radiation does not play much of a role in the dynamics. Using these numbers, we find the following table for the parameters of the longitudinal motion:

## Matching and filamentation

Beam transfer from one synchrotron to another, or from a linac into a synchrotron, is often done "bucket-to-bucket": the rf systems of the two machines are phase-locked, and the bunches are transferred directly from the buckets of one machine into the buckets of the other.
This process can be quite efficient. However, growth of the longitudinal emittance will occur unless (i) the injected beam hits the middle of the bucket in the receiving machine, and (ii) the two machines are longitudinally matched. By this, it is meant that they have the same value of the longitudinal beta function $\beta_{L}$, which determines the aspect ratio of the longitudinal ellipse in phase space.

| Parameter | 300 <br> MeV | 2500 <br> MeV | 5200 <br> MeV | Units |
| :---: | :---: | :---: | :---: | :---: |
| V | 1 | 4.7 | 1 | MeV |
| $\gamma_{\mathrm{s}}$ | 588 | 4893 | 9785 |  |
| $\mathrm{Q}_{\mathrm{s}}$ | 0.089 | .0666 | .021 |  |
| $1 / \mathrm{Q}_{\mathrm{s}}$ | 11.25 | 15.1 | 45.8 |  |
| $\beta_{\mathrm{L}}$ | 144 | 23 | 35 | $\mathrm{ps} / \mathrm{MeV}$ |
| $\sigma_{\mathrm{E}}$ | 0.214 | 0.534 | 0.432 | MeV |
| $\sigma_{\mathrm{E}} / \mathrm{E}$ | 713 | 213 | 86 | $\mathrm{x} 10^{-6}$ |
| $\sigma_{\mathrm{t}}$ | 30 | 12.3 | 15 | ps |
| $\sigma_{\mathrm{s}}$ | 9.3 | 3.7 | 4.6 | mm |
| $\Delta \mathrm{E}_{\mathrm{b}}$ | 1.9 | 12.1 | 7.9 | MeV |
| $\mathrm{A}_{\mathrm{b}} / \pi$ | 702 | 4376 | 2867 | $\mu \mathrm{~s}-\mathrm{eV}$ |
| $12 / 4 / 01$ | USPAS Lecture 11 |  |  |  |

If the injected beam misses the bucket center, or the values of $\beta_{L}$ are unequal, then the injected beam will rotate in the bucket after injection. This rotation, coupled with the nonlinear phase space trajectories, results in filamentation and an effective growth in the emittance.
The following plots illustrate this. They were made by solving numerically the exact differential equations of motion in the form:

$$
\begin{aligned}
& \frac{d \phi}{d n}=2 \pi \beta_{L} Q_{s} \Delta E \\
& \frac{d}{d n}(\Delta E)=e V\left(\sin \phi-\sin \phi_{s}\right)
\end{aligned}
$$

with the longitudinal parameters for the Cornell synchrotron at injection, and for a beam with $\varepsilon_{L}=100 \mathrm{eV}-\mu \mathrm{sec}$.

Example: a matched transfer, first hundred turns


After this matched transfer, the emittance does not grow. Mismatched transfers: phase error of $60^{\circ}$, first hundred turns (next page); No phase error, $\beta_{\mathrm{L}}$ error of factor of 3 (following page):


12/4/01


USPAS Lecture 11

Longitudinal "gymnastics": Debunching and Bunch rotation These are processes by which the time spread and energy spread of a bunch can be manipulated.
They are illustrated in the following series of figures.
We start with a matched bunch in a stationary bucket. The rf voltage is $V_{0}$.


The rf voltage is adiabatically reduced to a small value $V_{\text {min }}$, over many synchrotron oscillation periods. The bunch remains matched to the bucket; the energy spread goes down like $V^{0.25}$, and the time spread (bunch length) goes up like $V^{-0.25}$. The product must remain the same by Liouville's theorem.


Suppose that, after the rf voltage is reduced substantially but not brought to zero, the rf voltage is suddenly snapped back up to the original value, in a time much shorter than a synchrotron oscillation. The mismatched bunch rotates in the bucket:


If this process is continued, with the rf voltage eventually being turned off, the beam is said to be debunched. The beam is then distributed around the whole circumference, rather than being contained in bunches by rf buckets. The energy spread is reduced in the debunching process: if the process is truly adiabatic, the longitudinal emittance is conserved, and the final (full) energy spread is just

$$
\Delta E_{\text {debunched, full }}=f_{s} \varepsilon_{L}(\text { per bunch })
$$

where $f_{s}$ is the revolution frequency of the synchronous particle. In the debunched state, no rf voltage is applied to the beam. At any significant energy, it is impossible to debunch an electron beam, as energy must be always be supplied to make for the synchrotron radiation.

After a quarter of a synchrotron period, the bunch is very narrow, although with a large energy spread. If it is extracted from the machine at this point, a beam with a very narrow time spread can be provided.
The typical use of such a beam is for high intensity production of secondary particles. The narrow time spread is carried over to the time distribution of the secondary particles, and enhances the longitudinal density of the secondary beam.

Exercise: show that the ideal overall bunch length reduction factor in this process is $\left(\frac{V_{\min }}{V_{0}}\right)^{0.25}$

## Synchrotron radiation

Up to this point, we have not considered the fact that charged particles radiate energy when they are accelerated. This will turn out not to be very important for linacs at any energy, or for synchrotrons in which $\gamma$ is not $\gg 1$.

However, when $\gamma \gg 1$ in a synchrotron, (such as in virtually all electron synchrotrons, and in very high-energy proton synchrotrons), there will be considerable radiation, which will play a very important role in the particle dynamics.

USPAS Lecture 11

For linacs, in which the magnetic field on the reference orbit is zero, this will give the radiated power. Note that the power is independent of the energy. In terms of the classical radius $r_{0}=\frac{e^{2}}{4 \pi \varepsilon_{0} m_{0} c^{2}}$, the power is $P_{E}=\frac{2}{3} \frac{c}{r_{0}} \frac{\left(e E r_{0}\right)^{2}}{m_{0} c^{2}}$. For example, for electrons, $r_{0}=2.82 \times 10^{-15} \mathrm{~m}$, and we have, for a large field $E=100$ $\mathrm{MV} / \mathrm{m}, \mathrm{P}_{\mathrm{E}}=1.710^{-15} \mathrm{~W}$. For a beam of $10^{12}$ electrons, this is only about 1.7 mW .

Now consider the acceleration due to $\vec{B}$ (the centripetal acceleration in synchrotrons). We have

$$
\begin{aligned}
& \vec{a}_{B}=\frac{e c}{m_{0} \gamma}[\vec{\beta} \times \vec{B}]=\frac{e c \beta B}{m_{0} \gamma} \hat{a}_{B} \\
& \left|\vec{\beta} \times \vec{a}_{B}\right|=\beta a_{B}
\end{aligned}
$$

since, on the reference orbit, $\vec{\beta}_{s}$ and $\vec{B}$ are perpendicular. So

$$
\begin{aligned}
& P_{B}=\frac{1}{6 \pi \varepsilon_{0}} \frac{e^{2}}{c^{3}} \gamma^{6}\left[a_{B}^{2}-\left|\vec{\beta} \times \vec{a}_{B}\right|^{2}\right] \\
& =\frac{1}{6 \pi \varepsilon_{0}} \frac{e^{2}}{c^{3}} \gamma^{4} a_{B}^{2}=\frac{1}{6 \pi \varepsilon_{0}} \frac{e^{4} B^{2}}{m_{0}^{2} c}(\beta \gamma)^{2}
\end{aligned}
$$

For synchrotrons, this will give the radiated power: that due to the electric fields is negligible, as we've seen above. This type of radiation, associated with the centripetal acceleration a charged particle, is called synchrotron radiation. Note that the power
depends quadratically on the energy for relativistic particles. In terms of the classical radius, it is

$$
P_{B}=\frac{2}{3} \frac{c}{r_{0}} \frac{\left(e B c r_{0}\right)^{2}}{m_{0} c^{2}}(\beta \gamma)^{2}
$$

In practical units, for electrons, we have

$$
P_{B}=1.59 \times 10^{-14}(B[\mathrm{~T}])^{2}(\beta \gamma)^{2} \mathrm{~W}
$$

radiated per electron.
Note the strong energy dependence of this power.
For a 5 GeV beam of $10^{12}$ electrons in a 1 T field, the power radiated is 1.59 MW . In addition to being a dominant concern for the rf system, which must supply this power, the radiation has a substantial impact on the beam dynamics, which we'll discuss next.

