LECTURE 10

Single particle acceleration:

Phase stability

Linear Accelerator Dynamics:

Longitudinal equations of motion:
Small amplitude motion
Longitudinal emittance and adiabatic damping
Large amplitude motion

Consider 3 particles entering a string of rf cavities (the reasoning is identical for a travelling wave structure). One is at the reference energy (this particle is called the synchronous particle); one (b) is slow, and one (a) is fast. The synchronous particle arrives at cavity

1 at time $t_{s}=\frac{\phi_{s}}{\omega}$ and gains energy $\Delta E_{s}=e V_{a c c} \sin \phi_{s}$. $V_{a c c}$ is the effective accelerating voltage (includes the transit time factor).
ϕ_{s} is called the synchronous phase.
For synchronism, the rf cavities must be spaced by $L=h \beta_{s} \lambda$, where h is the number of rf cycles between cavities (called the harmonic number), β_{s} is the synchronous velocity after the cavity, and λ is the rf wavelength.
The fast particle, a, arrives at $t_{a}<t_{s}$ and gains energy $\Delta E_{a}<\Delta E_{s}$.

The slow particle, b , arrives at $t_{b}>t_{s}$ and gains energy $\Delta E_{b}>\Delta E_{s}$.
The synchronous particle arrives at the next cavity at the same phase ϕ_{s} (this is the definition of the synchronous particle: it is in perfect synchronism with the rf). But, particle a, having gained less energy and velocity, slips later, while particle b, with a higher velocity, slips earlier.
In subsequent cavities, particles a and b will oscillate in phase about the synchronous particle. This oscillation is called a synchrotron oscillation.

Let's see how this works out quantitatively.
Linear Accelerator Dynamics:
Longitudinal equations of motion
in which V_{n} is the effective accelerating voltage at cavity n. Note that, strictly speaking, for rf cavities, this should be a difference equation, not a differential equation. However, we'll be focusing on cases in which the energy change per cavity is a small fraction of the energy, so the use of a differential is appropriate.

How does the time t_{n} change from cavity to cavity? The change in the transit time from one cavity to the next is due to the change in energy that has occurred as a result of the acceleration in the cavity.
Let T_{n} be the transit time from cavity n to cavity $n+1$. Then we have

The synchronous particle has energy E_{s}, and always arrives at an rf
cavity at a time $t_{s}=\frac{\phi_{s}}{\omega}$ relative to the rf zero-crossing.
The rf cavities are numbered by the index n. We'll measure the energy of non-synchronous particles relative to that of the synchronous particle; then, at cavity n, the non-synchronous particle's time and relative energy are

$$
t_{n}, \quad \Delta E_{n}=E_{n}-E_{s, n}
$$

in which the time is measured from the zero-crossing of the rf in cavity n.
The energy change between one cavity and the next is

$$
\begin{aligned}
& E_{n+1}-E_{n}=\frac{d E_{n}}{d n}=e V_{n} \sin \left(\omega t_{n}\right), \frac{d E_{s, n}}{d n}=e V_{n} \sin \left(\omega t_{s}\right) \Rightarrow \\
& \frac{d}{d n}\left(\Delta E_{n}\right)=e V_{n}\left[\sin \left(\omega t_{n}\right)-\sin \left(\omega t_{s}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& T_{n}\left(E_{n}\right)=T_{s, n}\left(E_{s, n}\right)+\left.\frac{d T}{d E}\right|_{E_{s, n}}\left(E_{n}-E_{s, n}\right) \\
& T_{n}\left(E_{n}\right)-T_{s, n}\left(E_{s, n}\right)=\left.\frac{d T}{d E}\right|_{E_{s, n}} \Delta E_{n}
\end{aligned}
$$

From Lecture 6, p. 32:

$\frac{d t}{t}=\eta_{C} \frac{d p}{p}$, in which, for a linac, $\eta_{C}=-\frac{1}{\gamma^{2}}$
From relativistic kinematics, $\frac{d p}{p}=\frac{1}{\beta^{2}} \frac{d E}{E}$.
Putting these together, we have

$$
\begin{aligned}
& \frac{d t_{n}}{d n}=\frac{h \lambda \eta_{C}}{E_{s} \beta_{s}^{2} c} \Delta E_{n} \\
& \frac{d}{d n}\left(\Delta E_{n}\right)=e V\left[\sin \left(\omega t_{n}\right)-\sin \left(\omega t_{s}\right)\right]
\end{aligned}
$$

One second-order equation can be obtained by differentiating the first equation and using the second:

$$
\begin{aligned}
& \frac{d^{2} t_{n}}{d n^{2}}=\frac{h \lambda \eta_{C}}{E_{s} \beta_{s}^{2} c} \frac{d}{d n}\left(\Delta E_{n}\right)+\Delta E_{n} \frac{h}{c} \frac{d}{d n}\left[\frac{\lambda \eta_{C}}{E_{s} \beta_{s}^{2}}\right] \\
& =\frac{e V h \lambda \eta_{C}}{E_{s} \beta_{s}^{2} c}\left[\sin \left(\omega t_{n}\right)-\sin \left(\omega t_{s}\right)\right]+\Delta E_{n} \frac{h}{c} \frac{d}{d n}\left[\frac{\lambda \eta_{C}}{E_{s} \beta_{s}^{2}}\right]
\end{aligned}
$$

We now assume that the energy of the synchronous particle, and the rf wavelength, vary very slowly with n (compared to ΔE and t),

$$
\frac{d t}{t}=\frac{\eta_{C}}{\beta^{2}} \frac{d E}{E} \quad \text { so }\left.\frac{d T}{d E}\right|_{E_{s, n}}=T_{s, n} \frac{\eta_{C}}{E_{s, n} \beta_{s, n}^{2}}
$$

The transit time for the synchronous particle is

$$
T_{s}=\frac{L}{\beta_{s} c}=\frac{h \beta_{s} \lambda}{\beta_{s} c}=\frac{h \lambda}{c}
$$

in which the n subscript is understood. Then

$$
\frac{d t_{n}}{d n}=T_{n}-T_{s}=\left.\frac{d T}{d E}\right|_{E_{s}} \Delta E_{n}=\frac{h \lambda \eta_{C}}{E_{s} \beta_{s}^{2} c} \Delta E_{n}
$$

The two differential equations that govern the longitudinal dynamics are then
so we can ignore their derivatives. Then, we have the second order nonlinear differential equation

$$
\frac{d^{2} t_{n}}{d n^{2}}=\frac{e V h \lambda \eta_{C}}{E_{s} \beta_{s}^{2} c}\left[\sin \left(\omega t_{n}\right)-\sin \left(\omega t_{s}\right)\right]
$$

Small amplitude synchrotron oscillations

We're going to start by restricting ourselves to small variations in phase from the synchronous phase, to explore some features of this equation.

Let $\Delta t_{n}=t_{n}-t_{s}$
If $\omega \Delta t_{n} \ll 1$, then we can expand and approximate

$$
\begin{aligned}
& \sin \left(\omega t_{n}\right)-\sin \left(\omega t_{s}\right)=\sin \left(\omega\left(\Delta t_{n}+t_{s}\right)\right)-\sin \left(\omega t_{s}\right) \\
& =\sin \omega \Delta t_{n} \cos \omega t_{s}+\cos \omega \Delta t_{n} \sin \omega t_{s}-\sin \left(\omega t_{s}\right) \\
& \approx \omega \Delta t_{n} \cos \phi_{s}
\end{aligned}
$$

$$
\text { in which } \phi_{s}=\omega t_{s}
$$

This gives us a simple linear differential equation

$$
\begin{gathered}
\frac{d^{2}}{d n^{2}}\left(\Delta t_{n}\right)+\left(2 \pi Q_{s}\right)^{2} \Delta t_{n}=0 \\
Q_{s}^{2}=-\frac{e V h \eta_{C} \cos \phi_{s}}{2 \pi E_{s} \beta_{s}^{2}} \\
\text { USPAS Lecture } 10
\end{gathered}
$$

$$
\begin{aligned}
& \Delta t_{n}=\Delta t_{0} \cos 2 \pi Q_{s} n+\Delta E_{0} \frac{\eta_{C} h \lambda}{2 \pi \beta_{s}^{2} E_{s} c Q_{s}} \sin 2 \pi Q_{s} n \\
& \Delta E_{n}=\Delta E_{0} \cos 2 \pi Q_{s} n-\Delta t_{0} \frac{2 \pi \beta_{s}^{2} E_{s} c Q_{s}}{\eta_{C} h \lambda} \sin 2 \pi Q_{s} n
\end{aligned}
$$

This can be written in the form of a matrix:

$$
\left.\binom{\Delta t}{\Delta E}\right|_{n}=\left.\left(\begin{array}{cc}
\cos 2 \pi Q_{s} n & \frac{\eta_{C} h \lambda}{2 \pi \beta_{s}^{2} E_{s} c Q_{s}} \sin 2 \pi Q_{s} n \\
-\frac{2 \pi \beta_{s}^{2} E_{s} c Q_{s}}{\eta_{C} h \lambda} \sin 2 \pi Q_{s} n & \cos 2 \pi Q_{s} n
\end{array}\right)\binom{\Delta t}{\Delta E}\right|_{0}
$$

which, by analogy with the transverse case, suggests the introduction of the longitudinal Twiss parameter β_{L} :

$$
\beta_{L}=\frac{\left|\eta_{C}\right| \hbar \lambda}{2 \pi \beta_{s}^{2} E_{s} c Q_{s}}=\frac{\lambda}{c \beta_{s}} \sqrt{-\frac{\eta_{C} h}{2 \pi e V E_{s} \cos \phi_{s}}}
$$

This equation describes the small amplitude oscillations of a particle about the synchronous particle, in both energy and time, as it is accelerated in the series of rf cavities.
Q_{s} is called the small amplitude synchrotron oscillation tune. It is the number of synchrotron oscillations between rf cavities. It must
be positive for stable motion. For a linac, $\eta_{C}=-\frac{1}{\gamma_{s}^{2}}$ and $Q_{S}^{2}=\frac{e V h \cos \phi_{s}}{2 \pi E_{s} \beta_{s}^{2} \gamma_{s}^{2}}$ and so $-\frac{\pi}{2} \leq \phi_{s} \leq \frac{\pi}{2}$. We only have stable motion for this range of synchronous phase.
Provided that $Q_{s}{ }^{2}>0$, the motion is simple harmonic:

$$
\text { Using } \frac{d t_{n}}{d n}=\frac{h \lambda \eta_{C}}{E_{s} \beta_{s}^{2} c} \Delta E_{n}, \text { we get }
$$

(To keep β_{L} positive, we need to define it in terms of $\left|\eta_{C}\right|$. For η_{C} <0, this requires a redefinition of ΔE_{n} to $\Delta E_{n}=E_{s, n}-E_{n}$).

Then the longitudinal motion is
$\left.\binom{\Delta t}{\Delta E}\right|_{n}=\left(\begin{array}{cc}\cos 2 \pi Q_{s} n & \beta_{L} \sin 2 \pi Q_{s} n \\ -\frac{1}{\beta_{L}} \sin 2 \pi Q_{s} n & \cos 2 \pi Q_{s} n\end{array}\right)\binom{\Delta t}{\Delta E}_{0}$
An invariant of the motion is

$$
\frac{1}{\beta_{L}}\left(\Delta t_{n}\right)^{2}+\beta_{L}\left(\Delta E_{n}\right)^{2}=\text { constant }=\varepsilon_{\mathrm{L}}
$$

in which ε_{L} is called the longitudinal emittance.

Longitudinal phase space is formed by the variables ΔE_{n} and Δt_{n}.
In this phase space, these variables, evaluated at subsequent rf cavities, trace out an ellipse, whose area is $\pi \varepsilon_{\mathrm{L}}$.

As in transverse phase space, the local phase space density in longitudinal phase space is constant (Liouville's theorem).

This theorem does not hold in the presence of particle losses, dissipative processes (like scattering), or damping processes (like radiation damping or cooling).

For $(\Delta E, \Delta t)$ phase space, it does hold in the presence of acceleration:
The longitudinal emittance ε_{L} is an adiabatic invariant: it remains constant even if the synchronous energy, velocity and phase change, or if the rf voltage or frequency changes, as long as the

The longitudinal emittance for a beam of particles is defined in the same way as for the transverse emittance:

The rms longitudinal emittance is the area (divided by π) of the ellipse containing 39% of the particles.
If the distribution is Gaussian, then we have

$$
\begin{aligned}
& \sqrt{\left\langle(\Delta t)^{2}\right\rangle}=\sqrt{\beta_{L} \varepsilon_{L, r m s}} \\
& \sqrt{\left\langle(\Delta E)^{2}\right\rangle}=\sqrt{\frac{\varepsilon_{L, r m s}}{\beta_{L}}} \frac{\Delta t}{\Delta E}=\beta_{L}
\end{aligned}
$$

The rms bunch length of this collection of particles is given by

$$
\sqrt{\left\langle(\Delta s)^{2}\right\rangle}=\sqrt{\left\langle\left(\beta_{s} c \Delta t\right)^{2}\right\rangle}=\beta_{s} c \sqrt{\beta_{L} \varepsilon_{L, r m s}}
$$

changes are slow compared to a synchrotron oscillation period.
Thus, we have

$$
\begin{aligned}
& (\Delta E)_{\max }=\sqrt{\frac{\varepsilon_{L}}{\beta_{L}}}=\left(\frac{\varepsilon_{L}^{2} 2 \pi m c^{2} e V \beta_{s}^{2} \gamma_{s}^{3} \cos \phi_{s}}{h \lambda^{2}}\right)^{\frac{1}{4}} \\
& (\Delta t)_{\max }=\sqrt{\varepsilon_{L} \beta_{L}}=\left(\frac{\varepsilon_{L}^{2} h \lambda^{2}}{2 \pi m c^{2} e V \beta_{s}^{2} \gamma_{s}^{3} \cos \phi_{s}}\right)^{\frac{1}{4}}
\end{aligned}
$$

So, as we accelerate the beam, or if we increase the rf voltage V , the energy $\operatorname{spread}(\Delta E)_{\max } \propto\left(V \beta_{s}^{2} \gamma_{s}^{3}\right)^{\frac{1}{4}}$ increases, but the time $\operatorname{spread}(\Delta t)_{\max } \propto\left(V \beta_{s}^{2} \gamma_{s}^{3}\right)^{-\frac{1}{4}}$ decreases. This is called adiabatic damping (in longitudinal phase space).

Example: Fermilab Side-coupled linac
This machine accelerates a proton beam from 116 MeV (the output of an Alvarez linac) to 400 MeV . There are about 450 cells (cavities) in about 50 m , so each cell is about 0.11 m long (the cells actually vary from about 0.08 m at the low energy end, to 0.13 m at the high energy end).
The accelerating gradient is about $8.4 \mathrm{MV} / \mathrm{m}$; the transit time factor is about 0.85 ; so the acceleration per cell is about

$$
V=8.4 \times 0.85 \times 0.11=0.78 \mathrm{MV} .
$$

The rf frequency is 805 MHz , so $\lambda=37.2 \mathrm{~cm}$. The synchronous phase is $\phi_{s}=58^{\circ}$. The side-coupled cavity structure has π phase advance per cell, so $\mathrm{h}=1 / 2$. The longitudinal emittance is $\varepsilon_{L, r m s}=$ $6.4 \mathrm{eV}-\mu \mathrm{sec}$.

Large amplitude synchrotron oscillations

We go back to two first-order nonlinear differential equations we obtained on p. 11:

$$
\begin{aligned}
& \frac{d t_{n}}{d n}=\frac{h \lambda \eta_{C}}{E_{s} \beta_{s}^{2} c} \Delta E_{n} \\
& \frac{d}{d n}\left(\Delta E_{n}\right)=e V\left[\sin \left(\omega t_{n}\right)-\sin \left(\omega t_{s}\right)\right]
\end{aligned}
$$

Using the chain rule, and dropping the n subscript in what follows, we can write

$$
\frac{d}{d \phi}(\Delta E)=\frac{d}{d n}(\Delta E) \frac{d n}{d t} \frac{d t}{d \phi}
$$

Using these numbers, we find

Parameter	116 MeV	400 MeV	Units
β_{s}	0.456	0.713	
γ_{s}	1.12	1.42	
L	0.085	0.132	m
Q_{s}	0.032	0.0089	
$1 / \mathrm{Q}_{\mathrm{s}}$	30.4	112.1	
β_{L}	9.9×10^{-17}	2.79×10^{-17}	$\mathrm{~s} / \mathrm{eV}$
σ_{E}	0.256	0.492	MeV
$\sigma_{\mathrm{E}} / \mathrm{E}$	0.0022	0.0012	
σ_{t}	25	13	ps
σ_{s}	3.46	2.82	mm

in which $\phi=\omega t$ is the phase of the particle under consideration.
Then we have

$$
\begin{aligned}
& \frac{d}{d \phi}(\Delta E)=e V\left[\sin \phi-\sin \phi_{s}\right] \frac{E_{s} \beta_{s}^{2} c}{\omega \lambda h \eta_{C} \Delta E} \\
& =-\left[\sin \phi-\sin \phi_{s}\right] \frac{1}{\cos \phi_{s} \omega^{2} \beta_{L}^{2} \Delta E}
\end{aligned}
$$

$$
\text { in which } \beta_{L}^{2}=-\frac{h \eta_{C} \lambda^{2}}{2 \pi \cos \phi_{s} E_{s} \beta_{s}^{2} e V c^{2}}
$$

has been used. So

$$
\Delta E d(\Delta E)=-\frac{\left[\sin \phi-\sin \phi_{s}\right]}{\cos \phi_{s} \omega^{2} \beta_{L}^{2}} d \phi
$$

Assuming that ϕ_{s}, ω and β_{L} are approximately constant during a synchrotron oscillation, we can integrate both sides to give

$$
\frac{1}{2}(\Delta E)^{2}=\frac{\left[\cos \phi+\phi \sin \phi_{s}\right]-\left[\cos \phi_{0}+\phi_{0} \sin \phi_{s}\right]}{\cos \phi_{s} \omega^{2} \beta_{L}^{2}}
$$

in which ϕ_{0} is the phase for which $\Delta \mathrm{E}=0$.
This can be written as

$$
\begin{aligned}
& \omega \beta_{L}(\Delta E)^{2}-\frac{2}{\beta_{L} \omega \cos \phi_{S}}\left(\cos \phi+\phi \sin \phi_{S}\right) \\
& =-\frac{2}{\beta_{L} \omega \cos \phi_{S}}\left(\cos \phi_{0}+\phi_{0} \sin \phi_{S}\right)
\end{aligned}
$$

12/4/01
USPAS Lecture 10

The curve crosses the line $\Delta E=0$ at the two points, ϕ_{0} and ϕ_{1}, where ϕ_{1} is given in terms of ϕ_{0} by the equation
$\cos \phi_{1}+\phi_{1} \sin \phi_{s}=\cos \phi_{0}+\phi_{0} \sin \phi_{s}$

These two values of ϕ are the bounds of the motion, for this particular phase space trajectory.
Phase space trajectories corresponding to larger values of ϕ_{0} are possible, up to a maximum $\phi_{0, \max }$

To see this, we plot $\cos \phi+\phi \sin \phi_{s}\left(\right.$ for $\left.\phi_{s}=0.1\right)$.

This equation gives the curve in $(\Delta E, \phi)$ phase space corresponding to a large amplitude synchrotron oscillation. This curve is sometimes called a phase space trajectory.

What do these curves look like? Here's a typical one

USPAS Lecture 10

$\phi_{0, \max }$ and $\phi_{1, \max }$, correspond to the maximum extent of bounded motion possible. For larger values of ϕ, the motion is not bounded.
$\phi_{0, \text { max }}$ occurs at a minimum in the function $\cos \phi+\phi \sin \phi_{s}$.

By differentiating the function, we see that this occurs at $\phi_{0, \text { max }}=\pi-\phi_{s}$
The other bound to the motion may be found from $\cos \phi_{1, \text { max }}+\phi_{1, \text { max }} \sin \phi_{s}=\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}$ $=-\cos \phi_{s}+\left(\pi-\phi_{s}\right) \sin \phi_{s}$

The phase space trajectory corresponding to the maximum bounded motion

$$
\begin{aligned}
& \omega \beta_{L}(\Delta E)^{2}-\frac{2}{\beta_{L} \omega \cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right) \\
& =\frac{2}{\beta_{L} \omega \cos \phi_{s}}\left(\cos \phi_{s}-\left(\pi-\phi_{s}\right) \sin \phi_{s}\right)
\end{aligned}
$$

is called the separatrix: it separates bounded from unbounded motion

The phase space area occupied by the beam (the longitudinal emittance) must be inside the bucket (typically, well inside: it would correspond to one of the small ellipses in the figure above.) The "height" of the bucket, ΔE_{b}, determines the energy acceptance of the accelerator. This is given by setting $\phi=\phi_{s}$, and $\Delta E=\Delta E_{b}$ in the separatrix equation: the result is

$$
\Delta E_{b}=\frac{2 \sqrt{1-\left(\frac{\pi}{2}-\phi_{s}\right) \tan \phi_{s}}}{\omega \beta_{L}}
$$

The bucket represents the maximum stable area in phase space.
For zero synchronous phase (no acceleration), the bucket spans the whole range of ϕ from $-\pi$ to π.

The synchrotron tune decreases as the oscillation amplitude increases; on the separatrix, the tune is zero, and the period is infinite. The area in phase space within the separatrix is called the bucket.

As the synchronous phase increases, the size of the bucket shrinks, both in phase and in energy.

The bucket area, the area within the separatrix (in $\Delta \mathrm{E}, \Delta \mathrm{t}$ phase space), can be found by integrating over the bucket; the result is

$$
\frac{A_{b}}{\pi}=\frac{16}{\pi \omega^{2} \beta_{L}} f\left(\phi_{s}\right)
$$

in which the function $f\left(\phi_{s}\right)$ is:

For good performance, the longitudinal emittance of the beam should be much smaller than the bucket area/ π.

Example: Fermilab proton linac again:
$\phi_{s}=58^{\circ}, \varepsilon_{\mathrm{L}, \mathrm{rms}}=6.4 \mathrm{eV}-\mu \mathrm{s}$

Parameter	116 MeV	400 MeV	Units
β_{s}	0.456	0.713	
β_{L}	9.9×10^{-17}	2.79×10^{-17}	$\mathrm{~s} / \mathrm{eV}$
$\phi_{1, \max }$	25	25	degrees
$\phi_{2, \max }$	122	122	degrees
$\Delta \mathrm{E}_{\mathrm{b}}$	1.3	4.8	MeV
σ_{E}	0.256	0.492	MeV

