

The slow particle, b, arrives at $t_b > t_s$ and gains energy $\Delta E_b > \Delta E_s$. The synchronous particle arrives at the next cavity at the same phase ϕ_s (this is the definition of the synchronous particle: it is in perfect synchronism with the rf). But, particle a, having gained less energy and velocity, slips later, while particle b, with a higher velocity, slips earlier. In subsequent cavities, particles a and b will oscillate in phase about the synchronous particle. This oscillation is called a <i>synchrotron oscillation</i> . Let's see how this works out quantitatively. Linear Accelerator Dynamics: Longitudinal equations of motion			The synchronous particle has energy E_s , and always arrives at an rf cavity at a time $t_s = \frac{\phi_s}{\omega}$ relative to the rf zero-crossing. The rf cavities are numbered by the index <i>n</i> . We'll measure the energy of non-synchronous particles relative to that of the synchronous particle; then, at cavity <i>n</i> , the non-synchronous particle's time and relative energy are t_n , $\Delta E_n = E_n - E_{s,n}$ in which the time is measured from the zero-crossing of the rf in cavity <i>n</i> . The energy change between one cavity and the next is $E_{n+1} - E_n = \frac{dE_n}{dn} = eV_n \sin(\omega t_n), \ \frac{dE_{s,n}}{dn} = eV_n \sin(\omega t_s) \Rightarrow$ $\frac{d}{dn} (\Delta E_n) = eV_n [\sin(\omega t_n) - \sin(\omega t_s)]$				
12/4/01	USPAS Lecture 10	5	12/4/01	USPAS Lecture 10	6		
Note that, st difference equat focusing on case fraction of the How doe The change in th the change	is the effective accelerating voltage at c rictly speaking, for rf cavities, this shou ion, not a differential equation. Howeve es in which the energy change per cavity energy, so the use of a differential is ap es the time t_n change from cavity to cavit the transit time from one cavity to the ne in energy that has occurred as a result acceleration in the cavity. the transit time from cavity <i>n</i> to cavity Then we have USPAS Lecture 10	uld be a er, we'll be y is a small ppropriate. ity? ext is due to of the		$t_{n+1} = t_n + T_n - T_{s,n}$ $t_{n+1} - t_n = \frac{dt_n}{dn} = T_n - T_{s,n}$ Cavity n Cavity n+1 Cavit	ence ΔE_n ,		

$$\begin{aligned} & \int_{\alpha} (E_{n}) = T_{x,n}(E_{x,n}) + \frac{dT}{dR} \Big|_{T_{x,n}}(E_{n} - E_{x,n}) \\ & T_{n}(T_{n}) - T_{x,n}(T_{x,n}) = \frac{dT}{dR} \Big|_{T_{x,n}} AE_{n} \\ & From 1 \text{ ceture } 6, p. 32: \\ & \frac{dt}{t} = \eta_{c} \frac{dp}{p}, \quad \text{in which for a line, } \eta_{c} = -\frac{1}{T^{2}} \\ & From relativistic kinematics, \quad \frac{dp}{p} = \frac{1}{D^{2}} \frac{dE}{E}. \\ & \text{Putting these together, we have} \\ & 12401 & \text{USPAS Lecture } 10 & 9 \end{aligned}$$

$$\begin{aligned} & \frac{dn_{n}}{dn} = \frac{\hbar\lambda^{2}\eta_{c}}{R} \frac{AR_{n}}{\beta_{c}} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} \frac{dT}{R}, \quad AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} - \frac{dT}{R} \frac{dR_{n}}{R} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} - \frac{dT}{R} \frac{dR_{n}}{R} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} - \frac{dT}{R} \frac{dR_{n}}{R} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} - \frac{dT}{R} \frac{dR_{n}}{R} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} - \frac{dT}{R} \frac{dR_{n}}{R} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} - \frac{dT}{R} \frac{dR_{n}}{R} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} - \frac{dT}{R} \frac{dR_{n}}{R} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} - \frac{dT}{R} \frac{dR_{n}}{R} AE_{n} \\ & \frac{dn_{n}}{dn} = \pi_{n}^{2} AE_{n} \\$$

$$\sin(\omega t_n) - \sin(\omega t_s) = \sin(\omega(\Delta t_n + t_s)) - \sin(\omega t_s)$$
$$= \sin \omega \Delta t_n \cos \omega t_s + \cos \omega \Delta t_n \sin \omega t_s - \sin(\omega t_s)$$
$$\approx \omega \Delta t_n \cos \phi_s$$

in which
$$\phi_s = \omega t_s$$
.

This gives us a simple linear differential equation

$$\frac{d^2}{dn^2} (\Delta t_n) + (2\pi Q_s)^2 \Delta t_n = 0$$
$$Q_s^2 = -\frac{eVh\eta_C \cos\phi_s}{2\pi E_s \beta_s^2}$$
USPAS Lecture 10

12/4/01

12/4/01

13

This equation describes the small amplitude oscillations of a particle about the synchronous particle, in both energy and time, as it is accelerated in the series of rf cavities. O₂ is called the *small amplitude synchrotron oscillation tune*. It is the number of synchrotron oscillations between rf cavities. It must be positive for stable motion. For a linac, $\eta_C = -\frac{1}{\gamma^2}$ and $Q_s^2 = \frac{eVh\cos\phi_s}{2\pi E_s \beta_s^2 \gamma_s^2}$ and so $-\frac{\pi}{2} \le \phi_s \le \frac{\pi}{2}$. We only have stable motion for this range of synchronous phase. Provided that $Q_s^2 > 0$, the motion is simple harmonic: Using $\frac{dt_n}{dn} = \frac{h\lambda\eta_C}{E_c\beta_c^2c}\Delta E_n$, we get **USPAS** Lecture 10 14 12/4/01

 $\Delta t_n = \Delta t_0 \cos 2\pi Q_s n + \Delta E_0 \frac{\eta_C h \lambda}{2\pi \beta^2 E_c Q} \sin 2\pi Q_s n$ $\Delta E_n = \Delta E_0 \cos 2\pi Q_s n - \Delta t_0 \frac{2\pi \beta_s^2 E_s c Q_s}{n_c h \lambda} \sin 2\pi Q_s n$ This can be written in the form of a matrix: $\begin{pmatrix} \Delta t \\ \Delta E \end{pmatrix}_{n} = \begin{pmatrix} \cos 2\pi Q_{s}n & \frac{\eta_{C}h\lambda}{2\pi\beta_{s}^{2}E_{s}cQ_{s}}\sin 2\pi Q_{s}n \\ -\frac{2\pi\beta_{s}^{2}E_{s}cQ_{s}}{n-\lambda}\sin 2\pi Q_{s}n & \cos 2\pi Q_{s}n \end{pmatrix} \begin{pmatrix} \Delta t \\ \Delta E \end{pmatrix}_{0}$

which, by analogy with the transverse case, suggests the introduction of the *longitudinal Twiss parameter* β_{I} :

$$\beta_L = \frac{|\eta_C|h\lambda}{2\pi\beta_s^2 E_s c Q_s} = \frac{\lambda}{c\beta_s} \sqrt{-\frac{\eta_C h}{2\pi e V E_s \cos\phi_s}}$$

USPAS Lecture 10

15

12/4/01

USPAS Lecture 10

(To keep β_I positive, we need to define it in terms of $|\eta_C|$. For η_C

Then the longitudinal motion is

 $\begin{pmatrix} \Delta t \\ \Delta E \end{pmatrix}_{n} = \begin{pmatrix} \cos 2\pi Q_{s}n & \beta_{L}\sin 2\pi Q_{s}n \\ -\frac{1}{\beta_{s}}\sin 2\pi Q_{s}n & \cos 2\pi Q_{s}n \\ \end{pmatrix} \begin{pmatrix} \Delta t \\ \Delta E \end{pmatrix}_{0}$

An invariant of the motion is $\frac{1}{\beta_L} (\Delta t_n)^2 + \beta_L (\Delta E_n)^2 = \text{constant} = \varepsilon_L$

in which ε_{L} is called the *longitudinal emittance*.

<0, this requires a redefinition of ΔE_n to $\Delta E_n = E_{s,n} - E_n$).

16

Longitudinal phase space is formed by the variables ΔE_n and Δt_n . In this phase space, these variables, evaluated at subsequent rf cavities, trace out an ellipse, whose area is $\pi \varepsilon_{I}$.

12/4/01

USPAS Lecture 10

17

The longitudinal emittance for a beam of particles is defined in the same way as for the transverse emittance:

As in transverse phase space, the local phase space density in longitudinal phase space is constant (Liouville's theorem).

This theorem does not hold in the presence of particle losses, dissipative processes (like scattering), or damping processes (like radiation damping or cooling).

For $(\Delta E, \Delta t)$ phase space, it does hold in the presence of acceleration:

The longitudinal emittance ε_{I} is an *adiabatic invariant*: it remains constant even if the synchronous energy, velocity and phase change, or if the rf voltage or frequency changes, as long as the

12/4/01

19

Example: Fermilab Side-coupled linac	Using these numbers, we find					
This machine accelerates a proton beam from 116 MeV (the output	Parameter	116 MeV	400 MeV	Units		
of an Alvarez linac) to 400 MeV. There are about 450 cells	β	0.456	0.713			
(cavities) in about 50 m, so each cell is about 0.11 m long (the cells	$\gamma_{\rm s}$	1.12	1.42			
actually vary from about 0.08 m at the low energy end, to 0.13 m	L	0.085	0.132	m	<u> </u>	
at the high energy end).	$\frac{L}{Q_s}$	0.032	0.132	111	—	
The accelerating gradient is about 8.4 MV/m; the transit time factor is about 0.85; so the acceleration per cell is about	$\frac{\mathbf{x}_{s}}{1/\mathbf{Q}_{s}}$	30.4	112.1			
$V=8.4 \times 0.85 \times 0.11 = 0.78 \text{ MV}.$	β_{L}	9.9x10 ⁻¹⁷	2.79x10 ⁻¹⁷	s/eV		
The rf frequency is 805 MHz, so λ =37.2 cm. The synchronous	σ _E	0.256	0.492	MeV		
phase is $\phi_s = 58^\circ$ The side-coupled cavity structure has π phase	$\sigma_{\rm E}/{\rm E}$	0.0022	0.0012			
advance per cell, so h=1/2. The longitudinal emittance is $\mathcal{E}_{l_s rms} =$	σ	25	13	ps	—	
$6.4 \text{ eV-}\mu\text{sec.}$	-	3.46	2.82	mm	_	
0.+ c v -µscc.	σ_{s}	5.40	2.02	111111		
12/4/01 USPAS Lecture 10 21	12/4/01 USPAS Lecture 10 22					
Large amplitude synchrotron oscillationsWe go back to two first-order nonlinear differential equations we obtained on p. 11: $\frac{dt_n}{dn} = \frac{h\lambda\eta_C}{E_s\beta_s^2c}\Delta E_n$ $\frac{d}{dn}(\Delta E_n) = eV[\sin(\omega t_n) - \sin(\omega t_s)]$ Using the chain rule, and dropping the <i>n</i> subscript in what follows, we can write $\frac{d}{d\phi}(\Delta E) = \frac{d}{dn}(\Delta E)\frac{dn}{dt}\frac{dt}{d\phi}$ 12/4/01USPAS Lecture 1023	in which $\phi = \omega t$ is the phase of the particle under consideration. Then we have $\frac{d}{d\phi}(\Delta E) = eV[\sin\phi - \sin\phi_s] \frac{E_s\beta_s^2c}{\omega\lambda\hbar\eta_C\Delta E}$ $= -[\sin\phi - \sin\phi_s] \frac{1}{\cos\phi_s\omega^2\beta_L^2\Delta E}$ in which $\beta_L^2 = -\frac{\hbar\eta_C\lambda^2}{2\pi\cos\phi_s E_s\beta_s^2 eVc^2}$ has been used. So $\Delta Ed(\Delta E) = -\frac{[\sin\phi - \sin\phi_s]}{\cos\phi_s\omega^2\beta_L^2}d\phi$ 12/4/01 USPAS Lecture 10 24					

By differentiating the function, we see that this occurs at

$$\phi_{0,\max} = \pi - \phi_s$$

The other bound to the motion may be found from
 $\cos \phi_{1,\max} + \phi_{1,\max} \sin \phi_s = \cos(\pi - \phi_s) + (\pi - \phi_s) \sin \phi_s$
 $= -\cos \phi_s + (\pi - \phi_s) \sin \phi_s$
The phase space trajectory corresponding to the maximum
bounded motion
 $\omega \beta_L (\Delta E)^2 - \frac{2}{\beta_L \omega \cos \phi_s} (\cos \phi + \phi \sin \phi_s)$
 $= \frac{2}{\beta_L \omega \cos \phi_s} (\cos \phi_s - (\pi - \phi_s) \sin \phi_s)$
is called the *separatrix*: it separates bounded from unbounded
motion
12/4/01 USPAS Lecture 10 29
12/4/01 USPAS Lecture 10 29

The phase space area occupied by the beam (the longitudinal emittance) must be inside the bucket (typically, well inside: it would correspond to one of the small ellipses in the figure above.) The "height" of the bucket, ΔE_b , determines the *energy acceptance* of the accelerator. This is given by setting $\phi = \phi_s$, and $\Delta E = \Delta E_b$ in the separatrix equation: the result is

$$\Delta E_b = \frac{2\sqrt{1 - \left(\frac{\pi}{2} - \phi_s\right)} \tan \phi_s}{\omega \beta_I}$$

The bucket represents the maximum stable area in phase space.

For zero synchronous phase (no acceleration), the bucket spans the whole range of ϕ from $-\pi$ to π .

12/4/01

31

As the synchronous phase increases, the size of the bucket shrinks, both in phase and in energy.

The *bucket area*, the area within the separatrix (in ΔE , Δt phase space), can be found by integrating over the bucket; the result is

12/4/01

USPAS Lecture 10

32

