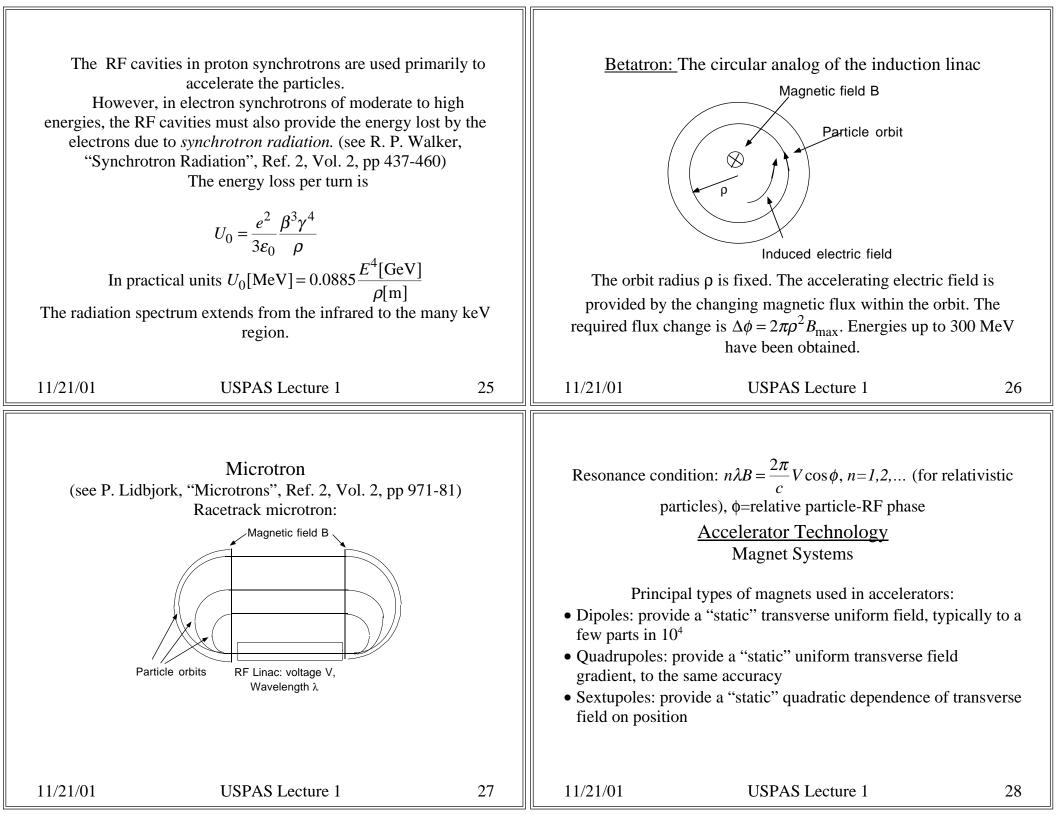
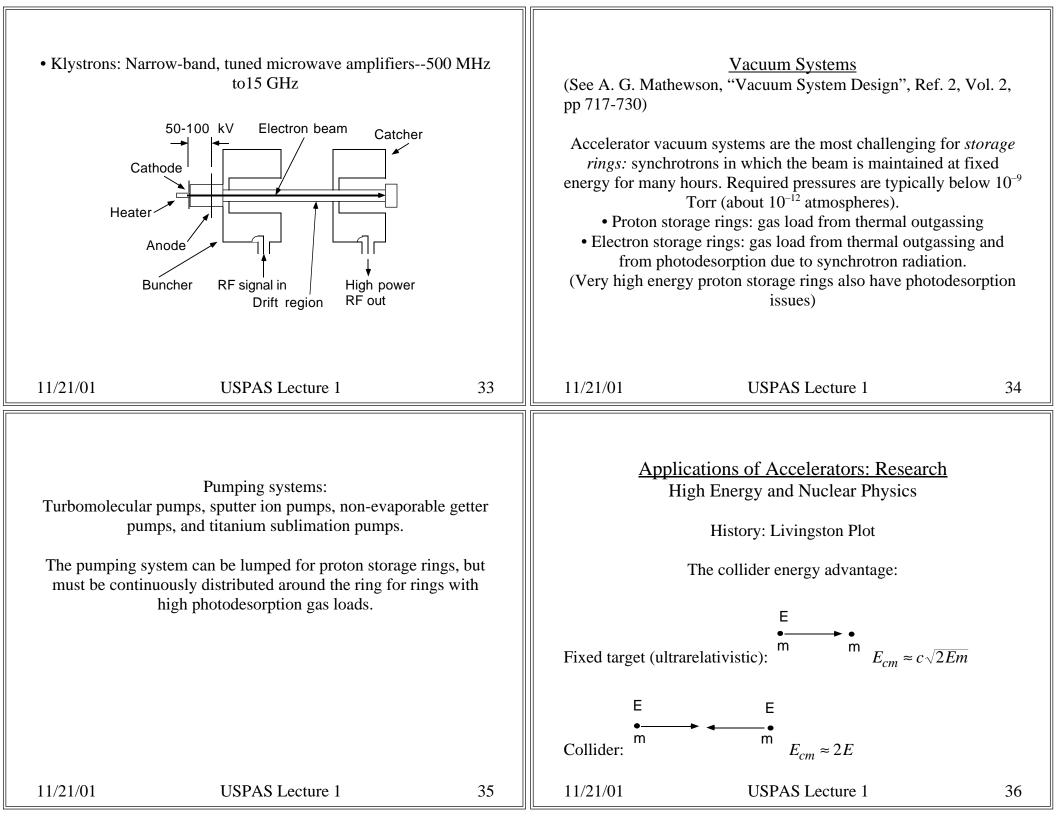

		1			
Particle <u>A</u> Magnets, F	LECTURE 1 <u>/arieties of accelerators</u> Sources ,Linear Accelerator Circular Accelerators <u>ccelerator Technologies</u> Radiofrequency Systems,Va systems <u>plications of Accelerators</u> Research Other applications USPAS Lecture 1		Particle S Linear accele 11/21/01		2
(see N. Auge <u>Positive ion so</u> bombardment of Species rangin <u>Negative ion</u> Surface sour Volume source Polarized ion	Varieties of accelerators: Particle Sources Ion sources: ert, "Ion Sources", Ref. 2, Vol. 2, pp. 619 urces: the positive ions are formed from of a gas and extracted from the resulting ng from H to U (multiply charged) are av sources: Principal interest is in H ⁺ , for c exchange injection ces: In a plasma, H picks up electrons fr activated surface es (magnetron, Penning): electron attach recombination in H plasma a sources: e.g., optically pumped sources ntensity, relatively high (>65%) polariza	electron plasma. vailable harge- om an ment or : some	D • thermionic en • photocatho <i>RF guns</i> : cath Rapid acceler space • thermionic e	Electron sources <i>C HV guns</i> : 50-500 keV acceleration Electron production mechanism: hission (pulse duration controlled by a pulsed de irradiation by pulsed laser (laser pulse wid determines the pulse duration) hode forms one wall of an accelerating RF car ation to above 10 MeV in a few cells->mitigs charge effects, makes for low emittance Electron production mechanism: emission (pulse duration controlled RF structure de irradiation by pulsed laser (laser pulse wid determines the pulse duration)	grid) lth vity ates ure)
11/21/01	USPAS Lecture 1	3	11/21/01	USPAS Lecture 1	4





This can be represented as A ring of magnets at fixed $\rho = \frac{p}{\rho B}$. As p increases during $B_y = B_0 \left(\frac{\rho_0}{\rho_0}\right)^n$ acceleration, B is increased to keep ρ constant. The RF frequency $f = \frac{v}{2\pi\rho}$ is constant for relativistic particles. where n, called the **field index**, is > 0. However, *n* cannot be arbitrarily large, since we must also have radial stability: Focusing: to get vertical stability, we could allow the bending field to decrease with ρ , as in the classical cyclotron. $evB_{..}$ -Magnetic field For radial stability, the centrifugal force must be less than the Force Lorentz force for x>0: 11/21/01 11/21/01 **USPAS** Lecture 1 21 **USPAS** Lecture 1 22 $\frac{mv^2}{\rho} = \frac{mv^2}{\rho_0 + x} \approx \frac{mv^2}{\rho_0} \left(1 - \frac{x}{\rho_0}\right)$ **Optical analogy:** $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$ is positive for a large $\leq evB_y = evB_0 \left(\frac{\rho_0}{\rho}\right)^n = evB_0 \left(\frac{\rho_0}{\rho_0 + x}\right)^n \approx evB_0 \left(1 - n\frac{x}{\rho_0}\right)$ range of focal lengths and d=> net focusing both radially and vertically $\frac{x}{\rho_0} \ge n \frac{x}{\rho_0} \Longrightarrow 1 \ge n$ If this is done by providing a radially varying field in Focusing of this kind is called "weak focusing". In 1952, "strong the bending magnets: the machine is called *combined function*. If focusing", or "alternating gradient focusing", was invented by this is done by using uniform field dipoles and separate quadrupole Courant and Snyder. magnets, the machine is called *separated function*. Much greater focusing, hence smaller beam sizes, are obtained in a strong Strong focusing: alternate the focal length of magnetic lenses focusing machine than in a weak focusing one. around the ring 11/21/01 **USPAS** Lecture 1 11/21/01 **USPAS** Lecture 1 23 24

field, with a sm • Solenoids: Prov	ction dipoles: provide a mostly uniform nall field gradient vide a longitudinal uniform field ramped during acceleration in a synchr Magnet power supplies:		magnets", Ref. 2Resistive electro copper or alumin	nagnetic fields for accelerators with 2, Vol. 2, pp 893-998) magnets-the standard solution: excinum coils, dipole field range up to a ventional Magnets", Ref. 2, Vol. 2, p	ted with bout 2 T (See
 Primarily DC or slowly ramping for ring magnets; currents from 10-10,000 A, current regulation required typically 10-100 parts per million. Principal magnet technologies: Permanent magnets-for fixed-energy rings, dipole fields up to about 1 T. Alnico, ferrite, SmCo₃, Nd₂Fe₁₄B. Need good temperature regulation for field stability. (See T. Meinander, 			field range, used 8 T (with NbTi s superconductor) (See S. Wolff, " Ref. 2, Vol. 2, p • Pulsed magnets:	g magnets-reduced power consumption in large proton synchrotrons. Dipolo superconductor), to 15 T (with Nb ₃ S at 4.2° K. Require extensive cryoge Superconducting Accelerator Magne p 755-790) provide rapidly varying fields, for the tion, and fast switching in transport	le fields up to n nic systems. et Design, peam
11/21/01	USPAS Lecture 1	29	11/21/01	USPAS Lecture 1	30
elements in rf 1 parameters of a frequency. Gene Higher frequ Systems f	Radiofrequency Systems ave and standing wave cavities are both linacs or synchrotrons. The principal per a cavity are its electric field (voltage gra- brally, the relation between these is E_a/a ency systems can develop larger voltage from 20 MHz up to 11 GHz are in opera- ducting (NC) cavities are fabricated fro- copper. "Conventional RF System Design", Re p 677-716)	erformance adient) and l ≈constant: ge gains. ation. m OHFC	surfaces (sometin "Modern Technol Higher accelerati SC systems tha reduced in SC sy	 ing (SC) systems typically use pure hes plated on copper) at 4.2°K. (See logies in RF Superconductivity", Re 791-804) ng fields (at low frequencies) are ob n with NC systems. Power dissipation systems, although a cryogenic system Radiofrequency power sources: Triodes and tetrodes: um tube power generators, useful up and 100 kW 	H. Lengeler, f. 2, Vol.2, p tainable with on is much is required.
11/21/01	USPAS Lecture 1	31	11/21/01	USPAS Lecture 1	32

Luminosity: the other figure of merit (besides energy) of a high energy collider
Luminosity L =
$$\frac{1}{4} \frac{dR}{dt} = \frac{dN_1}{dt} \rho l = \frac{dN_1}{dt} N_2$$

Luminosity L = $\frac{1}{4} \frac{dR}{dt} = \frac{dN_1}{dt} \rho l = \frac{dN_1}{dt} A$
Colliding beams:
Colliding beams:
Colliding beams:
L = $\beta N_1 \frac{N_2}{N_2}$
L = $\beta N_1 \frac{N_2}{A}$
Fiffective area seen by the beam $A_{off} = qN_2 = q\rho l$
Probability of an interaction $P = \frac{A_{off}}{A} = q\rho l$
Reaction rate $\frac{dR}{dt} = \frac{dN_1}{dt} P = \frac{dN_1}{dt} q\rho l$
11/21/01 USPAS Lecture 1 37
In differential form:
 $\frac{dL}{dA} = f \frac{dN_1}{dA} \frac{dN_2}{dA}$
for Gaussian, round beams, of rms size σ :
 $\frac{dN}{dA} = \frac{N}{2\pi\sigma^2} \exp\left[-\frac{r^2}{2\sigma^2}\right]$; then
 $L = f \frac{N_1N_2}{4\pi\sigma^2}$
11/21/01 USPAS Lecture 1 39
11/21/01 USPAS Lecture 1 40

Types of high energy colliders: under construction or proposed

Туре	Facility	СМ	Luminosity(10
		energy(GeV)	$^{33} cm^{-2} s^{-1}$
pp, two rings	CERN LHC	14,000	10
e ⁺ -e ⁻ , linear	NLC, JLC,	500-1,500	10
collider	TESLA, CLIC		
μ^+ - μ^- , single	Muon collider	100-3,000	0.1-100
ring			
pp, two rings	VLHC	100,000	10

11/21/01

11/21/01

USPAS Lecture 1

41

43

Applications of Accelerators: Research

		ons of particle accelerators", Ref. 2, Vol. 2, p 841-854)
Field	Accelerator	Topics of study
Atomic	Low energy	atomic collision processes, study of excited states,
Physics	ion beams	electron-ion collisions, electronic stopping power
		in solids
Condensed	Synchrotron	X-ray studies of crystal structure
matter	radiation	
physics	sources	
Condensed	Spallation	Neutron scattering studies of metals and crystals,
matter	neutron	liquids, and amorphous materials
physics	sources	
Material	Ion beams	Proton and X-ray activation analysis of materials;
science		X-ray emission studies; accelerator mass
		spectrometry
Chemistry	Synchrotron	Chemical bonding studies: dynamics and kinetics;
and	radiation	protein and virus crystallography; biological
biology	sources	dynamics

Accelerators for nuclear physics (operating)

Туре	Facility	CM energy(GeV)	Luminosity(10^{33} cm ⁻² s ⁻¹)
AuAu, two ring collider	BNL RHIC (US)	100/nucleon	10-6
Electron Microtron	CEBAF (US)	4	
Electron linac	Bates (US)	0.3-1.1	
Proton synchrotron	IUCF (US)	0.5	
Isochronous heavy-ion cyclotron	MSU NSCL (US)	0.5	
Isochronous cyclotron	TRIUMF(Canada)	0.5	
Isochronous cyclotron	PSI (Switzerland)	0.5	

Other applications of accelerators

• Oil well logging with neutron	sources from small linacs
---------------------------------	---------------------------

• Archaeological dating with accelerator mass spectrometry

• Medical diagnostics using accelerator-produced radioisotopes

• Radiation therapy for cancer: X-rays from electron linacs, neutron therapy from proton linacs, proton therapy; pion and heavy-ion therapy

• Ion implantation with positive ion beams

• Radiation processing with proton or electron beams: polymerization, vulcanization and curing, sterilization of food, insect sterilization, production of microporous membranes

• X-ray microlithography using synchrotron radiation

• Inertial confinement fusion using heavy-ion beams as the driver

• Muon-catalyzed fusion

• Tritium production, and radioactive waste incineration, using high energy proton beams

USPAS Lecture	1
---------------	---

11/21/01