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1 Stationary state perturbation theory

1.1 Nondegenerate Formalism

We have a Hamiltonian
H = H0 + V

and we suppose that we have determined the complete set of solutions to H0 with
ket | n0〉 so that H0| n0〉 = E0

n| n0〉. And we suppose that there is no degeneracy.
The eigenkets of H satisfy

H| n〉 = En| n〉 → (H0 + V )| n〉 = (E0
n + ∆n)| n〉 (1)

(E0
n −H0)| n〉 = (V −∆n)| n〉 (2)

where En = E0
n + ∆n. We multiply the perturbative term by a real parameter λ and

insist that ∆n is analytic in λ as λ goes from 0 to 1. Then Equation ?? becomes

(E0
n −H0)| n〉 = (λV −∆n)| n〉 (3)

The perturbation is small if the energy shift is small compared to the spacing of the
unperturbed levels that might be connected by the perturbation. That last equation
is our Schrodinger equation and we could invert it like so

| n〉 =
1

E0
n −H0

(λV −∆n)| n〉
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To make sure we don’t do something crazy like divide by zero we project out the
| n0〉 ket by introducing a projection operator

φ =
∑
k 6=n
| k0〉〈k0 |

Then we make the equation safe from nan.

| n〉 =
φ

E0
n −H0

(λV −∆n)| n〉

We are not losing anything here since Equation ?? says that

〈n0 | λV −∆n | n〉 = 0 (4)

Finally, so we have something sensible as λ → 0 we add the solution to the unper-
turbed part and write

| n〉 = | n0〉+
φ

E0
n −H0

(λV −∆n)| n〉

One last thing to note. Normalization. It seems that 〈n | n0〉 = 1. We will use this
fact. | n〉 is not normalized by itself. Now Equation ?? says that

∆n = λ 〈n0 | V | n〉

Now we suppose that

| n〉 = | n0〉+ λ| n1〉+ λ2| n2〉+ . . .

and
∆n = λ∆1

n + λ2∆2
n + . . .

Then equation powers of λ. Our energy equation becomes

λ∆1
n + λ2∆2

n + . . . = λ〈n0 |V
(
| n0〉+ λ| n1〉+ λ2| n2〉+ . . .

)
So

∆1
n = 〈n0 | V | n0〉

∆2
n = 〈n0 | V | n1〉

∆3
n = 〈n0 | V | n2〉
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And for the wave function

| n0〉+λ| n1〉+λ2| n2〉+. . . = | n0〉+
φ

E0
n −H0

(λV−(λ∆1
n−λ2∆2

n+. . .))| n0〉+λ| n1〉+λ2| n2〉+. . .

Equating stuff linear in λ we get

| n1〉 =
φ

E0
n −H0

V | n0〉 (5)

Next everything quadratic in λ gives

| n2〉 =
φ

E0
n −H0

(
V | n1〉 −∆1

n| n1〉
)

| n2〉 =
φ

E0
n −H0

(
V

φ

E0
n −H0

V | n0〉 − 〈n0 | V | n0〉
φ

E0
n −H0

V | n0〉
)

And we can use our solution for | n1〉 to see that

∆2
n = 〈n0 |V

φ

E0
n −H0

V | n0〉 =
∑
k 6=n

| 〈n0 | V | k0〉 |2

E0
n − E0

k

It is evident that degeneracy could get us in trouble.

1.2 Examples

1.2.1 Helium

To first approximation, the energy of the ground state of helium is

2Z2E0 = −2Z2

(
e2

2a

)
= 2(4)(−13.6ev) = −108.8ev

The next approximation would be to include the interaction of the electrons as a
perturbation.

V =
e2

|r1 − r2|
The unperturbed wave function is taken to be

ψ(r1, r2) = ψ0(r1)ψ0(r2) =
8

πa3
e−2(r1+r2)/a
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where

a =
h̄c

αmc2

Set the polar axis along r1 and

E1 = e2
(

8

πa3

)2 ∫ e−4(r1+r2)/a√
r2

1 + r2
2 − 2r1r2 cos θ2

r2
1dΩ1r

2
2dΩ2 = e2 5

4a

Then the total energy is

E = 2(4)

(
−e2

2a

)
+

5e2

4a
= −11e2

4a
= −11

2
(13.6ev) = −74.8ev

1.2.2 Stark effect for rigid rotator

The hamilonian for the rigid rotator is

H =
L2

2I

where I is the moment of inertia and the vibrational levels are assumed infinitely far
apart as compared to the spacing of the rotational levels. Then the energy eigenstates

and eigenvalues are | ψ〉 = | l,m〉 and El = h̄2l(l+1)
2I

. In the presence of a uniform
electric field in the z direction we introduce

V = −ezE = −erE cos θ

We suppose that e〈r〉 = d is the electric dipole moment of the rotator. (All states
have the same radial wave function). We can write

V = T 1
0 = −dE

√
4π

3
Y1,0(θ)

We need to evaluate 〈
l2,m2 | T 1

0 | l1,m1

〉
The matrix element is non zero if m1 = m2 and (|l2 − l1| ≤ 1, (Wigner Eckart),
l1 6= l2, (parity). Then the non zero matrix element can be written

〈
l ± 1,m | T 1

0 | l,m
〉

= −dE
√

4π

3

∫
Y ∗l±1,mY1,0Yl,mdΩ
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= −dE
√

4π

3

√√√√(2(1) + 1)(2l + 1)

4π(2(l ± 1) + 1)
〈1, 0, l,m | l ± 1,m〉〈1, 0, l, 0 | l ± 1, 0〉

= −dE

√√√√ (2l + 1)

(2(l ± 1) + 1)
〈1, 0, l,m | l ± 1,m〉〈1, 0, l, 0 | l ± 1, 0〉

= −dE
√
l2 −m2

4l2 − 1

The unperturbed levels are all degenerate. But since H0 and V both commute
with Lz, there is no mixing, and non degenerate theory is OK. In each of the m
supspaces, the spectrum is non degenerate. The first order correction is zero, by the
rules above, (〈l,m | T 1

0 | l,m〉 = 0. The second order correction reduces to the two
terms corresponding to l = ±1. Finally

εlm2 =

(
dE
E0
l

)2
l(l + 1)− 3m2

2(2l − 1)(2l + 3)

The degeneracy is only partly removed, since it depends on m2. Some symmetry
remains. We could compute the electric dipole moment.

µ ∼ e 〈n | z | n〉

We have that

| n〉 ∼ | n0〉+
∑
k 6=n

〈k0 | T 1
0 | n0〉

E0
n − E0

k

| k0〉

Then

µ ∼
∑
k 6=n

〈n0 | z | k0〉 〈k0 | T 1
0 | n0〉

(E0
n − E0

k)
=

1

E
∑
k 6=n

〈n0 | T 1
0 | k0〉 〈k0 | T 1

0 | n0〉
(E0

n − E0
k)

1.2.3 Stark effect in hydrogen

As in the case of the rigid rotator, the perturbation commutes with Lz so there is
no mixing of states with different m and we use non degenerate perturbation theory.
Also, since all of the eigenstates with definite angular momentum have definite parity,
there is no first order correction. Another way to see this is to note that although
the perturbed Hamiltonian does not commute with L2, it does commute with Lz.
So there is no change to the z-component and therefore no mixing of states with
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m 6= m′. Parity eigenstates have zero electric dipole moment. The electric dipole
moment is

d = 〈α, l,m | x | α, l,m〉 =
∫

x|ψ(x)|2d3x = 0

since x has odd parity. An electric dipole emerges in second order since the first
order correction to the wave function includes contributions of opposite parity. That
also means that the electric dipole moment scales with the applied electric field. The
energy shift is quadratic in E

The polarizability is α where

∆ = −1

2
α|E|2

The energy shift is second order

∆2 = e2E2
∑
k 6=0

| 〈k0 | z | 1, 0, 0〉 |2

(E0
0 − E0

k)

We approximate the sum by assuming that the denominator is constant, (this will
give us an upper limit on the energy shift) and noting that∑

k 6=0

|
〈
k0 | z | 1, 0, 0

〉
|2 =

∑
all k

|
〈
k0 | z | 1, 0, 0

〉
since 〈1, 0, 0 | z | 1, 0, 0〉 = 0. The sum over all k becomes

∑
all k

|
〈
k0 | z | 1, 0, 0

〉
=
〈
1, 0, 0 | z2 | 1, 0, 0

〉
=

1

3
〈r2〉 = a2

0

Therefore,

∆2 ≤ e2E2 a2
0

(E0
0 − E0

k)
= ∆2 ≤ e2E2 a2

0

(−e2/2a0 − −1
4
e2/2a0)

= −E2 8a3
0

3

2 Degenerate perturbation theory

Our formalism falls apart if there are degeneracies. But actually, it is OK as long
as the perturbation does not couple the degenerate states. If it does couple degen-
erate states we are in trouble since then we have finite numerator and an energy
denominator that is zero in Equation ??. The strategy is to find a new basis for
the degenerate states in which none of the states in that basis are coupled by the
perturbation.
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2.1 Formalism

So here’s what we do. Suppose that there is a degenerate set of states and we are
interested in the effect on the perturbation of states at that energy. The states
are | i〉, i = 1, 2, 3 for example. Now if 〈i | V | j〉 = |V |δij then we do not have a
problem. Business as usual. If there are off-diagonal terms, then we need to find
a different linear combination of the degenerate states for which the perturbation
matrix is diagonal. That is we diagonalize

V =

 〈1 | V | 1〉 〈1 | V | 2〉 〈1 | V | 3〉〈2 | V | 1〉 〈2 | V | 2〉 〈2 | V | 3〉
〈3 | V | 1〉 〈3 | V | 2〉 〈3 | V | 3〉

→
 〈I | V | I〉 0 0

0 〈II | V | II〉 0
0 0 〈III | V | III〉


The new basis is related to the old by a unitary transformation.

| I〉 = a| 1〉+ b| 2〉+ c| 3〉

The states | I〉, | II〉, | III〉 are the eigenkets of the perturbation matrix and the
diagonal elements of the perturbation matrix in the new basis are the eigenvalues.
In fact we see that the eigenvalues are the first order energy shift. The first order
shift in the state vector is given as before by

| n1〉 =
∑
k 6=D

〈k0 | V | n0〉
(E0

n − E0
k)
| k0〉

The states in the degenerate subspace do not contribute because all of the off diagonal
matrix elements are zero. Likewise for the second order correction to the energy.

2.1.1 Projection operators

We could more formally use the projection operator approach. We go back to the
Schrodinger equation

0 = (E −H0 − λV )| l〉
= (E − ED − λV )P0| l〉+ (E −H0 − λV )P1| l〉

Projecting from the left by P0 and P1 we get

P0 ((E − ED − λV )P0| l〉+ (E −H0 − λV )P1| l〉)
= (E − ED − λP0V P0| l〉 − λP0V P1| l〉 (6)

P1 ((E − ED − λV )P0| l〉+ (E −H0 − λV )P1| l〉)
= −λP1V P0| l〉+ (E −H0 − λP1V P1)| l〉 (7)
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We solve Equation ?? for | l〉 and then project out the states not part of the degen-
erate subspace and then the denominator is safe

P1| l〉 = P1
1

E −H0 − λP1V P1

λP1V P0| l〉

∼ P1| l1〉 ∼
∑
k 6=D
| k0〉〈k

0 | V | l0〉
E0
D − E0

k

(8)

Then substitute Equation ?? into Equation ?? for P1| l〉 multiply by P0 and we have

(E − ED − λP0V P0 − λP0V P1
1

E −H0 − λP1V P1

λP1V )P0| l〉

∼ (E − ED − λP0V P0)| l〉 = 0

The energies are the eigenvalues of the perturbation matrix. In summary we divide
the space into the subspace of degenerate states, and the all the rest. The exact
state vector is a linear combination of all | l0〉 kets.

| l〉 =
∑

ai| li〉

Then the Schrodinger equation including the perturbation is

(E0
l −H0)| l〉 = (λV −∆n)| l〉 (9)

Substitute the expansion for ∆l and

| l〉 = | l0〉+ λ| l1〉+ λ2| l2〉+ . . . .

Here
| l0〉 =

∑
i=D

ai| i〉

| l0〉 is a normalized linear combination of the degenerate states in the basis in which
the perturbation matrix is diagonalized. Multiply by 〈m0 | from the left〈

m0 | E0
n −H0 | l

〉
= λ 〈m0 | V | l〉 −∆l〈m0 | l〉

and keep the first order in λ, when m0 = lD and we get that

0 = 〈lD | V | l0〉 −∆1
l 〈lD | l〉 → 〈lD | V 〉lD = ∆i

D

When m0 6= lD

(E0
n − E0

m)〈m0 | l〉 = λ〈m0 | V | l〉 −∆l〈m0 | l〉
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To first order in λ we have

(E0
n − E0

m)
〈
m0 | l1

〉
= 〈m0 | V | l0〉

and 〈
m0 | l1

〉
∼ 〈m0 | V | l0〉

E0
l − E0

m

and

| l1〉 =
∑
l 6=D

〈m0 | V | l0〉
E0
n − E0

m

| m0〉

Note that we can always add states with eigenvalue E0
l . The above gives no infor-

mation about them. We define | l1〉 and all higher order contributions to include no
| l0〉 or for that matter any of the | lD〉 degenerate states. Then the exact solution is

| l〉 =
∑
i=D

ai| i〉+ | l1〉+ | l2〉+ . . .

and
| l0〉 =

∑
i=D

ai| i〉

〈l0 | lj〉 = 0, for j 6= 0. We suppose that the ai are chosen so that | l0〉 is normalized.
We see that in this way | l〉 is a solution to Equation ?? independent of the coefficients
ai. And the second order energy shift

∆2
l =

〈
l0 | V | n1

〉
=

2.1.2 Second order degenerate perturbation theory

Another strategy1 for getting second order correction of degenerate states is to write
the true state

| a〉 =
∑
α

cα| α〉+
∑
µ

dµ| µ〉

where the sum over α includes the degenerate states and the sum over µ is all the
others. We know that

(H − Ea)| a〉 = (H0 + λH1 − Ea)| a〉 = 0

1Gottfried and Yan
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Then

0 =
∑
α

cα(H − Ea)| α〉+
∑
µ

dµ(H − Ea)| µ〉

0 =
∑
α

cα(Eα − Ea + λH1)| α〉+
∑
µ

dµ(Eµ − Ea + λH1)| µ〉

Then multiply from the left first by 〈β | which is an element of the degenerate space
and then by 〈ν | which is outside of the degenerate space.

0 = cβ(Eβ − Ea) + λ
∑
α

cα 〈β | H1 | α〉+ λ
∑
µ

dµ 〈β | H1 | µ〉 (10)

0 =
∑
α

cαλ 〈ν | H1 | α〉+ dν(Eν − Eα) + λ
∑
µ

dµ 〈ν | H1 | µ〉 (11)

Drop the last term in Equation ?? as it is higher order in λ. Justification for this step
is that the state | a〉 is mostly a linear combination of the states in the degenerate
space. The coefficients dµ would all be zero in the λ → 0 limit so they are at most
first order in λ. Then that last term is second order in λ. You might then argue
that we should drop the last term in Equation ??, but probably 〈β | H1 | µ〉 is more
important that 〈ν | H1 | µ〉 since it connects to the relevant states. Finally, we could
keep the last term in Equation ??, solve for dν , substitute into Equation ?? and then
drop the highest order term. That would be equivalent to solving for

dν = −λ
∑
α cα 〈ν | H1 | α〉

(Eν − ED)
(12)

Substitution into ?? gives

0 = cβ(Eβ − Eα) +
∑
α

cα

(
λ 〈β | H1 | α〉+ λ2

∑
µ

〈µ | H1 | α〉 〈β | H1 | µ〉
Eµ − ED

)
(13)

which is the eigenvalue problem in the subspace D for the effective Hamiltonian Heff

〈β | Heff | α〉 = λ 〈β | H1 | α〉+ λ2
∑
µ

〈β | H1 | µ〉 〈µ | H1 | α〉
ED − Eµ

.

So we diagonalize 〈β | H1 | α〉.
Define P to be the projection operator onto the degenerate subspace D, P =∑

α | α〉〈α |. Then we can write

Heff = λPH1P + λ2PH1
1− P
E −H0

H1P
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2.1.3 Example

Suppose we have a system with 3 states. The first two are degenerate. The third is
at energy ∆ above the two.

H1 =

 0 0 λM
0 0 λM
λM λM ∆


The

Heff = −(λM)2

∆

(
1 1
1 1

)
The energies and eigenstates are

ES = −2
(λM)2

∆
, | ES〉 =

1√
2

(| 1〉+ | 2〉)

and

EA = 0, | ES〉 =
1√
2

(| 1〉 − | 2〉)

That’s what happens if ∆� λM . On the other hand, if ∆ ∼ λM , then we treat all
three states as though they were degenerate. Assume the unperturbed energies are
all the same. Then the shift in the energy of each of the three states is given by the

eigenvalues of H1 which are, E0 = 0, E± = 1
2
(∆±

√
∆2 + 8(λM)2). The eigenvectors

are

| 0〉 =
1√
2

(| 1〉 − | 2〉), | ±〉 =
(| 1〉+ | 2〉+ E±

λM
| 3〉)√

2 + E2
±/λ2M2

What if we went back to the weak perturbation case where M � ∆, but we had
started with states | S〉 = 1√

2
(| 1〉+ | 2〉) and | A〉 = 1√

2
(| 1〉− | 2〉) and | III〉 = | 3〉.

Then

V =

 0 0
√

2M
0 0 0√
2M 0 ∆


Now

Heff =
(−2M2/∆ 0

0 0

)
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2.2 Fine Structure

2.2.1 Spin orbit coupling

The magnetic field at the electron due to its motion through the E field of the nucleus
is

B = −v × E

c

The electric field is radial so E = |E|
r

r and p = mv and then

B =
r× p

mc

|E|
r

=
L

mc

|E|
r

Next, note that E = 1
e
∇V = 1

e
∂V
∂r

and we get that

B =
L

mec

1

r

∂V

∂r

The magnetic moment of the electron is

µe = − e

mc
S

Finally

∆H = −µ ·B =
1

m2c2r

∂V

∂r
L · S

and if V = e/r then

∆H =
e2L · S
m2c2r3

→ e2L · S
2m2c2r3

Then a factor of 1
2

for the Thomas Precession. The best way to do this is to take the
nonrelativistic limit of the Dirac equation with a vector potential.

Or we could use the Biot Savart Law which states that

B =
∫ (JdV )×r

c|r|3

For a current loop, we find the magnetic field at the center is

B =
I

cr3

∫
eλdlv × r = −er× p

cmr3

The unperturbed states have orbital angular momentum and spin. We can use
| l,ml〉| s,ms〉 as base kets with eigenvalues l,m, s, and ms, or we can take the linear
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combinations that would be eigenkets of j, jz, l, s. Since L · S = 1
2
(J2 − L2 − S2), it

is clear that it will be more convenient to use the latter. Then

E1
n =

e2h̄2

4m2c2
〈 1

r3
〉
(
j(j + 1)− l(l + 1)− 3

4

)
ESO =

h̄2e2

4m2c2

1

n3a3
0

{
[j(j + 1)− l(l + 1)− 3/4]

l(l + 1
2
)(l + 1)

}

where

〈 1

r3
〉 =

1

n3a3
0l(l + 1/2)(l + 1)

For j = l ± 1
2

ESO =
h̄2e2

4m2c2

1

a3
0n

3


[

l
−(l + 1)

]
l(l + 1

2
)(l + 1)


=

mc2α4

4


[

l
−(l + 1)

]
n3l(l + 1

2
)(l + 1)


We remember that

E0 = −1

2
α2mc2 = − e2

2a0

→ a0 =
e2

α2mc2
=

h̄2

me2

Substitution into the above gives

E1
n ∼

e2h̄2(α2mc2)3

2m2c2e6
=
h̄2c2

2e4

(α2mc2)3

(mc2)2
=

1

2
α2mc2(α2)

(
j(j + 1)− l(l + 1)− 3

4

)

No dependence on ml. No mixing of levels. No need for degenerate formalism. Each
level is split into j = l ± 1

2
.

2.2.2 Relativistic correction

Really

K =
√

(mc2)2 + (pc)2 −mc2 ∼ p2

2m
− p4

8m3c2
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And 〈
ψ |

(
p4

2m

)
| ψ
〉

=

〈
p2

2m
ψ | p

2

2m
ψ

〉
= 〈(E0 − V )ψ | (E0 − V )ψ〉

=
〈
ψ | (E2

0 − 2E0V + V 2 | ψ
〉

We use the fact that p2 is Hermitian in the first step.

∆E1
0 ∼ −

(2m)2

8m3c2
〈(En − V (r))2〉 ∼ 4m2

8m3c2

(
E2
n − 2En〈

−e2

r
〉+ 〈e

4

r2
〉
)

∼ − 4m2

8m3c2

(
E2
n − 2En

−e2

n2a0

+
e4

(l + 1
2
)n3a3

0

)

∼ − 4m2

8m3c2
E2
n

(
1− 4 +

4n

(l + 1
2
)

)

∼ − 1

2mc2
E2
n

(
−3 +

4n

(l + 1
2
)

)

∼ −1

2

mc2α4

4n4

(
−3 +

4n

(l + 1
2
)

)

∼ − 5

2mc2
E0(

1

2
α2mc2) =

5

4
E0α

2

(Note that
〈
1, 0, 0 | 1

r
| 1, 0, 0

〉
= 1

a0
and

〈
1, 0, 0 | 1

r2
| 1, 0, 0

〉
= 2

a20
.) Depends on n, l,

not on j. Again there is no mixing of degenerate levels. In general

〈1
r
〉 =

1

n2a0

, 〈 1

r2
〉 =

1

(l + 1
2
)n3a2

0

2.2.3 Darwin term

The particle cannot be localized to better than its Compton wavelength h̄/mc. The
potential that is relevant is not V (r) but some smeared average about the point r.

V (r) = V (r) +
∑
i

∂V

∂ri
δri +

1

2!

∑
i

∑
j

∂2V

∂ri∂rj
δriδrj +O(δr3)

= V (r) +
1

6
(δr)2∇2V +O(δr3)
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If δr ∼ h̄/mc then

HD ∼
2

3
π
e2h̄2

m2c2
δ3(r)

Note that according to Merzbacher (p. 206 and 208)

ψn,l,m(0) =

√
1

(na)3

n!

2n(n− 1)!
=

1√
2(na0)3

Then

〈n00 | HD | n00〉 =
2

3
π
e2h̄2

m2c2

1

2(na0)3
=

2π

3

e2h̄2

m2c2

1

2n3

m3e6

h̄6 =
2π

3

1

2n3
mc2α4

and it exactly compensates for the l = 0 term that we got from the spin orbit term.
Or it would if we did it properly using the Dirac equation.

2.2.4 Fine Structure

Combining all order α2 corrections we have

ESO =
E2
n

mc2

{
n[j(j + 1)− l(l + 1)− 3/4]

l(l + 1
2
)(l + 1)

}

The relativistic correction is

E1
r = − E2

n

2mc2

[
4n

l + 1
2

− 3

]

The total α2 correction is

−E1

n2

[
1 +

α2

n2

(
n

j + 1
2

− 3

4

)]

2.3 Stark effect

To determine the effect of an external uniform electric field on a set of degenerate
levels we need to exercise a bit more care. Consider n = 2 in hydrogen. There are
2l+1 = 3 levels with l = 1 and 1 level with l = 0. Spin is not relevant. The candidate

15



set of base states are the orbital angular momentum kets. The perturbation matrix
elements 〈i | V | j〉, where V = −ez|E| are

V =


0 〈2, 0, 0 | V | 2, 1, 0〉 0 0

〈2, 1, 0 | V | 2, 0, 0〉 0 0 0
0 0 0 0
0 0 0 0


Only the upper left is relevant. All of the other states are not coupled. The eigen-
vectors of the upper left 2X2 matrix are

∆1
± = −± e|E| 〈2, 0 | r | 2, 1〉 〈2, 0, 0 | cos θ | 2, 1, 0〉 = ±3ea0|E|

The eigenvectors are

| ±〉 =
1√
2

(| 2, 0, 0〉 ± | 2, 1, 0〉)

These two states are shifted positively and negatively with an electric field. The
other 2 states are not effected by the E-field.

2.4 Zeeman effect

H =
p2

2m
+ Vc(r)−

e

2mc
|B|Lz +

e2

8mc2
|B|2(x2 + y2)

We have
HZ = − e

2mc
|B|(Lz + 2Sz)

and then
Hspin = −µ ·B = − e

mc
S ·B = − e

mc
|B|Sz

and

Hspin−orbit =
1

2m2c2

1

r

dV (r)

dr
L · S

Assuming B is very weak so that the spin-orbit piece dominates, we need to evaluate
〈j,m, l, s | Lz + 2Sz | j,m, l, s〉 = 〈j,m, l, s | Jz + Sz | j,m, l, s〉 Since

| l ± 1

2
,m〉 = ±

√
l ±m+ 1

2

2l + 1
| l,m− 1

2
〉| 1

2
,
1

2
〉+

√
l ∓m+ 1

2

2l + 1
| l,m+

1

2
〉| 1

2
,−1

2
〉

we can compute 〈
l ± 1

2
,m | Sz | l ±

1

2
,m
〉

= ± mh̄

2l + 1

16



Meanwhile
〈
l ± 1

2
,m | Jz | l ± 1

2
,m
〉

= h̄m. Then

∆1
B = −eh̄B

2mc
m
(

1± 1

2l + 1

)

2.4.1 Paschen-Back limit

If the magnetic field is very strong, then total angular momentum is not conserved.
(There is an external torque). But the Lz and Sz are fixed. So now it is better to
use the basis | ,ml〉| s,ms〉. It is easy to evaluate 〈Lz + 2Sz〉 but not quite as simple
to compute 〈L · S〉 for the spin orbit coupling. But if we write

〈L · S〉 = 〈LzSz +
1

2
(L+S− + L−S+)〉

and note that 〈L±〉 = 〈S±〉 = 0 then we get that

〈L · S〉 = h̄2mlm2

2.4.2 Intermediate field

Let’s examine the effect of an external magnetic field on the n = 2 states of hydrogen.
And we suppose that 〈Hspin−orbit〉 ≈ 〈Hz〉. Now we have to exercise some care in
computing energy shifts. There are 8 degenerate states. We can choose as a basis
eigenstates of j, jz, l, s, (l = 1, j = ±3/2,±1/2,or l = 0, j = ±1

2
or eigenstates of

l,ml, s,ms, (l = 1,ml = ±1, 0,ms = ±1/2, l = 0,ms = ±1/2). We have to construct
the perturbation matrix elements 〈i | V | j〉 in whatever basis we have chosen and

V = − e

2mc
B(Lz + 2Sz) +

e2

2m2c2

1

r3
L · S

Let’s pick the basis of eigenstates of j, jz, l, s. Then the L · S term only contributes
along the diagonal. So let’s look at the effect of the external field. We had better
label the states.

| 1〉 = | 1

2
,−1

2
, 0,

1

2
〉 = | 0, 0〉| 1

2
,−1

2
〉

| 2〉 = | 1

2
,
1

2
, 0,

1

2
〉 = | 0, 0〉| 1

2
,
1

2
〉

| 3〉 = | 1

2
,−1

2
, 1,

1

2
〉 =

√
1

3
| 1, 0〉| 1

2
,−1

2
〉 −

√
2

3
| 1,−1〉| 1

2
,
1

2
〉

17



| 4〉 = | 1

2
,
1

2
, 1,

1

2
〉 = −

√
1

3
| 1, 0〉| 1

2
,
1

2
〉+

√
2

3
| 1, 1〉| 1

2
,−1

2
〉

| 5〉 = | 3

2
,−1

2
, 1,

1

2
〉 =

√
2

3
| 1, 0〉| 1

2
,−1

2
〉+

√
1

3
| 1,−1〉| 1

2
,
1

2
〉

| 6〉 = | 3

2
,
1

2
, 1,

1

2
〉 =

√
2

3
| 1, 0〉| 1

2
,
1

2
〉+

√
1

3
| 1, 1〉| 1

2
,−1

2
〉

| 7〉 = | 3

2
,−3

2
, 1,

1

2
〉 = | 1,−1〉| 1

2
,−1

2
〉

| 8〉 = | 3

2
,
3

2
, 1,

1

2
〉 = | 1, 1〉| 1

2
,
1

2
〉

Now we can compute the matrix elements

α0 − b 0 0 0 0 0 0 0

0 α0 + b 0 0 0 0 0 0

0 0 α1 − b
√

1/3 0 −b
√

2/3 0 0 0

0 0 0 α1 + b(
√

1/3) 0 −b
√

2/3 0 0

0 0 −b(
√

2/3) 0 α1 − b(
√

2/3) 0 0 0

0 0 0 −b(
√

2/3(1)) 0 α1 + b(
√

2/3) 0 0

0 0 0 0 0 0 α1 + b(−2) 0

0 0 0 0 0 0 0 α1 + b(2)


Next we find the eigenvalues ∆i. The energy of the state | i〉 shifts by ∆i.

3 Variational method

3.1 Formalism

Let’s think about that helium calculation again. We approximated the wave function for
the Helium atom with two electrons as the product of the wave functions of two singly
ionized atoms. Then we included the interaction of the two electrons as a perturbation.

18



The total hamiltonian is

H =
p2

1

2m
− Ze2

r1
+

p2
2

2m
− Ze2

r2
+

e2

|r1 − r2|

with Z = 2. The approximate wave function is

| ψ1〉| ψ2〉 =

(
Z3

πa3
0

)1/2(
Z3

πa3
0

)1/2

e−Zr1/a0e−Zr2/a0

Then we calculated

Eapprox = E0
1 + E0

2 + ∆ = 〈ψ1ψ2 | H | ψ1ψ2〉 = 〈ψ1ψ2 | H0 | ψ1ψ2〉+ 〈ψ1ψ2 | HH | ψ1ψ2〉

Now it is possible to write our trial wave function as a linear combination of the complete
set of exact eigenkets.

| ψ1ψ2〉 =
∑
n

an| n〉, H| n〉 = En| n〉

Then
Eapprox =

∑
n

|an|2En ≥ E0

∑
n

|an|2

So we know for sure that Eapprox ≥ E0 and in fact that will be true for any trial wave
function that we choose. It’s expectation value will always overestimate the ground state
energy. So why not try to come up with a better approximation. One adjustment that we
might make is to account for the shielding effect of one electron on the other. That is, each
electron does not really see the full coulomb attraction because it is shielded by the other.
The effective Z is a little less than 2. We can incorporate this approximation in our wave
function by writing

| ψ1〉| ψ2〉 =

(
Z ′3

πa3
0

)1/2(
Z ′3

πa3
0

)1/2

e−Z
′r1/a0e−Z

′r2/a0 =

(
Z ′

πa0

)3

e−Z
′(r1+r2)/a0

Or define a′0 = a0/Z
′ and we get that

ψ1ψ2 =

(
1

πa′3

)1/2

e−r/a
′
(

1

πa′3

)1/2

e−r/a
′

Note that our new wave function is normalized. This is very important. Now we compute

〈ψ1ψ2 | H | ψ1ψ2〉 =

〈
ψ1ψ2 |

p2

2m
| ψ1ψ2

〉
+

〈
ψ1ψ2 |

−Ze2

r1
+
−Ze2

r2
| ψ1ψ2

〉
+

〈
ψ1ψ2 |

e2

|r1 − r2|
| ψ1ψ2

〉
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Note that ψ1 and ψ2 just look like the hydrogen ground state. Therefore〈
ψ1ψ2 |

p2

2m
| ψ1ψ2

〉
= 2

(
Z ′e2

2a′

)
=
Z ′2e2

a0

The second term〈
ψ1ψ2 |

−Ze2

r1
+
−Ze2

r2
| ψ1ψ2

〉
= −2Z

(
e2

a′

)
= −2

Z ′Ze2

a0

The third term we calculated before

E1 = e2

(
Z ′3

πa3

)2 ∫
e−2Z′(r1+r2)/a√

r2
1 + r2

2 − 2r1r2 cos θ2

r2
1dΩ1r

2
2dΩ2 = e2 5

8a′
= Z ′

5

8

e2

a0

Therefore

〈ψ1ψ2 | H | ψ1ψ2〉 = (Z ′
2 − 2Z ′Z + Z ′

5

8
)
e2

a0

It will be a function of the parameter Z ′. Next, we minimize the expectation value with
respect to Z ′. This is OK because no matter what we choose for Z ′, we know that we are
overestimating the energy. Set

d〈H〉
dZ ′

= (2Z ′ − 2Z +
5

8
) = 0→ Z ′ = Z − 5

16
=

27

16

And

〈H〉 = −2.85
e2

a0
= −77.5ev

3.2 Examples

4 Time dependent perturbation theory

4.1 Formalism

Now e want to consider time dependent perturbations. The Hamiltonian is written in the
form

H = H0 + V (t)

We suppose that we know the complete set of eigenkets of H0, namely | n〉 and as usual
H0| n〉 = En| n〉. We note that for a time dependent hamiltonian, the time evolution
operator is not simply e−iHt/h̄. Typically the time dependent part of the hamiltonian is
something that turns on and then off so it is reasonable to ask about the probability of
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finding the system in one of the uperturbed states. An arbitrary state at t = 0 can be
written

| α〉 =
∑
n

cn(0)| n〉

We want
| α, t0 = 0; t〉 =

∑
n

cn(t)e−iEnt/h̄| n〉

We work in the interaction picture, which is somewhere between the Schrodinger picture, in
which operators have no time dependence, but the states evolve in time, and the Heisenberg
picture in which the states are fixed and the operators evolve. In the interaction picture,
we take the time dependence associated with the unperturbed Hamiltonian from states
and attach it to operators. And we attach the time dependence from the perturbation to
the states. So in the interaction picture

| α, t0; t〉I = eiH0t/h̄| α, t0; t〉S

Observables are
AI = eiH0t/h̄Ase

−iH0t/h̄

According to the Schrodinger equation

ih̄
∂

∂t
| α, t0; t〉S = (H0 + V )| α, t0; t〉S

ih̄
∂

∂t

(
e−iH0t/h̄| α, t0; t〉I

)
= (H0 + V )e−iH0t/h̄| α, t0; t〉I

ih̄e−iH0t/h̄ ∂

∂t
| α, t0; t〉I = eiH0tV e−iH0t| α, t0; t〉I

ih̄
∂

∂t
| α, t0; t〉I = VI | α, t0; t〉I (14)

Then we can also write that
| α, t0; t〉 =

∑
n

cn(t)| n〉 (15)

Substitute that last into Equation ?? and multiply from the left by 〈n | and we have

ih̄
∂

∂t
〈n | α, t0; t〉 =

∑
m

〈n | VI | m〉 〈m | α, t0; t〉I (16)

Also from Equation ?? we see that cn = 〈n | α, t0; t〉. Then

ih̄
d

dt
cn(t) =

∑
m

Vnme
iωnmtcm(t)

where

ωmn =
En − Em

h̄

21



and we used 〈
n | eiH0t/h̄V (t)e−iH0t/h̄ | m

〉
= Vnm(t)ei(En−Em)t/h̄

We expand the time evolution operator

| α, t0; t〉I = UI(t, t0)| α, t0; t0〉I

ih̄
d

dt
UI(t, t0) = VI(t)UI(t, t0)

The initial condition is
U(t, t0)|t=t0 = 1

and we integrate to get

UI(t, t0) = 1− i

h̄

∫ t

t0
VI(t

′)UI(t
′, t0)dt′

We get an approximate solution by iteration:

UI(t, t0) = 1− i

h̄

∫ t

t0
VI(t

′)

[
1− i

h̄

∫ t′

t0
VI(t

′′)UI(t
′′, t0)dt′′

]
dt′

= 1− i

h̄

∫ t

t0
VI(t

′) +

(−i
h̄

)2 ∫ t

t0
dt′
∫ t′

t0
dt′′VI(t

′)VI(t
′′)

= + . . .

4.1.1 Transition

Suppose we have a system in an eigenket | i〉. Then

| i, t0; t〉 = UI(t, t0)| i〉 =
∑
n

| n〉 〈n | UI(t, t0) | i〉 =
∑
n

cn(t)

We see that 〈n | UI | i〉 is the amplitude that a system initial in state | i〉 will be in state
| n〉 as a function of time. We note that

| i〉I = eiH0t/h̄| α, t0; t〉S
| i〉I = eiH0t/h̄U(t, t0)| α, t0; t0〉S
| i〉I = eiH0t/h̄U(t, t0)e−iH0t0 | α, t0; t0〉I

→ UI(t, t0) = eiH0t/h̄USe
−iH0t0/h̄

Therefore
〈n | UI | i〉 = ei(Ent−Eit0)/h̄ 〈n | U | i〉
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Then as long as keti and | n〉 are eigenkets of H0,

| 〈n | UI | i〉 | = | 〈n | U | i〉 |

So

c0
n(t) = δni

c1
n(t) = − i

h̄

∫ t

t0

〈
n | VI(t′) | i

〉
dt′

c1
n(t) = − i

h̄

∫ t

t0

〈
n | V (t′) | i

〉
ei(En−Ei)t/h̄dt′

c2
n(t) =

(
− i
h̄

)2∑
m

∫ t

t0
dt′
∫ t′

t0
dt′′

〈
n | VI(t′) | m

〉 〈
m | VI(t′′) | i

〉
=

(
− i
h̄

)2∑
m

∫ t

t0
dt′
∫ t′

t0
dt′′Vnm(t′)eiωnmtVmi(t

′′)eiωmit
′′

4.1.2 Constant perturbation

We turn on a constant perturbation at t0. Then the amplitude to make a transition from
state i to n to first order is

cn(t) = − i
h̄

∫ t

t0
Vnie

iωnit =
−i
h̄

Vni
iωni

(
eiωnit − 1

)
Then

|cn(t)|2 = 4
|Vni|2

h̄2ω2
ni

sin2(ωnit/2) = 4
|Vni|2

(En − Ei)2
sin2(ωnit/2) = 4

|Vni|2

(En − Ei)2
sin2 ((En − Ei)t/2h̄)2

If En = Ei, then |cn(t)|2 = 1
h̄2
|Vni|2t2 If there is a finite number of final states close to

| n〉 then the total transition probability is∑
n,En=Ei

|cn|2.

and if there are many final states, more or less nearby we replace

∑
|cn|2 →

∫
dEρ(En)|cn|2 = 4

∫
sin2

[
(En − Ei)t

2h̄

] |V 2
ni

|En − Ei|2
ρ(E)dE

Next we see that

lim
t→∞

sin2
[

(En − Ei)t
2h̄

] |Vni|2

|En − Ei|2
ρ(E) =

πt

2h̄
δ(En − Ei)
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Finally

|cn(t)|2 =

∫
ρ(E)dE|cn(t)|2 =

(
2π

h̄

)
|Vni|2ρ(En)t

The rate is

wi→n =

(
2π

h̄

)
|Vni|2ρ(En)

or

wi→n =

(
2π

h̄

)
|Vni|2δ(En − Ei)

where integration over final states is implied.

4.1.3 Second order perturbation

We found earlier that

c2
n(t) = − 1

h̄2

∑
m

∫ t

0
dt′
∫ t′

0
dt′′Vnm(t′)eiωnmt′Vmi(t

′′)eiωmit
′′

If V (t) is constant in time then

c2
n(t) = − 1

h̄2

∑
m

∫ t

0
dt′Vnme

iωnmt′Vmi

(
eiωmit

′ − 1

iωmi

)

= − 1

h̄2

∑
m

∫ t

0
dt′Vnm

(
eiωnit

′ − eiωmnt′
)
Vmi

(
1

iωmi

)
=

i

h̄

∑
m

VnmVmi
Em − Ei

∫ t

0

(
eiωnit

′ − eiωmnt′
)
dt′

∼ i

h̄

∑
m

VnmVmi
Em − Ei

∫ t

0

(
eiωnit

′)
dt′

Now it looks just like the first order term with

−i
h̄
Vni →

i

h̄

∑
m

VnmVni
Em − Ei

So to second order

wi→n =
2π

h̄

∣∣∣∣∣Vni +
∑
m

VnmVmi
Ei − Em

∣∣∣∣∣
2

ρ(En)→ 2π

h̄

∫
dEn

∣∣∣∣∣Vni +
∑
m

VnmVmi
Ei − Em

∣∣∣∣∣
2

ρ(En)δ(En − Ei)

The average is over all final states n with energy En ∼ Ei.
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4.1.4 Scattering

Scattering from a fixed potential is a fine example of a perturbation that turns on, stays
on for awhile and then turns off. In our study of time dependent perturbation theory we
determined the the transition probability from initial state ψa to final state ψb is given by
the absolute square of the amplitude

cb(t) = − i
h̄

∫ t/2

−t/2

〈
ψb | H(t′) | ψa

〉
eiωabt

′
dt′

where ωab = Ea−Eb
h̄ . To apply the theory to a scattering process we imagine that the

perturbation H(t′) turns on at −t/2 and off at t/2 and while it is turned on it has constant
value H. Then we can integrate and we get

cb(t) = − i
h̄

1

iωab

[
eiωabt/2 − e−iωabt/2

]
Hab = −Hab

h̄

2i sinωabt/2

ωab

and the transition probability is

|cb|2 =
1

h̄2 |Hab|2
4 sin2 ωabt/2

ω2
ab

=
1

h̄2 |Hab|2
(

sinωabt/2

ωabt/2

)2

t2

Let’s examine the ωab dependent piece

f(ω) ≡
(

sinωt/2

ωt/2

)2

t2

The first zero of f(ω) occurs when ω = 2π/t. Its maximum value (at ω = 0) is t2. In the
limit of large t, f(ω)→ 2πtδ(ω). To check that assertion we integrate over all ω∫ ∞

−∞
f(ω)dω =

∫
sin2 x

x2
dx

2

t
t2 = 2πt =

∫
2πtδ(ω)dω

In terms of the energies of initial and final states,

2πtδ(ω)→ 2πth̄δ(Eb − Ea)

and we can write

|cb|2 =
1

h̄2 |Hab|22πtδ(Eb − Ez)

The transition rate is

R =
2π

h̄
|Hab|2δ(Eb − Ea)

In scattering experiments, the detector always has some finite acceptance. And what
we measure is a sum over all final states consistent with that acceptance.

R =
2π

h̄

∫
|Hab|2δ(Eb − Ea)ρ(Eb)dEb
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ρ(Eb) is the density of final states, the number of final states per unit energy. Well, we
have figured this out before. The number of states between k and k + dk is

dN =
V k2dkdΩ

8π3
=
V p2dpdΩ

(2πh̄)3

Using E = p2/2m and 2pdp/2m = dE we have

dN =
V pmdEdΩ

(2πh̄)3

dN

dE
= ρ(E) =

V pm

(2πh̄)3
dΩ

so

R =
2π

h̄

1

(2πh̄)3
V pm|Hab|2dΩ

Now how do we connect to the cross section? The incoming particle is represented by
a plane wave

ψa =
1√
V
eika·r

and the outgoing wave by

ψb =
1√
V
eikb·r

The
√
V in the denominator is so that the wave function is normalized. The particle density

in the incoming wave is |ψa|2 = 1/V and the flux of incoming particles is v
V = p/m

V . And

(dσ)Flux = dN = R

dσ =
R

Flux
=

V 2m2

(2πh̄2)2
| 〈ψb | H | ψa〉 |2dΩ

dσ

dΩ
=

(
V m

2πh̄2

)2

|Hab|2

That means that

f(θ) = − mV

2πh̄2 〈ψb | H | ψa〉

The negative sign is a convention. Suppose that H = V (~r). Then

f(θ) = − mV

2πh̄2

∫
1√
V
e−i

~kb·~rV (~r)
1√
V
ei
~ka·~rd3r

= − m

2πh̄2

∫
ei(
~ka−~kb)·~rV (~r)d3r

The result is equivalent to that of the Green’s function analysis in the first Born approxi-
mation. (See Griffiths p. 368)
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4.2 Harmonic perturbation

Now suppose that the perturbation is

V (t) = V eiωt + V †e−iωt

We will get that

cn(t) = − i
h̄

∫ t

0

(
Vnie

i(ωni+ω)t + V †nie
i(ωni−ω)t

)
= − i

h̄

(
Vni

ei(ωni+ω)t − 1

i(ωni + ω)
+ V †ni

ei(ωni−ω)t − 1

i(ωni − ω)

)

If ωni ∼ ω then the second term is the significant one. En > Ei and there is absorption. If
Ef < Ei then ωni < 0 and the first term counts. Then

|cn(t)|2 =
4

h̄2 |Vni|
2 sin2(ωni ± ω)t/2

(ωni ± ω)2
= lim

t→∞
→ 4π

h̄2 |Vni|
2δ(ωni ± ω)t/2

and just like for the constant perturbation

wi→n =
π2

h̄2 |Vni|
2πδ(ωni ± ω) =

2π

h̄
|Vni|2δ(En − Ei ± h̄ω) En = Ei ± h̄ω

4.2.1 Interactions with radiation field

Let
V (t) = − e

mc
A · p

legit as long as ∇ ·A = 0 which is true for a plane wave in empty space. For that very
same plane wave

A = 2A0ε cos(ωt− k · x) = A0ε
(
ei(ωt−k·x) + e−i(ωt−k·x)

)
Consider absorption. Then we take the second term. We can expand the exponential for
small k. Then

A ∼ 2A0ε (1 + ik · x + . . .)

In the long wavelength limit, xk → 2πx/λ is small. Small that is compared to the size of
the wave function which is perhaps the size of an atom. The typical transition energy for
an atom is

E <
Z2e2

2a0
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The corresponding wavelength is

λ ∼ h̄c

E
=

2a0h̄c

Z2e2
=

2a0

Z2α
� a0

The transition rate in the dipole approximation is

wi→n =
2π

h̄
| e
mc

A0 〈n | ε · p | i〉 |2δ(En − Ei ± h̄ω)

The energy density of the radiation field is U = 1
2

(
E2

max
8π + B2

max
8π

)
= 1

2π
ω2

c2
|A0|2. Substitution

gives us

wi→n =
(2π)2

h̄
U | e
mω
〈n | ε · p | i〉 |2δ(En − Ei ± h̄ω)

→ =
(2π)2

h̄
ρ(ω)dω| e

mω
〈n | ε · p | i〉 |2δ(En − Ei ± h̄ω)

=
(2π)2

h̄2 ρ(ω)| e
mω
〈n | ε · p | i〉 |2

=
(2π)2

h̄2 ρ(ω)| e
mω

ε· 〈n | p | i〉 |2

=
(2π)2

h̄2 ρ(ω)| e
mω

m

h̄
ε· 〈n | [H,x] | i〉 |2

=
(2πe)2

h̄2 ρ(ω)|ε· 〈n | x | i〉 |2

In the last step we use

〈n | [H,x] | i〉 =
−h̄
m
〈n | p | i〉 = h̄ωni 〈n | x | i〉

4.2.2 Absorption vs emission

The rate that we just computed for absorption from a radiation field with energy density
ρ(ω) is identically the rate we would find for the emission in that same radiation field. In
the event of spontaneous emission, we can replace ρ with an expression for the density of
final states available to the photon.

4.2.3 Spontaneous emission

An alternative strategy for determining the spontaneous emission rate is to begin with the
expression for the stimulated rate, and then substitute the ground state radiation density
of the vacuum.

Let’s try to come up with a more systematic development.
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The rate

wi→n =
2π

h̄

(
e

mc
A0

)2

|
〈
n | ε · peik·r | i

〉
|2δ(En − Ei ± h̄ω)

We want to replace vector potential with energy density. We use

U =
1

2π

ω2

c2
|A0|2

Then

wi→n =
2π

h̄

(
2πc2

ω2
U

)(
e

mc

)2

|
〈
n | ε · peik·r | i

〉
|2δ(En − Ei ± h̄ω)

U has some frequency dependence. The total energy density is∫
ρ(ω)dω = U

We replace U with ρ(ω)dω and integrate with the δ function. We get

wi→n =
2π

h̄2

(
2πc2

ω2
ρ(ωni)

)(
e

mc

)2

|
〈
n | ε · peik·r | i

〉
|2

What do we mean by ρ(ω)? It is the energy density per unity volume per unit frequency.
The density at the frequency corresponding to the transition energy is the only part that
counts. The transition rate from n → i or in the other direction is exactly the same, in
one case it is absorption and in the other it is stimulated emission. How do we get from
here to spontaneous emission?

It must be that there is some vacuum fluctuation or vacuum radiation density. We
need second quantization for a mathematically complete theory. But we can develop an
expression for spontaneous emission based on a heuristic argument. We simply replace the
expression for the radiation density with the energy density of available photon states. The
total number of states with energy E < h̄kc, where kx = πnx/L, etc. is

N =
1

8

4

3
π(n2

x + n2
y + n2

z)
3/2

=
1

8

4

3
π

(
L

π

)3

(k2)3/2

=
π

6

(
L

π

)3

(
ω

c
)3

1

V

dN

dω
=

1

2π2

ω2

c3
number of states per unit volume per unit frequency
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Finally to get the energy density we multiply by two to include the two polarization states
and multiply by h̄ω, the energy of the photon in the state and we end up with

ρ(ω) =
h̄

π2

ω3

c3

The spontaneous transition rate becomes

wi→n =
4π

h̄2

(
2πc2

ω2

h̄

2π2

ω3

c3

)(
e

mc

)2

|
〈
n | ε · peik·r | i

〉
|2

= 4

(
ω

h̄c

)(
e

mc

)2

|
〈
n | ε · peik·r | i

〉
|2

= 4 (ω)
α

mc2

1

m
|
〈
n | ε · peik·r | i

〉
|2

which sure enough is a rate. In the dipole approximation we get

wi→n = 4 (ω)
α

mc2

1

m
|mω 〈n | ε · x | i〉 |2

= 4
(
ω3
) α
c2
| 〈n | ε · x | i〉 |2

4.2.4 Average over polarization and angle

To get the total spontaneous emission rate we average that last over all directions k for
the outgoing photon and all polarizations ε. Suppose that x is along the z-direction and
the outgoing photon is at an angle θ, φ = 0. First note that if θ = 0, then ε · x = 0.
So project onto the x-axis. Then the polarization is in the y-z plane and the average of
〈ε · ẑ〉2 = 1

4π

∫
sin2 sin θdθ

∫
cos2 αdα = 1

4π (4
3)π = 1

3 . The total spontaneous decay rate into
all angles and polarizations is

wi→n =
4

3

(
ω3
) α
c2
| 〈n | x | i〉 |2

4.2.5 Angular distribution

Suppose we know that the transition is E1 and ∆m = 1. Since it is E1 that means that
∆l = ±1 by Wigner Eckart. Then

〈f | x | i〉 = 〈l ± 1,m± 1 | x | lm〉
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will be a vector in the x-y plane. No z-component. That means that if the photon is headed
in the z-direction ε · x = 1 for all polarizations. If it is headed in the x-direction then we
need to average. The angle θ is that of the polarization with respect to the y-axis.

1

2π

∫
cos2 θdθ =

1

2

For a photon headed in the θ direction with respect to the z-axis, it has a component cos θ
in the z-direction and and component sin θ in the x-direction. We get all of the z-direction
piece and half of the x-direction piece so the probability to go into the angle θ is

P (θ) = cos2 θ +
1

2
sin2 θ =

1

2
(1 + cos2 θ)

which happens to be the same

|d1
1,1|2 + |d1

1,−1|2 =

(
1

2
(1 + cos θ)

)2

+

(
1

2
(1− cos θ)

)2

=
1

2
(1 + cos2 θ)

4.2.6 Absorption cross section

Or instead of writing the rate in terms of the energy density of the incident radiation, we
could define the cross section. Then the rate is the incoming flux times the cross section.
The incoming energy flux is the energy density times the velocity. The flux of photons is
the energy flux/photon energy. So

Rate = σFlux and Flux = cU/h̄ω

Then

σabs =
wi→nh̄ω

cU
=

(2π)2

c

e2

m2ω
| 〈n | ε · p | i〉 |2δ(En − Ei ± h̄ω)

Again we replace 〈p〉 with m/h̄〈[H,x]〉 and get that

σabs =
(2π)2

c

ωe2

h̄2 | 〈n | ε · x | i〉 |
2δ(En − Ei ± h̄ω) =

(2π)2

c

ωe2

h̄
| 〈n | ε · x | i〉 |2δ(ωni − ω)

If we suppose the polarization is in the x direction then The total absorption cross section
is ∫

σ(ω)dω =
∑
n

4π2ωniα| 〈n | x | i〉 |2

4.3 Photo electric effect

Imagine a hydrogen atom at rest at the origin. Electromagnetic radiation in the form of
a plane wave is propagating in the +z direction (k = |k|ẑ) with E-field polarized along
the x-direction. The radiation field interacts with the atom and frees the electron. The
electron flys off in the (θ, φ) direction with momentum p = h̄kf
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4.3.1 Golden rule

The transition rate is given by the golden rule

R =
| 〈f | H ′ | i〉 |2

h̄
2πδ(Ef − Ei − h̄ω)

The initial state is the ground state of hydrogen

〈~x | i〉 =
2√

4πa3
e−r/a

The final state is a free electron

〈~x | f〉 =
1

L3/2
eikf ·r

which we represent as a plane wave. We imagine the plane wave in a box with sides of
length L so that it is normalized over the volume. We assume that the energy of the
electron is so high that we can neglect the effect of the coulomb attraction of the hydrogen
nucleus in the final state.

4.3.2 Interaction Hamiltonian

The interaction hamiltonian is
H ′ =

q

mc
A · p

We write the vector potential as a plane wave,

A = 2A0ε cos(k · r− ωt) (17)

= A0ε
(
ei(k·r−ωt) + e−i(k·r−ωt)

)
(18)

where ε is the unit vector that gives the polarization of A and E = −∂A
∂t After application

of the energy conserving δ-function we are left with

A = A0εe
i(k·r−ωt)

Then

H ′ =
−ih̄q
mc

A0e
ik·rε · ∇
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4.3.3 Density of states

The free electron in the final state is traveling at angle θ, φ into solid angle dΩ. In order to
determine the total rate for the transition we need to integrate over all possible final state
electrons that are directed into the solid angle. The electrons are free particles confined to
a box with side L. The electron wave function at the boundaries vanishes so

kx =
2nxπ

L
, ky =

2nyπ

L
, kz =

2nzπ

L

and

k2
f =

(
2π

L

)2

(n2
x + n2

y + n2
z)

Imagine a sphere of radius
√
n2
x + n2

y + n2
z. The total number of states with |k| < |kf | is

the volume of the sphere,

N =
4

3
π(n2

x + n2
y + n2

z)
3/2 =

4

3
π

((
L

2π
k

)2
)3/2

The number of states per unit k into solid angle dΩ are

dN

dk
=

4

3
π

(
L

2π

)3

3k2dΩ

4π

The number of states per unit energy into solid angle dΩ are

dN

dE
=

(
L

2π

)3

k2 dk

dE

dΩ

4π
(19)

=

(
L

2π

)3 km

h̄2 dΩ (20)

where we have use E = h̄2k2

2m .

4.3.4 Transition rate

The total transition rate is

R =
| 〈f | H ′ | i〉 |2

h̄
2π

∫
δ(Ef − Ei − h̄ω)

dN

dE
(21)

=
| 〈f | H ′ | i〉 |2

h̄
2π

(
L

2π

)3 km

h̄2 dΩ (22)

= h̄

(
qA0

mc

)2

|
〈
f | eik·rε · ∇ | i

〉
|22π

(
L

2π

)3 km

h̄2 dΩ (23)

33



4.3.5 Absorption cross section

We define a differential cross section

dσ

dΩ
=

Rate for photoelectrons

Flux of incident photons

The energy flux for the incoming plane wave is

cu =
c

8π
E2
max =

1

2π

ω2

c
A2

0

and since each photon has energy h̄ω, the photon flux is

Flux =
1

2πh̄ωc
ω2A2

0 =
1

2πh̄c
ωA2

0

Then

dσ

dΩ
=

h̄
q2A2

0
(mc)2

|
〈
f | eik·rε · ∇ | i

〉
|22π

(
L
2π

)3
km
h̄2

(ωA2
0/2πh̄c)

(24)

=
2π(qh̄)2|

〈
f | eik·rε · ∇ | i

〉
|22π

(
L
2π

)3
km
h̄2

m2cω
(25)

=
q2|
〈
f | eik·rε · ∇ | i

〉
|2L3k

2πmcω
(26)

4.3.6 Expectation value

All that remains is to compute the expectation value. Note that it is not appropriate to
work in the electric dipole limit. We are assuming that the energy of the final state electron
is big compared to the binding energy. Therefore it is not safe to assume that k · r � 1
and we will attempt to do the integral exactly.

We have that 〈
f | eik·rε · ∇ | i

〉
=

1

L3/2

1

π1/2a3/2
I

where

I =

∫
e−ikf ·reik·rε · ∇e−r/ar2drdΩ

Integrating by parts we get that

I = ε ·
∫
∇
(
e−ikf ·reik·re−r/a

)
r2drdΩ (27)

− ε ·
∫
∇
(
e−ikf ·r

)
eik·re−r/ar2drdΩ (28)

− ε ·
∫
e−ikf ·r∇

(
eik·r

)
e−r/ar2drdΩ (29)
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Equation 11 can be written as a surface integral over a volume that we can take to infinity.
The wave function falls off exponentially so Equation ?? is zero. On taking the gradient
Equation ?? and pulling k outside of the integral, we get

iε · k
∫
e−ikf ·reik·re−r/ar2drdΩ = 0

since polarization ε and propagation vector k are orthogonal. Finally

I = ε ·
∫
∇
(
eikf ·r

)
eik·re−r/ar2drdΩ (30)

= −iε · kf

∫
e−ikf ·reik·re−r/ar2drdΩ (31)

= −iε · kf

∫
e−i(kf−k)·re−r/ar2drdΩ (32)

= −iε · kf

∫
e−iq·re−r/ar2drdΩ (33)

= −iε · kf

∫
e−iq cos θre−r/ar2dr sin θdφ (34)

where q = kf − k. First we do the angular integral

I = i2πε · kf

∫
(e−iqr − eiqr)

iqr
e−r/ar2dr (35)

Then integrate over r.

I = 2πε · kf

∫
(e−iqr−r/a − eiqr−r/a)

iq
rdr (36)

= 2πε · kf

(
1

q(−iq − 1/a)2
− 1

q(iq − 1/a)2

)
(37)

= 2πε · kf

(
1

q(−q2 + 1/a2 − 2iq/a)
− 1

q(−q2 + 1/a2 + 2iq/a)

)
(38)

= 2πε · kf

( −4iq/a

q((−q2 + 1/a2)2 + 4(q/a)2)2

)
(39)

= 2πε · kf
−4i

a(q2 + (1/a)2)
(40)

Finally 〈
f | eik·rε · ∇ | i

〉
=

1

L3/2

1

π1/2a3/2
2πε · kf

−4i

a(q2 + (1/a)2)2
(41)

=
−8iπ1/2ε · kf

L3/2a3/2a(q2 + (1/a)2)2
(42)

(43)
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and

dσ

dΩ
=

αh̄L3kf
2πmω

(
8π1/2ε · kf

L3/2a5/2(q2 + (1/a)2)2

)2

(44)

=
32αh̄kf
mω

(ε · kf )
2

a5(q2 + (1/a)2)4
(45)

4.3.7 Angular distribution

The E-field vector k is in the z-direction and the electron in the final state has kf in the
θ, φ direction. Then q2 = k2

f + k2 − 2kfk cos θ. And the polarization is in the x-direction
so that ε · kf = kf sin θ cosφ and

dσ

dΩ
==

32αh̄kf
mω

(kf sin θ cosφ)2

a5(k2
f + k2 − 2kfk cos θ + (1/a)2)4

The differential cross section is peaked for the outgoing electron in the θ = π/2, φ = 0
direction, namely parallel to the polarization of the field.
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