Physics 443, Solutions to PS 9

1. Griffiths 5.35. Using the assumption that the volume of the star is $V=4 \pi R^{3} / 3$, we can plug this into the equation for the total energy to get that

$$
E_{\text {electron }}=\frac{2 \hbar^{2}}{15 \pi m R^{2}}\left(\frac{9 \pi N q}{4}\right)^{\frac{5}{3}}
$$

We also have that the gravitational energy is given by

$$
E_{\text {gravity }}=-\frac{3}{5} \mathcal{G} \frac{(N M)^{2}}{R}
$$

We can add these two to get the total energy. The condition we are looking for is when $d E / d R=0$. Plugging in and solving for R we find that

$$
R=\left(\frac{9 \pi}{4}\right)^{\frac{2}{3}} \frac{\hbar^{2} q^{5 / 3}}{\mathcal{G} m M^{2} N^{\frac{1}{3}}} .
$$

Substituting for numerical values, we get that $R=7.58 \times 10^{25} \mathrm{~N}^{-1 / 3}$. Using that the mass of the sun $M_{s}=2 \times 10^{30} \mathrm{Kg}$, we have that $R=7.16 \times 10^{6}$ meters. For the last part, we know that the Fermi energy is given by $\left(\hbar^{2} / 2 m\right)\left(9 \pi^{2} N q /\left(4 \pi R^{3}\right)\right)^{2 / 3}$. This is about 0.194 Mev , which is approaching the rest mass of the electron $m_{0}=0.5 \mathrm{Mev}$.
2. Griffiths 6.5. In this problem we have the harmonic oscillator problem with a perturbation of the form $H=-q E x$. The first order shift is simply $E_{n}^{(1)}=-q E\langle n| x|n\rangle=0$. The second order shift is given by

$$
\begin{aligned}
E_{n}^{(2)} & =\sum_{m \neq n} q^{2} E^{2} \frac{|\langle m| x| n\rangle\left.\right|^{2}}{E_{n}-E_{m}}, \\
& =q^{2} E^{2} \frac{\hbar}{2 m \omega}\left(\frac{n}{\hbar \omega}+\frac{n+1}{-\hbar \omega}\right), \\
& =\frac{-(q E)^{2}}{2 m \omega^{2}} .
\end{aligned}
$$

This problem can also be solved exactly, which is what is done in part (b). Using the change of variables suggested: $x^{\prime}=x-\left(q E / m \omega^{2}\right)$, we expand the quadratic potential to see that $H(x)=H\left(x^{\prime}\right)$ - constant. We know that the energies of $H\left(x^{\prime}\right)$ are just the usual $(n+1 / 2) \hbar \omega$, evaluating the constant, we see that $\epsilon=\langle H(x)\rangle=\left\langle H\left(x^{\prime}\right)\right\rangle-\left(q^{2} E^{2} /\left(2 m \omega^{2}\right)\right)=(n+1 / 2) \hbar \omega-$ $\left(q^{2} E^{2} /\left(2 m \omega^{2}\right)\right)$.
3. Griffiths 6.12. We can write the problem out as follows

$$
\begin{aligned}
\left\langle\frac{1}{r}\right\rangle & =-\frac{4 \pi \epsilon_{0}}{e^{2}}\langle V\rangle \\
& =-\frac{4 \pi \epsilon_{0}}{e^{2}}\left(\frac{2}{n^{2}}\left(-\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right)\right), \text { using the Virial Th, } \\
& =\frac{m}{n^{2} \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right) \\
& =\frac{1}{n^{2} a}
\end{aligned}
$$

4. Griffiths 6.14 In this problem we need to solve for

$$
\begin{aligned}
E & =\frac{-1}{8 m^{3} c^{2}}\langle n| p^{4}|n\rangle, \\
& =\frac{-m^{2}}{32 m^{3} c^{2}}\langle n|\left(a_{+}+a_{-}\right)^{4}|n\rangle
\end{aligned}
$$

By expanding out $\left(a_{+}+a_{-}\right)^{4}$, and keeping only terms that have the same number of creation and annihilation operators, and using $a_{+}|n\rangle=i \sqrt{(n+1) \hbar \omega} \mid n+$ 1) and $a_{-}|n\rangle=-i \sqrt{n \hbar \omega}|n-1\rangle$, we find that

$$
E=\frac{-3 \hbar^{2} \omega^{2}}{32 m c^{2}}\left(2 n^{2}+2 n+1\right)
$$

5. Griffiths 6.25. With a little bit of algebra, you can show that

$$
\begin{aligned}
E_{F S} & =-\gamma\left(3-\frac{8}{j+1 / 2}\right) \\
E_{Z} & =\beta\left(m_{l}+2 m_{s}\right)
\end{aligned}
$$

Following the choice of basis used by Griffiths, we use the $\left|j m_{j}\right\rangle$ basis in which the $H_{F S}$ perturbation is diagonal. Also on pg. 281, Griffiths is kind enough to write out this basis in terms of the $\left|l m_{l}\right\rangle \otimes\left|s m_{s}\right\rangle$ basis in which our other perturbation H_{z} is diagonal. So first of all we can immediately write down the $H_{F S}$ perturbation. For the $j=1 / 2$ we have $E=-5 \gamma$, and since we are calculating the $-W$ matrix, we find that for the 1 st, 2 nd , 6 th and 8 th diagonal element we get 5γ. The remaining diagonal elements
have $j=3 / 2$ giving us just γ for the $-W$ matrix. And so we are done with first perturbation. The second perturbation is diagonal for the first four wavefunctions since they are both eigenstates in the $\left|j m_{j}\right\rangle$ basis and the $\left|l m_{l}\right\rangle \otimes\left|s m_{s}\right\rangle$ basis. We read off the matrix elements as $-\beta\left(m_{l}+2 m_{s}\right)=$ $-\beta,+\beta,-2 \beta,+2 \beta$ respectively. Notice that

$$
\begin{aligned}
& -\left\langle\psi_{5}\right| L_{z}+2 S_{z}\left|\psi_{5}\right\rangle=-2 / 3 \hbar \beta, \quad-\left\langle\psi_{6}\right| L_{z}+2 S_{z}\left|\psi_{6}\right\rangle=-1 / 3 \hbar \beta \\
& -\left\langle\psi_{5}\right| L_{z}+2 S_{z}\left|\psi_{6}\right\rangle=-\left\langle\psi_{6}\right| L_{z}+2 S_{z}\left|\psi_{5}\right\rangle=\sqrt{2} / 3 \hbar \beta \\
& -\left\langle\psi_{7}\right| L_{z}+2 S_{z}\left|\psi_{7}\right\rangle=-2 / 3 \hbar \beta, \quad-\left\langle\psi_{8}\right| L_{z}+2 S_{z}\left|\psi_{8}\right\rangle=-1 / 3 \hbar \beta \\
& -\left\langle\psi_{8}\right| L_{z}+2 S_{z}\left|\psi_{7}\right\rangle=-\left\langle\psi_{7}\right| L_{z}+2 S_{z}\left|\psi_{8}\right\rangle=\sqrt{2} / 3 \hbar \beta
\end{aligned}
$$

Putting all this together, we get the $-W$ matrix as required.
6. Griffiths 6.33. Suppose the Hamiltonian H, for a particular quantum system, is a function of some parameter λ; let $E_{n}(\lambda)$ and $\psi_{n}(\lambda)$ be the eigenvalues and eigenfunctions of $H(\lambda)$. The Feynman-Hellman theorem states that

$$
\frac{\partial E_{n}}{\partial \lambda}=\left\langle\psi_{n}\right| \frac{\partial H}{\partial \lambda}\left|\psi_{n}\right\rangle
$$

The effective Hamiltonian for the radial wave functions of hydrogen is

$$
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r},
$$

and the eigenvalues are

$$
E_{n}=-\frac{m e^{4}}{32 \pi^{2} \epsilon_{0}^{2} \hbar^{2}\left(j_{\max }+l+1\right)^{2}} .
$$

(a) Use $\lambda=e$ in the Feynman-Hellmann theorem to obtain $\langle 1 / r\rangle$. (Griffiths Equation 6.55)
[First we compute

$$
\frac{\partial H}{\partial e}=\frac{-2 e}{4 \pi \epsilon_{0}} \frac{1}{r}
$$

Then

$$
\left\langle\psi_{n}\right| \frac{\partial H}{\partial e}\left|\psi_{n}\right\rangle=-2 \frac{e}{4 \pi \epsilon_{0}}\left\langle\psi_{n}\right| \frac{1}{r}\left|\psi_{n}\right\rangle
$$

According to the Feynman-Hellmann theorem

$$
\begin{aligned}
\frac{\partial E_{n}}{\partial e} & =-2 \frac{e}{4 \pi \epsilon_{0}}\left\langle\psi_{n}\right| \frac{1}{r}\left|\psi_{n}\right\rangle \\
\Rightarrow \frac{4}{e} E_{n} & =-2 \frac{e}{4 \pi \epsilon_{0}}\left\langle\frac{1}{r}\right\rangle \\
\Rightarrow\left\langle\frac{1}{r}\right\rangle & =-2\left(\frac{4 \pi \epsilon_{0}}{e^{2}}\right) E_{n} \\
& =2\left(\frac{4 \pi \epsilon_{0} \hbar c}{e^{2}}\right) \frac{1}{n^{2}} \frac{1}{2} m c^{2} \frac{\alpha^{2}}{\hbar c} \\
& =2 \frac{1}{n^{2}} \frac{1}{2} \frac{m c^{2} \alpha}{\hbar c} \\
& =\frac{1}{a n^{2}}
\end{aligned}
$$

where $a=\hbar c / \alpha m c^{2}$ is the Bohr radius.]
(b) Use $\lambda=l$ to obtain $\left\langle 1 / r^{2}\right\rangle$. (Griffiths Equation 6.56) [This time we have that

$$
\begin{aligned}
\frac{\partial E_{n}}{\partial l} & =\left\langle\frac{\partial H}{\partial l}\right\rangle \\
\Rightarrow \frac{-2 E_{n}}{j_{\max }+l+1} & =\frac{(2 l+1) \hbar^{2}}{2 m}\left\langle\frac{1}{r^{2}}\right\rangle \\
\Rightarrow\left\langle\frac{1}{r^{2}}\right\rangle & =-2 E_{n} \frac{2 m}{(2 l+1) \hbar^{2}} \frac{1}{j_{\max }+l+1}
\end{aligned}
$$

Since

$$
E_{n} \frac{m}{\hbar^{2}}=-\frac{1}{n^{2}} \frac{1}{2} \alpha m c^{2} \frac{m}{\hbar^{2}}=-\frac{1}{2 n^{2}} \frac{1}{a^{2}}
$$

we have that

$$
\left.\left\langle\frac{1}{r^{2}}\right\rangle=\frac{1}{a^{2}} \frac{2}{(2 l+1)} \frac{1}{\left(j_{\max }+l+1\right)^{3}}\right]
$$

7. Griffiths 6.36. In this problem we examine the Stark effect for $n=1$ and $n=2$. With the electric field in the z-direction, the Hamiltonian is

$$
H_{s}=-e E_{e x t} z=-e E_{e x t} r \cos \theta,
$$

We will treat this as a perturbation to the Bohr Hamiltonian.
(a) To first order, the change in the ground state is given by

$$
\begin{aligned}
E_{s} & =\langle 100| H_{s}|100\rangle \\
& =(\text { const }) \int \exp (-2 r / a) r^{3} d r \int_{-1}^{1} \cos \theta d(\cos \theta)=0
\end{aligned}
$$

(b) Lets define the states that we will work with

$$
\begin{aligned}
|1\rangle & =\psi_{200}=\sqrt{\frac{1}{2 \pi a}} \frac{1}{2 a}\left(1-\frac{r}{2 a}\right) \exp \left(\frac{-r}{2 a}\right) \\
|2\rangle & =\psi_{211}=-\sqrt{\frac{1}{\pi a}} \frac{1}{8 a^{2}} r \exp \left(\frac{-r}{2 a}\right) \sin \theta e^{i \phi} \\
|3\rangle & =\psi_{210}=\sqrt{\frac{1}{2 \pi a}} \frac{1}{4 a^{2}} r \exp \left(\frac{-r}{2 a}\right) \cos \theta \\
|4\rangle & =\psi_{21-1}=\sqrt{\frac{1}{\pi a}} \frac{1}{8 a^{2}} r \exp \left(\frac{-r}{2 a}\right) \sin \theta e^{-i \phi}
\end{aligned}
$$

We need to compute the W-matrix
$\left(\begin{array}{llll}W_{11} & W_{12} & W_{13} & W_{14} \\ W_{21} & W_{22} & W_{23} & W_{24} \\ W_{31} & W_{32} & W_{33} & W_{34} \\ W_{41} & W_{42} & W_{43} & W_{44}\end{array}\right)=\left(\begin{array}{ccccc}\langle 1| H_{S}^{\prime}|1\rangle & \langle 1| H_{S}^{\prime}|2\rangle & \langle 1| H_{S}^{\prime}|3\rangle & \langle 1| H_{S}^{\prime}|4\rangle \\ \langle 2| H_{S}^{\prime}|1\rangle & \langle 2| H_{S}^{\prime}|2\rangle & \langle 2| H_{S}^{\prime}|3\rangle & \langle 2| H_{S}^{\prime}|4\rangle \\ \langle 3| H_{S}^{\prime}|1\rangle & \langle 3| H_{S}^{\prime}|2\rangle & \langle 3| H_{S}^{\prime}|3\rangle & \langle 3| H_{S}^{\prime}|4\rangle \\ \langle 4| H_{S}^{\prime}|1\rangle & \langle 4| H_{S}^{\prime}|2\rangle & \langle 4| H_{S}^{\prime}|3\rangle & \langle 4| H_{S}^{\prime}|4\rangle\end{array}\right)$

Either by direct calculation or by inspection, convince yourself that the only non-zero terms are $\langle 1| H_{s}^{\prime}|3\rangle=\langle 3| H_{s}^{\prime}|1\rangle$, which we proceed to calculate.

$$
\begin{aligned}
\langle 1| H_{s}^{\prime}|3\rangle & =-e E_{\text {ext }} \int \frac{1}{2 \pi a} \frac{1}{8 a^{3}}\left(1-\frac{r}{2 a}\right) r \exp \left(\frac{-r}{a}\right) \cos \theta(r \cos \theta) r^{2} d r d \Omega \\
& =\frac{-e E_{\text {ext }}}{8 a^{4}}\left(\int_{0}^{\infty}\left(1-\frac{r}{2 a}\right) r^{4} \exp (-r / a) d r\right)\left(\int_{-1}^{1} \cos ^{2} \theta(d \cos \theta)\right) \\
& =-\frac{e a E_{\text {ext }}}{12}(\Gamma(5)-\Gamma(6) / 2) \\
& =-3 e a E_{\text {ext }}
\end{aligned}
$$

Then

$$
W=-3 e a E_{\text {ext }}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The eigenvalues are $\pm 3 e a E_{e x t}$ so when the perturbation is turned on the degeneracy is split into 3 different energies, $E_{2}^{0}, E_{2}^{0} \pm 3 e a E_{\text {ext }}$.
(c) The "good" wave functions are formed from the eigenvectors of the W-matrix

$$
\psi_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad \psi_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)
$$

The four good wave functions are

$$
\begin{aligned}
& \psi_{1}=\frac{1}{\sqrt{2}}\left(\psi_{200}+\psi_{210}\right) \\
& \psi_{2}=\psi_{211} \\
& \psi_{3}=\frac{1}{\sqrt{2}}\left(\psi_{200}-\psi_{210}\right) \\
& \psi_{4}=\psi_{21-1}
\end{aligned}
$$

(d) The dipole moment $\mathbf{p}_{e}=-e \mathbf{r}=-e r(\sin \theta \cos \phi \hat{i}+\sin \theta \sin \phi \hat{j}+\cos \theta \hat{k})$. The ϕ integral for the expectation value of the x and y components will give zero for all four states. The expectation value of the z component can be constructed from the elements of the W matrix.

$$
\begin{aligned}
\left\langle\psi_{1}\right| \mathbf{p}_{e}\left|\psi_{1}\right\rangle & =\frac{1}{2}\left(W_{13}+W_{31}\right)=3 a e \hat{k} \\
\left\langle\psi_{2}\right| \mathbf{p}_{e}\left|\psi_{2}\right\rangle & =0 \\
\left\langle\psi_{3}\right| \mathbf{p}_{e}\left|\psi_{3}\right\rangle & =-\frac{1}{2}\left(W_{13}+W_{31}\right)=-3 a e \hat{k} \\
\left\langle\psi_{4}\right| \mathbf{p}_{e}\left|\psi_{4}\right\rangle & =0
\end{aligned}
$$

8. Positronium. We can rewrite our two perturbations in a more transparent form. Using $S^{2}=S_{1}^{2}+S_{2}^{2}+2 S_{1} \cdot S_{2}$ and defining $\beta=e B / m c$, we have our two perturbations of the form:

$$
\begin{aligned}
H_{H F S} & =\frac{\alpha}{2}\left(s(s+1)-\frac{3}{2}\right), \\
H_{B} & =\beta\left(s_{1 z}-s_{2 z}\right) .
\end{aligned}
$$

Following the method in the previous problem we have:

$$
W=\left(\begin{array}{cccc|c}
|11\rangle & |10\rangle & |1-1\rangle & |00\rangle & \\
\hline \alpha / 4 & 0 & 0 & 0 & |11\rangle \\
0 & \alpha / 4 & 0 & \beta & |10\rangle \\
0 & 0 & \alpha / 4 & 0 & |1-1\rangle \\
0 & \beta & 0 & -3 \alpha / 4 & |00\rangle
\end{array}\right)
$$

By diagonalizing this matrix we find the following

$$
\begin{array}{r}
E\left(\psi_{1}\right)=E_{0}+\alpha / 4 \\
E\left(\psi_{3}\right)=E_{0}+\alpha / 4 \\
E\left(\psi_{+}\right)=E_{0}-\frac{\alpha}{4}+\frac{1}{2} \sqrt{\alpha^{2}+4 \beta^{2}} \\
E\left(\psi_{-}\right)=E_{0}-\frac{\alpha}{4}-\frac{1}{2} \sqrt{\alpha^{2}+4 \beta^{2}}
\end{array}
$$

Please check that in the limit $\alpha \rightarrow 0$, we get the correct splitting where the four fold degeneracy is broken by one level increasing by β and one decreasing by β, while the other two remain the same, while for the opposite limit $\beta \rightarrow 0$, we have the singlet-triplet splitting with three levels increasing in energy by $\alpha / 4$ and the singlet shift its energy by $-3 \alpha / 4$.

