
Physics 443 HW #7
Due March 12, 2008

1. Griffiths 4.50. Suppose two spin-1/2 particles are known to be in the
singlet configuration.
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Let S(1)
a be the component of the spin angular momentum of particle

number 1 in the direction defined by the unit vector â. Similarly, let
S
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b be the component of the 2’s angular momentum in the direction

b̂. Show that
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where θ is the angle between â and b̂.

2. Griffiths 4.59. In classical electrodynamics the force on a apriticle of
charge q moving with velocity v through electric and magnetic fields E
and B is given by the Lorentz force law:

F = q(E + v ×B).

The force cannot be expressed as the gradient of a scalar potential
energy function, and therefore the Schrodinger equation in its original
form cannot accomodate it. But in the more sophisticated form

ih̄
∂Ψ

∂t
= HΨ

there is no problem; the classical Hamiltonian is

H =
1

2m
(p− aA)2 + qφ,

where A is the vector potential (B = ∇ × A) and φ is the scalar
potential (E = −∇φ − ∂A

∂t
), so the Schrodinger equation (making the

canonical substitution (p→ (h̄/i)∇) becomes
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=

 1

2m
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h̄

i
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+ qφ

Ψ. (1)

(a) Show that
d〈r〉
dt

=
1

m
〈(p− qA)〉.

As always we identify d〈r〉/dt with 〈v〉.

1



(b) Show that

m
d〈v〉
dt

= q〈E〉+
q

2m
〈(p×B−B× p)〉 − q2

m
〈(A×B)〉.

(c) In particular, if the fields E and B are uniform over the volume
of the wave packet, show that

m
d〈v〉
dt

= q(E + 〈v〉 ×B),

so the expectation value of 〈v〉 moves according to the Lorentz
force law, as we would expect from Ehrenfest’s theorem.

3. Griffiths 4.61. In classical electrodynamics the potential A and φ are
not uniquely determined; the physical quantities are the fields, E and
B.

(a) Show that the potentials

φ′ ≡ φ− ∂Λ

∂t
, A′ ≡ A +∇Λ (2)

(where Λ is an arbitrary real function of position and time) yield
the same fields as φ and A. Equation 2 is called a gauge trans-
formation, and the theory is said to be gauge invariant.

(b) In quantum mechanics the potentials play a more direct role, and
it is of interest to know whether the theory remains gauge invari-
ant. Show that

Ψ′ ≡ eiqΛ/h̄Ψ

satisfies the Schrodinger equation ( 1) with the gauge-transformed
potentials φ′ and A′. Since ψ′ differs from ψ only by a phase factor,
it represents the same physical state, and the theory is gauge in-
variant.

4. Griffiths 5.1. Typically , the interaction potential depends only on
the vector r ≡ r1 − r2 between the two particles. In that case the
Schrodinger equation separates, if we change variables from r1, r2 to r
and R ≡ (m1r1 +m2r2)/m1 +m2) (the center of mass).
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(a) Show that r1 = R + (µ/m1)r, r2 = R − (µ/m2)r, and ∇1 =
(µ/m2)∇R +∇r, ∇2 = (µ/m1)∇R −∇r, where

µ ≡ m1m2

m1 +m2

is the reduced mass of the system.

(b) Show that the (time-independent) Schrodinger equation becomes

− h̄2

2(m1 +m2)
∇2

Rψ −
h̄2

2µ
∇2

rψ + V (r)ψ = Eψ.

(c) Separate the variables, letting ψ(R, r) = ψR(R)ψr(r). Note that
ψR satistifes the one-particle Schrodinger equation, with total
mass (m1 + m2) in place of m, potential zero, and energy ER,
while ψr satisfies the one-particle Schrodinger equation with the
reduced mass in place of m, potential V (r), and energy ER. The
total energy is the sum: E = ER + Er. What this tells is is that
the center of mass moves like a free particle, and the relative mo-
tion (that is, the motion of particle 2 with respect to particle 1)
is the same as if we had a single particle with the reduced mass,
subject to the potential V . Exactly the same decomposition oc-
curs in classical mechanics; it reduces the two-body problem to
an equivalent one-body problem.

5. Entangled states

In this problem we consider a thought experiment proposed only re-
cently by L. Hardy (1993). It illustrates the peculiar and counter-
intuitive nature of entangled states in a different and in some ways
simpler manner than the usual Bell’s inequality experiments, which
employ atomic cascades and 2-photon polarization correlations. The
present thought experiment makes use of a source S and two detectors
DL and DR (L,R for left and right respectively... you will need to draw
yourself a picture). Each detector has two modes 1,2 determined by
the position of a switch KL,R. Each detector is equipped with a light
that can flash either green or red. An experimental trial commences
when the observer presses a button that launches a pair of correlated
particles from source S; one particle goes to the left and the other to
the right. After they have been emitted from the source but before
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they arrive at their respective detectors, the obserrver flips one coin
to determine the position of KL, and another coin to determine the
position of KR.

The arrival of a particle at DL is indicated by the flashing of the green
or red light there; similarly for the arrival of the other particle at DR.
The outcome of a given trial is specified by giving the positions of the
two switches and the color of lights which flashed; for example (1G2R)
signifies that KL was in position 1 and DL flashed green, while KR was
in position 2 and DR flashed red.

The observer repeats the experiment, writing down the outcome for
each trial, and finds the following results after many trials.

1. When both switches are in position 1, both lights never flash red:
(1R1R) never occurs.

2. When the switches are in different positions, both lights never
flash green: (1G2G) and (2G1G) never occur.

3. In a non-zero fraction of the trials when both switches are in
position 2, the lights both flash green: (2G2G) sometimes occurs.

It is tempting to try to make the following (classical) analysis: Some-
thing in the common origin of the particles must be responsible for the
observed correlations. Since the switches KL,R are not set until after
the particles leave the source, whatever features the particles possess
cannot depend on how these switches are set. Furthermore we can
safely assume that DL can only respond to the particle on the left,
while DR can only respond to the particle on the right. Then, since a
trial could end up as a (1,2) or (2,1) trial, whenever one of the particles
is of a variety to allow a type 2 detector to flash green, the other particle
must be of a variety to make a type 1 detector flash red. (This follows
from (2) above). Then in any of the occasional (2,2) trials where both
detectors flashed green, both particles must have been of the variety to
make a type 1 detector flash red. In other words, had both switches
been set to position 1 in these trials, the outcome (1R1R) would have
been observed. However (1R1R) is never observed! Thus the foregoing
classical argument leads to a contradiction.

Nevertheless it is possible to set up such an experiment and to get
the results given, but we must use quantum mechanics to describe the
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system of particles. Suppose that when a switch K is set to position 1
the outcome ”green” corresponds to absorption of a particle of spin 1/2
with spin up along the z axis, whereas the outcome red corresponds to
spin down:

| 1G〉 =
(

1
0

)
, | 1R〉 =

(
0
1

)
,

Since we never obtain the outcome (1R1R) we can assume that the
quantum state of the two particles launched from the source is of the
form:

| ψ〉 = α| 1R1G〉+ β| 1G1R〉+ γ| 1G1G〉
where | 1R1G〉 refers to left particle with spin down, right particle with
spin up, and so forth, and α, β and γ are constants. We may assume
that | ψ〉 is normalized to unity, so that |α|2 + β|2 + |γ|2 = 1.

(a) Show that, since outcomes (1G2G) and (2G1G) never occur and
the states | 1G2G〉 and | 2G1G〉 are thus orthogonal to | ψ〉, it
follows that:

α〈2G | 1R〉+ γ〈2G | 1G〉 = 0

β〈2G | 1R〉+ γ〈2G | 1G〉 = 0

(b) It must be possible to express | 2G〉 as a linear combination of
the states | 1G〉, | 1R〉; and | 2R〉 must be an orthogonal linear
combination:

| 2G〉 = q
1
2 | 1G〉+

√
1− q| 1R〉

| 2R〉 = −
√

1− q| 1G〉+ q
1
2 | 1R〉

where 0 < q < 1. Show that, since outcome (2G2G) sometimes
occurs, and therefore |〈2G2G | ψ〉|2 = p 6= 0, it follows that:

p =
q2(1− q)2

1− q2

(c) Show that when p is maximized in part (b) the probabilities of
the various outcomes are given by the following table where z =
1
2
(
√

5− 1):
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Outcome Probability Outcome Probability
1G1G z3 2G1G 0
1G1R z2 2G1R z3

1R1G z2 2R1G z
1R1R 0 2R1R z4

1G2G 0 2G2G z5 = p
1G2R z 2G2R z4

1R2G z3 2R2G z4

1R2R z4 2R2R z
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