Physics 443, Solutions to PS 6

1. Griffiths 4.13 .

(a) Find $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for an electron in the ground state of hydrogen. Express your answers in terms of the Bohr radius.
[The ground state of the Hydrogen wavefunction can be written as

$$
\psi_{100}=\frac{\exp \left(-\frac{r}{a}\right)}{\sqrt{\pi a^{3}}}
$$

where a is the Bohr radius. We can then calculate

$$
\langle r\rangle=\frac{1}{\pi a^{3}} \int r^{3} e^{-2 r / a} d r d \Omega=4 a \int_{0}^{\infty} u^{3} e^{-2 u} d u=\frac{3 a}{2} .
$$

Similarly,

$$
\left.\left\langle r^{2}\right\rangle=4 a^{2} \int u^{4} e^{-2 u} d u=3 a^{2}\right] .
$$

(b) Find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for an electron in the ground state of hydrogen. Hint: This requires no new integration - note that $r^{2}=x^{2}+y^{2}+$ z^{2}, and exploit the symmetry of the ground state.
[We have that

$$
\langle x\rangle=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d(\cos \theta) \int_{0}^{\infty} \frac{e^{-2 r / a}}{\sqrt{\pi a^{3}}} r^{2} d r=0
$$

and by symmetry

$$
\left.\left\langle x^{2}\right\rangle=\left\langle y^{2}\right\rangle=\left\langle z^{2}\right\rangle=\left\langle r^{2}\right\rangle / 3=a^{2}\right] .
$$

(c) Find $\left\langle x^{2}\right\rangle$ in the state $n=2, l=1, m=1$. Warning: This is not symmetrical in x, y, z. Use $x=r \sin \theta \cos \theta$.
[For part (c), we write

$$
\psi_{211}=-\sqrt{\frac{3}{8 \pi}} \frac{1}{\sqrt{24 a^{3}}} \frac{r}{a} e^{\frac{-r}{2 a}} \sin \theta e^{i \phi} .
$$

To calculate the e xpectation value

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\frac{3}{8 \pi}\left(\frac{1}{24 a^{3}}\right) \int\left(\frac{r}{a}\right)^{2} e^{\frac{-r}{a}} \sin ^{2} \theta\left(r^{2} \sin ^{2} \theta \cos ^{2} \phi\right)\left(r^{2} \sin \theta d r d \theta d \phi\right) \\
& =\frac{3}{8 \pi}\left(\frac{1}{24 a^{5}}\right) \int_{0}^{2 \pi} \cos ^{2} \phi d \phi \int_{0}^{\pi} \sin ^{5} \theta d \theta \int_{0}^{\infty} r^{6} e^{\frac{-r}{a}} d r
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{8 \pi} \frac{1}{24 a^{5}}(\pi) \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x \int_{0}^{\infty} a^{7} u^{6} e^{-u} d u \\
& =\frac{3}{8 \pi} \frac{1}{24 a^{5}}(\pi)\left(\frac{16}{15}\right) \int_{0}^{\infty} a^{7} u^{6} e^{-u} d u \\
& =\frac{3}{8 \pi} \frac{1}{24 a^{5}}(\pi)\left(\frac{16}{15}\right) a^{7} 6! \\
& \left.=12 a^{2}\right]
\end{aligned}
$$

2. Griffiths 4.16. In this problem notice that

$$
V(r)=\frac{-Z e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}
$$

is just the same potential as the hydrogen atom with $e^{2} \rightarrow Z e^{2}$. Which means that we can use all the results of the Hydrogen atom making this substitution. Looking at the denependence of these functions on e^{2}, we can write down the answers as:

$$
\begin{aligned}
E_{n}(Z) & =Z^{2} \epsilon_{n} ; a(z)=\frac{a}{Z} ; R(Z)=Z^{2} R \\
\left.\frac{1}{\lambda}\right|_{\text {Lyman }} & =\left(\frac{4}{3 R}, \frac{1}{R}\right) \rightarrow\left(\frac{4}{3 Z^{2} R}, \frac{1}{Z^{2} R}\right)
\end{aligned}
$$

For $\mathrm{Z}=2, \quad\left(2.28 \times 10^{-8} \mathrm{~m}, 3.04 \times 10^{-8} \mathrm{~m}\right) \in$ ultraviolet For $\mathrm{Z}=3, \quad\left(1.01 \times 10^{-8} \mathrm{~m}, 1.35 \times 10^{-8} \mathrm{~m}\right) \in$ ultraviolet

3. Griffiths 4.29 .

(a) Find the eigenvalues and eigenspinors of \mathbf{S}_{y}. [The eigenvalues of S_{y} are $\pm \hbar / 2$. The eigenvalues of a spin $\frac{1}{2}$ matrix are $\pm \frac{1}{2}$ regardless of axis. Then

$$
\begin{aligned}
\frac{\hbar}{2} \sigma_{y} \chi_{ \pm}^{(y)} & = \pm \frac{\hbar}{2} \chi_{ \pm}^{(y)} \\
\rightarrow\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{b} & = \pm\binom{ 1}{b} \\
\rightarrow b & = \pm i
\end{aligned}
$$

The normalized eigenvectors are

$$
\left.\chi_{ \pm}^{(y)}=\frac{1}{\sqrt{2}}\binom{1}{ \pm i}\right] .
$$

(b) If you measured S_{y} on a particle in the general state χ

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-},
$$

what values might you get, and what is the probability of each? Check that the probabilities add up to 1. Note : a and b need not be real.
[We can write that

$$
\begin{aligned}
\chi= & \binom{a}{b}=a \chi_{+}+b \chi_{-} \\
& \text {or in the } y-\text { basis } \\
\chi= & \binom{a^{\prime}}{b^{\prime}}=a^{\prime} \chi_{+}^{(y)}+b^{\prime} \chi_{-}^{(y)}
\end{aligned}
$$

The probability that we find the particle with spin $+\frac{\hbar}{2}$, that is, $P_{\frac{1}{2}}$ is

$$
\begin{aligned}
P_{\frac{1}{2}} & =\left|a \chi_{+}^{(y)^{\dagger}} \chi_{+}+b \chi_{+}^{(y)^{\dagger}} \chi_{-}\right|^{2} \\
& =\left|\frac{a}{\sqrt{2}}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\binom{1}{0}+\frac{b}{\sqrt{2}}\left(\begin{array}{ll}
1 & i
\end{array}\right)\binom{0}{1}\right| \\
& =\left|\frac{a}{\sqrt{2}}+\frac{i b}{\sqrt{2}}\right|^{2} \\
& =\frac{1}{2}\left(|a|^{2}+i a^{*} b-i b^{*} a+|b|^{2}\right)
\end{aligned}
$$

The probability that we find the particle with spin $-\frac{\hbar}{2}$ is

$$
\begin{aligned}
P_{-\frac{1}{2}} & =\left|a \chi_{-}^{(y)^{\dagger}} \chi_{+}+b \chi_{-}^{(y)^{\dagger}} \chi_{-}\right|^{2} \\
& =\left|\frac{a}{\sqrt{2}}\left(\begin{array}{ll}
1 & i
\end{array}\right)\binom{1}{0}+\frac{b}{\sqrt{2}}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\binom{0}{1}\right| \\
& =\left|\frac{a}{\sqrt{2}}+\frac{-i b}{\sqrt{2}}\right|^{2} \\
& =\frac{1}{2}\left(|a|^{2}-i a^{*} b+i b^{*} a+|b|^{2}\right) \\
P_{\frac{1}{2}}+P_{-\frac{1}{2}}=|a|^{2} & \left.+|b|^{2}=1 .\right]
\end{aligned}
$$

(c) If you measured S_{y}^{2}, what values might you get, and with what probabilities?
[$S_{y}^{2}=\frac{\hbar}{4}$ for either of the two eigenstates. So we measure $\left(S_{y}\right)^{2}=$ $\hbar / 4$ with unit probability.]
4. Griffiths 4.30. We can begin by constructing

$$
\begin{aligned}
S_{r} & =\frac{\hbar}{2}\left[\sin \theta \cos \phi \sigma_{x}+\sin \theta \sin \phi \sigma_{y}+\cos \theta \sigma_{z}\right] \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \phi} \\
\sin \theta e^{i \phi} & -\cos \theta
\end{array}\right) .
\end{aligned}
$$

Solving for the eigenvalues, we have that $(\cos \theta-\lambda)(\cos \theta+\lambda)+\sin ^{2} \theta=$ 0 , giving us eigenvalues $\lambda= \pm \hbar / 2$. The eigenvectors are found using the normal procedure. For $\chi_{+}=(x, y)$, we have that $(\cos \theta-1) x+$ $\sin \theta \exp (-i \phi) y=0$, or after applying a trig identity, $y \cos (\theta / 2)=$ $\exp (i \phi) \sin (\theta / 2) x$. And normalization requires that $|x|^{2}+|y|^{2}=1$, or $|x|^{2}\left(1+\tan ^{2}(\theta / 2)\right)=1$, giving $x=\cos (\theta / 2)$ and $y=\sin (\theta / 2) \exp (i \phi)$. And similarly for χ_{-}. The answers are:

$$
\chi_{+}=\binom{\cos (\theta / 2)}{e^{i \phi} \sin (\theta / 2)}, \quad \chi_{-}=\binom{\sin (\theta / 2)}{-e^{i \phi} \cos (\theta / 2)} .
$$

5. Griffiths 4.33. An electron is at rest in an oscillating magnetic field

$$
\mathbf{B}=B_{0} \cos (\omega t) \hat{k},
$$

where B_{0} and ω are constants.
(a) Construct the Hamiltonian matrix for this system.
[The Hamiltonian for this system can be written as $H=-\mu \cdot \mathbf{B}=$ $\left.-\gamma \mathbf{B} \cdot \mathbf{S}=-\gamma \mathbf{B} \cdot \mathbf{S}=-\gamma B_{0} \cos (\omega t) \frac{\hbar}{2} \sigma_{z} \cdot\right]$
(b) The electron starts out (at $t=0$) in the spin-up state with respect to the x-axis (that is: $\chi(0)=\chi_{+}^{(x)}$). Determine $\chi(t)$ at any subsequent time. Beware : This is a time-dependent Hamiltonian, so you cannot get $\chi(t)$ in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schrodinger equation

$$
i \hbar \frac{\partial \chi}{\partial t}=\mathbf{H} \chi
$$

directly.
[From Schrodinger's equation we get that

$$
i \hbar \frac{\partial}{\partial t}\binom{a}{b}=-\gamma B_{0} \cos (\omega t) \frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{a}{b}
$$

where $\chi(t)=\binom{a(t)}{b(t)}$. Then we have a pair of differential equations

$$
\begin{aligned}
i \hbar \frac{\partial a}{\partial t} & =-\gamma B_{0} \cos (\omega t) \frac{\hbar}{2} a \\
\Rightarrow \frac{d a}{a} & =i \frac{\gamma B_{0} \cos (\omega t)}{2} d t \\
\Rightarrow a & =a(0) \exp \left(\frac{i \gamma B_{0} \sin (\omega t)}{2 \omega}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
i \hbar \frac{\partial b}{\partial t} & =\gamma B_{0} \cos (\omega t) \frac{\hbar}{2} b \\
\Rightarrow b & =b(0) \exp \left(\frac{i \gamma B_{0} \sin (\omega t)}{2 \omega}\right)
\end{aligned}
$$

At $t=0$,

$$
\chi(0)=\binom{a(0)}{b(0)}=\chi_{+}^{(x)}=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

Therefore

$$
\chi(t)=\frac{1}{\sqrt{2}}\binom{\exp \left(-\frac{i \gamma B_{0} \sin (\omega t)}{2 \omega}\right)}{\exp \left(\frac{i \gamma B_{0} \sin (\omega t)}{2 \omega}\right)}
$$

(c) Find the probability of getting $\hbar / 2$, if you measure S_{x}.
[The probability to get $S_{x}=-\hbar / 2$ is given by the projection of $\chi(t)$ onto the eigenstate of S_{z} with eigenvalue $-\frac{\hbar}{2}$, namely $\chi_{-}^{(x)}=$ $\frac{1}{\sqrt{2}}\binom{1}{-1}$. Then the probability is

$$
\begin{aligned}
\left|\left\langle\chi_{-}^{(x)} \mid \chi(t)\right\rangle\right|^{2} & =\left|\frac{1}{2}\left(e^{-\frac{i \gamma B_{0} \sin \omega t}{2 \omega}}-e^{\frac{i \gamma B_{0} \sin (\omega t)}{2 \omega}}\right)\right|^{2} \\
& \left.=\sin ^{2} \frac{\gamma B_{0} \sin (\omega t)}{2 \omega}\right]
\end{aligned}
$$

(d) What is the minimum field $\left(B_{0}\right)$ required to force a complete flip in S_{x} ?
[We see that the minimum field for a spin flip is that required so that $\left|\left\langle\chi_{-}^{(x)} \mid \chi(t)\right\rangle\right|^{2}=1$ which will occur only if $\frac{\gamma B_{0}}{2 \omega} \geq \frac{\pi}{2}$, or if $\left.B_{0} \geq \frac{\pi \gamma}{\omega}.\right]$
6. Griffiths 4.36. This problem involves reading out values from the Clebsh-Gorden Table on pg. 168 of Griffiths. Part (a) asks that we find the co-efficients of the following product in which the total spin is 3 and the z -component is 1 .

$$
|3,1\rangle=(?)|1,1\rangle \otimes|2,0\rangle+(?)|1,0\rangle \otimes|2,1\rangle+(?)|1,-1\rangle \otimes|2,2\rangle .
$$

Looking at the table we can fill in the co-efficients as

$$
|3,1\rangle=\sqrt{\frac{6}{15}}|1,1\rangle \otimes|2,0\rangle+\sqrt{\frac{8}{15}}|1,0\rangle \otimes|2,1\rangle+\sqrt{\frac{1}{15}}|1,-1\rangle \otimes|2,2\rangle .
$$

We can then read off the probabilities of the z-component of the spin-2 particle as $P(-2 \hbar)=0, P(-1 \hbar)=0, P(0)=6 / 15, P(1 \hbar)=8 / 15, P(2 \hbar)=$ 1/15.
For part(b), we have to add the angular momentum for an electron with orbital ket $|1,0\rangle$ and spin ket $|1 / 2,-1 / 2\rangle$. Again this is just looking up the Clebsh-Gordon table to find that

$$
|1,0\rangle \otimes|1 / 2,-1 / 2\rangle=\sqrt{\frac{2}{3}}|3 / 2,-1 / 2\rangle+\sqrt{\frac{1}{3}}|1 / 2,-1 / 2\rangle .
$$

We have that with probability $2 / 3$ we will have $J=3 / 2$ or $J^{2}=$ $J(J+1)=15 / 4 \hbar^{2}$, and probability $1 / 3$ that we will have $J=1 / 2$, or $J^{2}=J(J+1)=3 / 4 \hbar^{2}$.

7. Show that

$$
e^{i(\sigma \cdot \hat{n}) \alpha / 2}=\cos (\alpha / 2)+i(\hat{n} \cdot \sigma) \sin (\alpha / 2)
$$

where the unit vector

$$
\hat{n}=\sin \theta \cos \phi \hat{i}+\sin \theta \sin \phi \hat{j}+\cos \theta \hat{k}
$$

The operator $\exp (i(\sigma \cdot \hat{n}) \alpha / 2)$ effects a rotation of the spinor χ through the angle α about the axis \hat{n}.
[We start with

$$
\exp (i \hat{n} \cdot \vec{\sigma} \alpha / 2)=I+i \hat{n} \cdot \vec{\sigma} \frac{\alpha}{2}+\frac{1}{2}\left(i \hat{n} \cdot \vec{\sigma} \frac{\alpha}{2}\right)^{2}+\frac{1}{3!}\left(i \hat{n} \cdot \vec{\sigma} \frac{\alpha}{2}\right)^{3}+\ldots
$$

Now

$$
\begin{aligned}
(\hat{n} \cdot \vec{\sigma})^{2} & =\left(n_{x} \sigma_{x}+n_{y} \sigma_{y}+n_{z} \sigma_{z}\right)^{2} \\
& =\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) I \\
& =+n_{x} n_{y}\left(\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{x}\right)+n_{x} n_{z}\left(\sigma_{x} \sigma_{z}+\sigma_{z} \sigma_{x}\right)+n_{z} n_{y}\left(\sigma_{z} \sigma_{y}+\sigma_{y} \sigma_{z}\right) \\
& =I
\end{aligned}
$$

where I is the identity matrix. Then we have

$$
\begin{gathered}
\exp (i \hat{n} \cdot \vec{\sigma} \alpha / 2)=I+i \hat{n} \cdot \vec{\sigma} \frac{\alpha}{2}-\frac{1}{2}\left(\frac{\alpha}{2}\right)^{2}-i \frac{1}{3!}(\hat{n} \cdot \vec{\sigma})\left(\frac{\alpha}{2}\right)^{3}+\ldots \\
\exp \left(\frac{i \hat{n} \cdot \vec{\sigma} \alpha}{2}\right)=I\left(1-\frac{(\alpha / 2)^{2}}{2!}+\cdots\right)+i(\hat{n} \cdot \vec{\sigma})\left(\alpha / 2-\frac{(\alpha / 2)^{3}}{3!}+\cdots\right) \\
\left.=I \cos \left(\frac{\alpha}{2}\right)+i(\hat{n} \cdot \vec{\sigma}) \sin \left(\frac{\alpha}{2}\right) \cdot\right]
\end{gathered}
$$

