
Physics 443, Solutions to PS 6

1. Griffiths 4.13.

(a) Find 〈r〉 and 〈r2〉 for an electron in the ground state of hydrogen.
Express your answers in terms of the Bohr radius.

[The ground state of the Hydrogen wavefunction can be written
as

ψ100 =
exp(− r

a
)√

πa3

where a is the Bohr radius. We can then calculate

〈r〉 =
1

πa3

∫
r3e−2r/adrdΩ = 4a

∫ ∞
0

u3e−2u du =
3a

2
.

Similarly,

〈r2〉 = 4a2
∫
u4e−2u du = 3a2].

(b) Find 〈x〉 and 〈x2〉 for an electron in the ground state of hydrogen.
Hint : This requires no new integration - note that r2 = x2 + y2 +
z2, and exploit the symmetry of the ground state.

[We have that

〈x〉 =
∫ 2π

0
dφ
∫ π

0
d(cos θ)

∫ ∞
0

e−2r/a

√
πa3

r2dr = 0

and by symmetry

〈x2〉 = 〈y2〉 = 〈z2〉 = 〈r2〉/3 = a2].

(c) Find 〈x2〉 in the state n = 2, l = 1,m = 1. Warning : This is not
symmetrical in x, y, z. Use x = r sin θ cos θ.

[ For part (c), we write

ψ211 = −
√

3

8π

1√
24a3

r

a
e
−r
2a sin θeiφ.

To calculate the e xpectation value

〈x2〉 =
3

8π

(
1

24a3

) ∫ (
r

a

)2

e
−r
a sin2 θ(r2 sin2 θ cos2 φ)(r2 sin θ drdθdφ)

=
3

8π

(
1

24a5

) ∫ 2π

0
cos2 φdφ

∫ π

0
sin5 θdθ

∫ ∞
0

r6e
−r
a dr

1



=
3

8π

1

24a5
(π)

∫ 1

−1
(1− x2)2dx

∫ ∞
0

a7u6e−udu

=
3

8π

1

24a5
(π)

(
16

15

) ∫ ∞
0

a7u6e−udu

=
3

8π

1

24a5
(π)

(
16

15

)
a76!

= 12a2]

2. Griffiths 4.16. In this problem notice that

V (r) =
−Ze2

4πε0

1

r

is just the same potential as the hydrogen atom with e2 → Ze2. Which
means that we can use all the results of the Hydrogen atom making
this substitution. Looking at the denependence of these functions on
e2, we can write down the answers as:

En(Z) = Z2εn; a(z) =
a

Z
;R(Z) = Z2R

1

λ

∣∣∣∣
Lyman

=
(

4

3R
,

1

R

)
→
(

4

3Z2R
,

1

Z2R

)
For Z = 2, (2.28x10−8m, 3.04x10−8m) ∈ ultraviolet

For Z = 3, (1.01x10−8m, 1.35x10−8m) ∈ ultraviolet

3. Griffiths 4.29.

(a) Find the eigenvalues and eigenspinors of Sy.

[The eigenvalues of Sy are ±h̄/2. The eigenvalues of a spin 1
2

matrix are ±1
2

regardless of axis. Then

h̄

2
σyχ

(y)
± = ± h̄

2
χ

(y)
±

→
(

0 −i
i 0

)(
1
b

)
= ±

(
1
b

)
→ b = ±i

The normalized eigenvectors are

χ
(y)
± =

1√
2

(
1
±i

)
].
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(b) If you measured Sy on a particle in the general state χ

χ =
(
a
b

)
= aχ+ + bχ−,

what values might you get, and what is the probability of each?
Check that the probabilities add up to 1. Note : a and b need not
be real.

[We can write that

χ =
(
a
b

)
= aχ+ + bχ−

or in the y − basis

χ =
(
a′

b′

)
= a′χ

(y)
+ + b′χ

(y)
−

The probability that we find the particle with spin + h̄
2
, that is,

P 1
2

is

P 1
2

= |aχ(y)
+

†
χ+ + bχ

(y)
+

†
χ−|2

= | a√
2

( 1 −i )
(

1
0

)
+

b√
2

( 1 i )
(

0
1

)
|

= | a√
2

+
ib√

2
|2

=
1

2
(|a|2 + ia∗b− ib∗a+ |b|2)

The probability that we find the particle with spin − h̄
2

is

P− 1
2

= |aχ(y)
−
†
χ+ + bχ

(y)
−
†
χ−|2

= | a√
2

( 1 i )
(

1
0

)
+

b√
2

( 1 −i )
(

0
1

)
|

= | a√
2

+
−ib√

2
|2

=
1

2
(|a|2 − ia∗b+ ib∗a+ |b|2)

P 1
2

+ P− 1
2

= |a|2 + |b|2 = 1.]

3



(c) If you measured S2
y , what values might you get, and with what

probabilities?

[S2
y = h̄

4
for either of the two eigenstates. So we measure (Sy)

2 =
h̄/4 with unit probability.]

4. Griffiths 4.30. We can begin by constructing

Sr =
h̄

2
[sin θ cosφσx + sin θ sinφσy + cos θσz] ,

=
h̄

2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

Solving for the eigenvalues, we have that (cos θ−λ)(cos θ+λ)+sin2 θ =
0, giving us eigenvalues λ = ±h̄/2. The eigenvectors are found using
the normal procedure. For χ+ = (x, y), we have that (cos θ − 1)x +
sin θ exp(−iφ)y = 0, or after applying a trig identity, y cos(θ/2) =
exp(iφ) sin(θ/2)x. And normalization requires that |x|2 + |y|2 = 1, or
|x|2(1 + tan2(θ/2)) = 1, giving x = cos(θ/2) and y = sin(θ/2) exp(iφ).
And similarly for χ−. The answers are:

χ+ =

(
cos(θ/2)
eiφ sin(θ/2)

)
, χ− =

(
sin(θ/2)

−eiφ cos(θ/2)

)
.

5. Griffiths 4.33. An electron is at rest in an oscillating magnetic field

B = B0 cos(ωt)k̂,

where B0 and ω are constants.

(a) Construct the Hamiltonian matrix for this system.

[The Hamiltonian for this system can be written as H = −µ ·B =
−γB · S = −γB · S = −γB0 cos(ωt) h̄

2
σz.]

(b) The electron starts out (at t = 0) in the spin-up state with re-

spect to the x-axis (that is: χ(0) = χ
(x)
+ ). Determine χ(t) at

any subsequent time. Beware : This is a time-dependent Hamil-
tonian, so you cannot get χ(t) in the usual way from stationary
states. Fortunately, in this case you can solve the time-dependent
Schrodinger equation

ih̄
∂χ

∂t
= Hχ,
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directly.

[From Schrodinger’s equation we get that

ih̄
∂

∂t

(
a
b

)
= −γB0 cos(ωt)

h̄

2

(
1 0
0 −1

)(
a
b

)

where χ(t) =
(
a(t)
b(t)

)
. Then we have a pair of differential equa-

tions

ih̄
∂a

∂t
= −γB0 cos(ωt)

h̄

2
a

⇒ da

a
= i

γB0 cos(ωt)

2
dt

⇒ a = a(0) exp(
iγB0 sin(ωt)

2ω
)

Similarly

ih̄
∂b

∂t
= γB0 cos(ωt)

h̄

2
b

⇒ b = b(0) exp(
iγB0 sin(ωt)

2ω
)

At t = 0,

χ(0) =
(
a(0)
b(0)

)
= χ

(x)
+ =

1√
2

(
1
1

)
Therefore

χ(t) =
1√
2

(
exp(− iγB0 sin(ωt)

2ω
)

exp( iγB0 sin(ωt)
2ω

)

)

(c) Find the probability of getting h̄/2, if you measure Sx.

[The probability to get Sx = −h̄/2 is given by the projection of

χ(t) onto the eigenstate of Sz with eigenvalue - h̄
2
, namely χ

(x)
− =

1√
2

(
1
−1

)
. Then the probability is

|
〈
χ

(x)
− | χ(t)

〉
|2 = |1

2
(e−

iγB0 sinωt

2ω − e
iγB0 sin(ωt)

2ω )|2

= sin2 γB0 sin(ωt)

2ω
]
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(d) What is the minimum field (B0) required to force a complete flip
in Sx?

[We see that the minimum field for a spin flip is that required so

that |
〈
χ

(x)
− | χ(t)

〉
|2 = 1 which will occur only if γB0

2ω
≥ π

2
, or if

B0 ≥ πγ
ω

.]

6. Griffiths 4.36. This problem involves reading out values from the
Clebsh-Gorden Table on pg. 168 of Griffiths. Part (a) asks that we
find the co-efficients of the following product in which the total spin is
3 and the z-component is 1.

|3, 1〉 = (?)|1, 1〉 ⊗ |2, 0〉+ (?)|1, 0〉 ⊗ |2, 1〉+ (?)|1,−1〉 ⊗ |2, 2〉.

Looking at the table we can fill in the co-efficients as

|3, 1〉 =

√
6

15
|1, 1〉 ⊗ |2, 0〉+

√
8

15
|1, 0〉 ⊗ |2, 1〉+

√
1

15
|1,−1〉 ⊗ |2, 2〉.

We can then read off the probabilities of the z-component of the spin-2
particle as P (−2h̄) = 0, P (−1h̄) = 0, P (0) = 6/15, P (1h̄) = 8/15, P (2h̄) =
1/15.

For part(b), we have to add the angular momentum for an electron with
orbital ket |1, 0〉 and spin ket |1/2,−1/2〉. Again this is just looking up
the Clebsh-Gordon table to find that

|1, 0〉 ⊗ |1/2,−1/2〉 =

√
2

3
|3/2,−1/2〉+

√
1

3
|1/2,−1/2〉.

We have that with probability 2/3 we will have J = 3/2 or J2 =
J(J + 1) = 15/4 h̄2, and probability 1/3 that we will have J = 1/2, or
J2 = J(J + 1) = 3/4 h̄2.

7. Show that

ei(σ·n̂)α/2 = cos(α/2) + i(n̂ · σ) sin(α/2)

where the unit vector

n̂ = sin θ cosφî+ sin θ sinφĵ + cos θk̂
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The operator exp(i(σ · n̂)α/2) effects a rotation of the spinor χ through
the angle α about the axis n̂.

[We start with

exp(in̂ · ~σα/2) = I + in̂ · ~σα
2

+
1

2

(
in̂ · ~σα

2

)2

+
1

3!

(
in̂ · ~σα

2

)3

+ ...

Now

(n̂ · ~σ)2 = (nxσx + nyσy + nzσz)
2

= (n2
x + n2

y + n2
z)I

= +nxny(σxσy + σyσx) + nxnz(σxσz + σzσx) + nzny(σzσy + σyσz)

= I

where I is the identity matrix. Then we have

exp(in̂ · ~σα/2) = I + in̂ · ~σα
2
− 1

2

(
α

2

)2

− i 1

3!
(n̂ · ~σ)

(
α

2

)3

+ ...

exp(
in̂.~σα

2
) = I

(
1− (α/2)2

2!
+ · · ·

)
+ i(n̂.~σ)

(
α/2− (α/2)3

3!
+ · · ·

)

= I cos(
α

2
) + i(n̂.~σ) sin(

α

2
).]
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