1. Griffiths 4.13 .

(a) Find $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for an electron in the ground state of hydrogen. Express your answers in terms of the Bohr radius.
(b) Find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for an electron in the ground state of hydrogen. Hint : This requires no new integration - note that $r^{2}=x^{2}+y^{2}+$ z^{2}, and exploit the symmetry of the ground state.
(c) Find $\left\langle x^{2}\right\rangle$ in the state $n=2, l=1, m=1$. Warning: This is not symmetrical in x, y, z. Use $x=r \sin \theta \cos \theta$.
2. Griffiths 4.16. A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons ($Z=1$ would be hydrogen itself, $Z=2$ is ionized helium, $Z=3$ is doubly ionized lithium, and so on). Determine the Bohr energies $E_{n}(Z)$, the binding energy $E_{1}(Z)$, the bohr radius $a(Z)$ and the Rydberg constant $R(Z)$ for a hydrogenic atom. (Express your answers as appropriate multiples of the hydrogen values.) Where in the electromagnetic spectrum would the Lyman series fall, for $Z=2$ and $Z=3$? Hint : There's nothing much to calculate here- in the potential

$$
V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}, \quad e^{2} \rightarrow Z e^{2}
$$

so all you have to do is make the same substitution in all the final results.

3. Griffiths 4.29 .

(a) Find the eigenvalues and eigenspinors of \mathbf{S}_{y}.
(b) If you measured S_{y} on a particle in the general state χ

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-},
$$

what values might you get, and what is the probability of each? Check that the probabilities add up to 1. Note : a and b need not be real.
(c) If you measured S_{y}^{2}, what values might you get, and with what probabilities?
4. Griffiths 4.30. Construct the matrix \mathbf{S}_{r} representing the component of spin angular momentum along an arbitrary direction \hat{r}. Use spherical coordinates, for which

$$
\hat{r}=\sin \theta \cos \phi \hat{i}+\sin \theta \sin \phi \hat{j}+\cos \theta \hat{k} .
$$

Find the eigenvalues and (normalized) eigenspinors of \mathbf{S}_{r}. Answer :

$$
\chi_{+}^{(r)}=\binom{\cos (\theta / 2)}{e^{i \phi} \sin (\theta / 2)} ; \quad \chi_{-}^{(r)}=\binom{e^{-i \phi} \sin (\theta / 2)}{-\cos (\theta / 2)} .
$$

Note : You're always free to multiply by an arbitrary phase factor-say, $e^{i \phi}$-so your answer may not look exactly the same as mine.
5. Griffiths 4.33. An electron is at rest in an oscillating magnetic field

$$
\mathbf{B}=B_{0} \cos (\omega t) \hat{k},
$$

where B_{0} and ω are constants.
(a) Construct the Hamiltonian matrix for this system.
(b) The electron starts out (at $t=0$) in the spin-up state with respect to the x-axis (that is: $\chi(0)=\chi_{+}^{(x)}$). Determine $\chi(t)$ at any subsequent time. Beware : This is a time-dependent Hamiltonian, so you cannot get $\chi(t)$ in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schrodinger equation

$$
i \hbar \frac{\partial \chi}{\partial t}=\mathbf{H} \chi
$$

directly.
(c) Find the probability of getting $-\hbar / 2$, if you measure S_{x}. Answer :

$$
\sin ^{2}\left(\frac{\gamma B_{0}}{2 \omega} \sin (\omega t)\right)
$$

(d) What is the minimum field $\left(B_{0}\right)$ required to force a complete flip in S_{x} ?

6. Griffiths 4.36 .

(a) A particle of spin 1 and a particle of spin 2 are at rest in a configuration such that the total spin is 3, and its z component is \hbar. If you measured the z component of the angular momentum of the spin- 2 particle, what values might you get, and what is the probability of each one?
(b) An electron with spin down is in the state ψ_{510} of the hydrogen atom. If you could measure the total angular momentum squared of the electron alone, (not including the proton spin), what values might you get, and what is the probability of each?

7. Show that

$$
e^{i(\sigma \cdot \hat{n}) \alpha / 2}=\cos (\alpha / 2)+i(\hat{n} \cdot \sigma) \sin (\alpha / 2)
$$

where the unit vector

$$
\hat{n}=\sin \theta \cos \phi \hat{i}+\sin \theta \sin \phi \hat{j}+\cos \theta \hat{k}
$$

The operator $\exp (i(\sigma \cdot \hat{n}) \alpha / 2)$ effects a rotation of the spinor χ through the angle α about the axis \hat{n}.

Prelim. March 7, 2008, 3:35 PM, 104 Rock. Review at 9:00AM.

