1. Griffiths 4.13.

- (a) Find $\langle r \rangle$ and $\langle r^2 \rangle$ for an electron in the ground state of hydrogen. Express your answers in terms of the Bohr radius.
- (b) Find $\langle x \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of hydrogen. Hint: This requires no new integration - note that $r^2 = x^2 + y^2 + z^2$, and exploit the symmetry of the ground state.
- (c) Find $\langle x^2 \rangle$ in the state n = 2, l = 1, m = 1. Warning : This is not symmetrical in x, y, z. Use $x = r \sin \theta \cos \theta$.
- 2. Griffiths 4.16. A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons (Z = 1 would be hydrogen itself, Z = 2 is ionized helium, Z = 3 is doubly ionized lithium, and so on). Determine the Bohr energies $E_n(Z)$, the binding energy $E_1(Z)$, the bohr radius a(Z) and the Rydberg constant R(Z) for a hydrogenic atom. (Express your answers as appropriate multiples of the hydrogen values.) Where in the electromagnetic spectrum would the Lyman series fall, for Z = 2and Z = 3? *Hint* : There's nothing much to *calculate* here- in the potential

$$V(r) = -\frac{e^2}{4\pi\epsilon_0}\frac{1}{r}, \quad e^2 \to Z e^2,$$

so all you have to do is make the same substitutiion in all the final results.

3. Griffiths 4.29.

- (a) Find the eigenvalues and eigenspinors of \mathbf{S}_y .
- (b) If you measured S_y on a particle in the general state χ

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+ + b\chi_-,$$

what values might you get, and what is the probability of each? Check that the probabilities add up to 1. Note : a and b need not be real.

(c) If you measured S_y^2 , what values might you get, and with what probabilities?

4. Griffiths 4.30. Construct the matrix \mathbf{S}_r representing the component of spin angular momentum along an arbitrary direction \hat{r} . Use spherical coordinates, for which

$$\hat{r} = \sin\theta\cos\phi\hat{i} + \sin\theta\sin\phi\hat{j} + \cos\theta\hat{k}.$$

Find the eigenvalues and (normalized) eigenspinors of \mathbf{S}_r . Answer:

$$\chi_{+}^{(r)} = \begin{pmatrix} \cos(\theta/2) \\ e^{i\phi}\sin(\theta/2) \end{pmatrix}; \quad \chi_{-}^{(r)} = \begin{pmatrix} e^{-i\phi}\sin(\theta/2) \\ -\cos(\theta/2) \end{pmatrix}.$$

Note : You're always free to multiply by an arbitrary phase factor-say, $e^{i\phi}$ -so your answer may not *look* exactly the same as mine.

5. Griffiths 4.33. An electron is at rest in an oscillating magnetic field

$$\mathbf{B} = B_0 \cos(\omega t) k,$$

where B_0 and ω are constants.

- (a) Construct the Hamiltonian matrix for this system.
- (b) The electron starts out (at t = 0) in the spin-up state with respect to the x-axis (that is: $\chi(0) = \chi_{+}^{(x)}$). Determine $\chi(t)$ at any subsequent time. Beware : This is a time-dependent Hamiltonian, so you cannot get $\chi(t)$ in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schrödinger equation

$$i\hbar \frac{\partial \chi}{\partial t} = \mathbf{H}\chi,$$

directly.

(c) Find the probability of getting $-\hbar/2$, if you measure S_x . Answer:

$$\sin^2\left(\frac{\gamma B_0}{2\omega}\sin(\omega t)\right).$$

- (d) What is the minimum field (B_0) required to force a complete flip in S_x ?
- 6. Griffiths 4.36.

- (a) A particle of spin 1 and a particle of spin 2 are at rest in a configuration such that the total spin is 3, and its z component is ħ. If you measured the z component of the angular momentum of the spin-2 particle, what values might you get, and what is the probability of each one?
- (b) An electron with spin down is in the state ψ_{510} of the hydrogen atom. If you could measure the total angular momentum squared of the electron alone, (*not* including the proton spin), what values might you get, and what is the probability of each?

7. Show that

$$e^{i(\sigma \cdot \hat{n})\alpha/2} = \cos(\alpha/2) + i(\hat{n} \cdot \sigma)\sin(\alpha/2)$$

where the unit vector

$$\hat{n} = \sin\theta\cos\phi\hat{i} + \sin\theta\sin\phi\hat{j} + \cos\theta\hat{k}$$

The operator $\exp(i(\sigma \cdot \hat{n})\alpha/2)$ effects a rotation of the spinor χ through the angle α about the axis \hat{n} .

Prelim. March 7, 2008, 3:35 PM, 104 Rock. Review at 9:00AM.