Physics 443 HW \#5

Due February 27, 2008

1. Angular momentum 1

Consider a system with total angular momentum 1 and with basis vectors

$$
\chi_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \chi_{0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \chi_{-1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

(a) Derive matrix representations of $L_{ \pm}, L_{z}, L^{2}$ and L_{y}.
(b) Any state ψ with angular momentum $l=1$ can be written as a linear combination of the base states.

$$
\psi=a \chi_{1}+b \chi_{0}+c \chi_{-1}
$$

where a, b, and c are the amplitudes for the various components of angular momentum with respect to the z-axis. In a new coordinate system that is related to the original by a rotation by an angle θ about the y-axis, we can write

$$
\psi=a^{\prime} \chi_{1}^{\prime}+b^{\prime} \chi_{0}^{\prime}+c^{\prime} \chi_{-1}^{\prime}
$$

a^{\prime}, b^{\prime}, and c^{\prime} are amplitudes for components of angular momentum along the z^{\prime} axis. The angle between the z axis and the z^{\prime} axis is θ. Derive the rotation matrix $R_{y}(\theta)$ that relates a, b and c with a^{\prime}, b^{\prime}, and c^{\prime}

2. Griffiths 4.19 .

(a) Starting with the canonical commutation relations for potistion and momentum
$\left[r_{i}, p_{j}\right]=i \hbar \delta_{i j}, \quad$ where $r_{1}=x, r_{2}=y, r_{3}=z$, and $p_{1}=p_{x}, p_{2}=p_{y}, p_{3}=p_{z}$
work out the following commutators:

$$
\begin{array}{rlrl}
{\left[L_{z}, x\right]} & =i \hbar y, & {\left[L_{z}, y\right]} & =-i \hbar x, \\
{\left[L_{z}, p_{x}\right]} & =i \hbar p_{y}, & {\left[L_{z}, L_{z}, z\right]} & \left.=-i \hbar p_{y}\right] \tag{1}\\
& =- & {\left[L_{z}, p_{z}\right]=0}
\end{array}
$$

(b) Use these results to obtain $\left[L_{z}, L_{x}\right]=i \hbar L_{y}$ directly from

$$
L_{x}=y p_{z}-z p_{y}, \quad L_{y}=z p_{x}-x p_{z}, \quad L_{z}=x p_{y}-y p_{x}
$$

(c) Evaluate the commutators $\left[L_{z}, r^{2}\right]$ and $\left[L_{z}, p^{2}\right]$ (where, of course, $r^{2}=x^{2}+y^{2}+z^{2}$ and $\left.p^{2}=p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)$.
(d) Show that the Hamiltonian $H=\left(p^{2} / 2 m\right)+V$ commutes with all three components of \mathbf{L}, provided that V depends only on r. (Thus H, L^{2}, and L_{z} are mutually compatible observables.)

3. Griffiths 4.20 .

(a) Prove that for a paricle in a potential $V(\mathbf{r})$ the rate of change of the expectation value of the orbital angular momentum \mathbf{L} is equal to the expectation value of the torque:

$$
\frac{d}{d t}\langle\mathbf{L}\rangle=\langle\mathbf{N}\rangle
$$

where

$$
\mathbf{N}=\mathbf{r} \times(-\nabla V)
$$

(This is the rotational analog of Ehrenfest's theorem.)
(b) Show that $d\langle\mathbf{L}\rangle / d t=0$ for any spherically symmetric potential. (This is one form of the quantum statement of conservation of angular momentum.)

4. Griffiths 4.22

(a) What is $L_{+} Y_{l}^{l}$? (No calculation allowed!)
(b) Use the result of (a), together with the fact that

$$
L_{ \pm}= \pm \hbar e^{ \pm i \phi}\left(\frac{\partial}{\partial \theta} \pm \cot \theta \frac{\partial}{\partial \phi}\right)
$$

and the fact that $L_{z} Y_{l}^{l}=\hbar l Y_{l}^{l}$, to determine $Y_{l}^{l}(\theta, \phi)$, up to a normalization constant.
(c) Determine the normalization constant by direct integration. Compare your answer for $l=3$ to what appears in the table on page 139
5. Griffiths 4.27. An electron is in the spin state

$$
\chi=A\binom{3 i}{4}
$$

(a) Determine the normalization constant A.
(b) Find the expectation values of S_{x}, S_{y}, and S_{z}.
(c) Find the "uncertainties" $\sigma_{S_{x}}, \sigma_{S_{y}}$, and $\sigma_{S_{z}}$. (Note: These sigmas are standard deviations, not Pauli matrices!)
(d) Confirm that your results are consistent with all three uncertainty principles, namely

$$
\sigma_{S_{x}} \sigma_{S_{y}} \geq \frac{\hbar}{2}\left|\left\langle L_{z}\right\rangle\right|
$$

and its cyclic permutations.
6. Griffiths $\mathbf{4 . 2 8}$. For the most general normalized spinor χ where

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-},
$$

with

$$
\chi_{+}=\binom{1}{0}, \text { and } \chi_{-}=\binom{0}{1},
$$

compute $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle,\left\langle S_{z}\right\rangle,\left\langle S_{x}^{2}\right\rangle,\left\langle S_{y}^{2}\right\rangle$, and $\left\langle S_{z}^{2}\right\rangle$. Check that $\left\langle S_{x}^{2}\right\rangle+\left\langle S_{y}^{2}\right\rangle+$ $\left\langle S_{z}^{2}\right\rangle=\left\langle S^{2}\right\rangle$

